
Efficient Peer-to-Peer Data Dissemination in Mobile Ad-Hoc Networks

Siddhartha K. Goel, Manish Singh, Dongyan Xu
�

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907, USA

Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Ontario, Canada

Abstract

Without infrastructural support from base stations, mo-
bile nodes in an ad hoc network communicate with each
other in a peer-to-peer fashion. This poses a challenge in
data dissemination among the mobile peers, each having
limited transmission range and unpredictable mobility. In
this paper, we first propose a novel mobility model to
characterize user mobility in a civilian environment, such
as a college campus. We then propose the application of
Tornado coding as an efficient solution to the challenge of
ad hoc peer-to-peer data dissemination. A mobile node is
able to download coded file segments from different peers
- at different times and in different locations. When it
receives sufficient segments, it will be able to re-construct
the original file. Although Tornado coding itself is not new,
we for the first time propose its application to mobile ad hoc
data dissemination. Furthermore, we show how Tornado
coding parameters affect the performance of peer-to-peer
data dissemination.

1. Introduction

A mobile ad-hoc network is formed dynamically without
requiring any wireline infrastructure. Therefore, it has
found wide applications in military operations, disaster
relief efforts, and more recently, in civilian and ubiquitous
environments. In this paper, we study a specific type
of application: the dissemination of popular data files
among mobile ad hoc users. Such dissemination is peer-
to-peer in nature: a mobile node may be a requester of
a popular data file, such as an image or an audio clip;

�

Corresponding author (dxu@cs.purdue.edu).

and it becomes a supplier of this data file after it retrieves
the file from other supplier(s). Meanwhile, unlike wired
or wireless cellular networks, every mobile node has a
limited transmission range. Therefore, two mobile nodes
can communicate with each other directly, only if they are
in the transmission range of each other. To communicate
with a peer outside its transmission range, a mobile node
has to rely on one or more intermediate peer(s) as relay(s).
Due to the free movement of mobile nodes, both direct
and indirect connections between peers can be disconnected
very frequently.

Recently, there have been research efforts in data shar-
ing and dissemination in mobile (not necessarily ad hoc)
environments. One approach is for each mobile node to
prefetch all possible data files from Info-stations, i.e. small
scattered areas each covered by a high speed wireless LAN
[6], before roaming; and the mobile nodes will not share
data with each other while they are on the move. Another
approach is for a requesting peer to query geographically
nearby peers; and the requester will get the requested
data file from one of the nearby supplying peers [8]. We
argue that both approaches have limitations. In the first
approach, each mobile node needs to predict all data files
it will access in future. However, such prediction is very
unlikely to be accurate. Furthermore, the ‘prefetching
without sharing’ approach does not exploit the ad hoc
communication capability between mobile nodes. In the
second approach, the ‘download from one peer’ design may
not be effective, if the file size is relatively large and the
peers move frequently and get out of the transmission range
of each other before the file transmission is completed.
Even if this does not happen, a supplier peer tends to be
overloaded with multiple file downloading connections to
multiple requesters.

In this paper, we propose an efficient scheme for the

sharing and dissemination of popular data files in mobile
ad-hoc networks. Our proposed scheme does not assume in-
stantaneous file transfer between mobile nodes, yet it brings
both significant speed-up and reliability to file sharing and
dissemination. Our major contributions in this paper are
the following. First, we propose a novel mobility model
called ‘Street-and-Building Model’, which is suitable for
the modeling of peer mobility in a civilian environment,
such as a college campus or a downtown business area.
Second, we present our protocol which enables efficient
and reliable data dissemination in mobile ad-hoc networks
by applying the technique of Tornado coding [2]. In
our protocol, supplying peers of a data file broadcast the
Tornado-encoded file segments to requesting peers. On
the other hand, a requesting peer downloads the encoded
segments from different supplying peers - at different times
and in different locations. When it receives sufficient
segments, it will be able to re-construct the original file and
it will also become a supplier. By using Tornado coding,
our protocol is highly robust against packet losses common
in ad hoc networks. Furthermore, it is highly efficient in
data transmission, eliminating the need for multiple unicast
downloading connections from multiple suppliers. Finally,
we show how to determine the Tornado coding parameters
under our Street-and-Building mobility model.

The rest of the paper is organized as follows. In Section
2, we present the Street-and-Building mobility model. In
Section 3, we describe details of our data dissemination
protocol. In Section 4, we present our simulation results.
We discuss and compare related work in Section 5. Finally,
we conclude the paper in section 6.

2. Street-and-Building Mobility Model

To design protocols for data dissemination in mobile ad-
hoc networks, we first need a mobility model to capture the
mobility pattern of mobile nodes with reasonable accuracy.
Some recent works use either a random walk model [8]
or a group clustering model [9]. The former model is
not able to characterize the regularity of user mobility,
commonly found in a civilian environment. On the other
hand, the latter model makes too strong an assumption
about the uniformity of mobility among mobile nodes. To
overcome these problems, we propose a new Street-and-
Building model for mobility modeling, which is especially
suited for civilian environments.

Our model is based on the fact that all walking users on
a given street have quite similar velocity at a given time,
with a certain adjustable variation. Therefore, it is quite
reasonable to assume that on a street for pedestrians, the
maximum walking speed of mobile nodes is a constant��� (��� can be, say, 3 miles/hour). Furthermore, as the
population density increases on the street, the walking speed

of people decreases. The walking speed ������� at time � on a
street 	 can be given by the formula:

��
��������� ��� ��������
�������� (1)

��
������ is the population density factor, and its value is in
the range of � ��� ��� . The higher the ��
������ , the more congested
the street is at time � .

For a given area such as a campus or a business area,
the mobility modeling using the Street-and-Building model
takes the following steps: (1) identify the streets and
buildings in the area; (2) define the speed function �
������ ,
and direction !
 for each street 	 in the area; (3) at any time
instance, a mobile node can be either inside a building or on
a street. For each node " on a street 	 , its direction is either
!
 or � !
 (assuming there is bi-directional traffic on each
street, with equal probability of motion in both directions
and no component of the velocity being perpendicular to the
street). Therefore the velocity of node " can be represented
by �
 ������#%$'& , $'& is the velocity variation specific to node " .

3. Peer-to-Peer Data Dissemination Protocol

We now present the peer-to-peer data dissemination
protocol. Consider an area with ��(of the mobile nodes
having tornado encoded segments of data file) in their
mobile devices (for the rest of the paper, we will refer
the file segments as application-level packets, or simply
packets). We assume that they obtain the encoded packets
while they are connected to the Internet before roaming.
These mobile nodes are the initial supplying peers of) ,
and they periodically broadcast the packets of) to all
interested peers in their transmission range 1. On the
other hand, a requesting peer listens to the packet broadcast
from different supplying peers - at different times and in
difference locations - while it moves along. Requesting
peers do not send explicit requests for particular packets.
They listen to broadcasts and store the packets received.
Note that both requesting peers (before they are able to re-
construct)) and supplying peers cooperate in the protocol
by relaying (broadcasting) packets they receive or possess.
Thus packets are broadcasted multiple hops away from
the supplying peers, until they reach such nodes that have
broadcasted the same packets in the recent past. As soon
as a requesting peer receives sufficient number of distinct
packets needed to re-construct file) , it will perform the
Tornado decoding and restore) . At this time, it becomes
a supplying peer, or as we call it, ‘infected’. This protocol
does not involve the sharing of transmission states among
peers (via beacon messages, for example). Each supplying

1A supplying peer may choose not to broadcast, if it realizes that
another supplying peer in its transmission range is already broadcasting
the packets.

peer is not aware of the requesting peers around it, and the
order of packet broadcast is determined randomly. Such
a design significantly improves the system scalability and
reduces the overhead and complexity of both supplying and
requesting peers. The only non-trivial overhead introduced
is the Tornado decoding performed by the requesting peers.

In the aspect of Tornado coding, let � denote the coding
stretch factor [2]. File) is divided into

�
packets of

equal size, and Tornado encoding will generate � � � �
packets for each supplying peer to broadcast. For each
requesting peer, it needs to receive � �� � � packets to
re-construct file) , where � determines the extra number of
packets needed. � is also known as decoding inefficiency
[2]. To apply Tornado coding to our peer-to-peer data
dissemination protocol, we need to determine two key
coding parameters: the packet size (or

�
- because

� � packet
size = file size) and the stretch factor � , which are discussed
in the following subsections, respectively.

3.1 Determining Packet Size

Constraints on the packet size can be set such that the
wastage of bandwidth is minimized. The wireless band-
width is wasted if a requesting peer receives an incomplete
packet. More specifically, if the packet size is too large,
then before the requesting peer is able to receive a complete
packet, it may be out of the transmission range of the
supplying peer. The incomplete packet is of no use to the
requesting peer and furthermore, the bandwidth consumed
by the supplying peer to transmit the incomplete packet is
wasted.

Consider Figure 1, if a requesting peer is in the trans-
mission range of supplying peer " for an overlapping period
of � & , and the data transmission rate is � , then the amount
of data the requesting peer receives during the overlapping
period is: � � � & . Let � denote the size of a complete
packet. Then the size of the incomplete packet received last
during the overlapping period is � � � � & � (� . Suppose the
requesting peer has received packets from � supplying peers
before it is able to re-construct the file, the total volume
of incomplete packets it has received can be expressed
as �
	&��� � � � ��& � (� . This volume should be minimized
for each requesting peer, which calls for a packet size as
small as possible. However, � cannot be infinitely small,
because that will increase the Tornado decoding overhead
at the requesting peers. Based on the above observation, we
propose the following heuristics to determine � : let ��� & 	be the shortest overlapping period experienced by any pair
of requesting/supplying peers in the network, then we can
have � �� � � ��� &

	
� ��� . In other words, this value of

� will ensure that at least � (� is a configurable system
parameter) complete packets will be received, even during
the shortest overlapping period.

p p p p p

 p p

 p p p p

R * t1

R * t2

R * t3

wasted

wasted

wasted

Figure 1. Determining packet size � : during
each overlapping period, the requesting peer
receives a sequence of complete packets
followed by an incomplete packet

3.2 Determining Stretch Factor

For a requesting peer to re-construct the original file,
it must receive � � � distinct packets. These packets are
transmitted from different supplying peers. The supplying
peers randomly determine their packet broadcast sequences,
in order to minimize the number of duplicate packets
received by each requesting peer. However, this will
not prevent a requesting peer from receiving duplicates.
Following the analysis in [2], we can estimate the number
of distinct packets received from each supplying peer.
Suppose ��� � � �� � � ��� packets are received from the first
supplying peer. Then if ��� � � ��� � � ��� packets come from
the second supplying peer, each of these packets may be
a duplicate with a probability of ����� � � �� � � ��� � � � � � � � .
Therefore, ��� � � ��� � � ��� � ��� � ������� � � �� � � ��� � � � � � � ��� �
packets from the second supplying peer are expected to be
distinct. Similarly, we can determine the expected number
of distinct packets from the " th supplying peer... This way,
we can sum up the total number of distinct packets from
different supplying peers, until the number exceeds � � � .
At this time, we derive the expected number of supplying
peers a requesting peer is supposed to listened to before the
file re-construction.

With the expected number of supplying peers for each
requesting peer, we then determine the stretch factor. The
stretch factor must be chosen such that a requesting peer
can re-construct the file, without any supplying peer having
to cycle through the � � � packets again. Let � be the
probability that a packet is dropped or corrupted during
transmission, then the probability that the packet is received
without loss/corruption is ��� � � � . Therefore, during one
transmission cycle of a supplying peer, the requesting peer
can receive a maximum of � � � � � ��� � � � packets from the
supplying peer. As stated earlier, ��� � � � & � � ��� is the number
of packets received by the requesting peer from supplying
peer " . The value of � should then be determined such that
�! "�$# ��%�& ����� � � ��& � � ��� � . In other words, the number of

packets received from any supplying peer should not exceed
� , or the expected number of packets that can be completely
received by the requesting peer in one transmission cycle
of each supplying peer. We have thus determined a lower
bound on � . By increasing the stretch factor, we can
further reduce the probability that a requesting peer receives
duplicate packets. However, � should not be infinitely large,
because the larger the � , the greater the Tornado encoding
and decoding overhead introduced.

4 Performance Evaluation

4.1 Simulation Setup

To evaluate the performance of our protocol, we perform
extensive simulations using a simulator we have developed
in C. Simulation experiments are performed with 1000
nodes randomly placed across a campus with a size of one
square kilometer. A snapshot of the simulated environment
is shown in Figure 2. A data file of size 1MB is used for
dissemination. Each supplying peer has a transmission rate
of � 128K bps. � � (of the peer population are randomly
assigned as initial supplying peers, while ��� (of the peer
population are randomly assigned as requesting peers. All
the peers are assumed to be cooperative. It is also assumed
that to re-construct a data file of size 1MB, a requesting peer
will need 1.055MB data due to the decoding inefficiency
factor � . The transmission range of each peer is 20 meters.
One run of the simulation lasts for 500 seconds. Initially
each peer is positioned in a building or on a street. Initial
coordinates within building (corresponding to a room) or
on street are randomly determined. If a peer is placed in a
building, it stays static for a certain wait period. If a peer is
placed on a street, it is assigned a velocity according to the
mobility model explained earlier.

Our simulation progresses in a second-by-second fash-
ion. During each second, the following steps are performed
by every supplying peer or a non-supplying but collabora-
tive peer willing to re-broadcast the encoded packets:

� Determine the set of non-supplying peers (neighbors)
within its transmission range. These are the peers that
will receive the packets it broadcasts.

� For a supplying peer, randomly select a packet -
previously unsent, from the set of encoded packets to
broadcast to all its neighbors. It maintains an array of
the encoded data packets and cycles through them.

� For a non-supplying peer which is relaying packets,
randomly select a packet from the packets received
previously but not yet relayed, and broadcast it to all
its neighbors. Note that such a peer has fewer number
of encoded packets than a supplying peer.

B B B B

B B B

B B B

B

R

S

S

S

S
S S

S

S
S

S
S

S S
S

S

S

S

S S S

B: Building
S: Street
Dots: Mobile users

Figure 2. A snapshot of the simulated envi-
ronment

� If time remains in the second (note the time to
broadcast a packet is � � �), then the above process
is repeated. It may be that a packet is partially
received by a neighbor in the remaining time, because
it moves out of the transmission range. In this case, the
incomplete packet will be discarded.

For simplicity, our simulation assumes a reliable medium
access layer. Therefore, packet losses are only due to loss of
connectivity (moving beyond transmission range). For each
requesting peer, the downloading time is the time required
to obtain the � � � packets. In addition, there will be a
non-trivial latency for the file re-construction from these
encoded packets.

4.2 Simulation Results

Figure 4 compares the progress of data dissemination
with and without Tornado encoding. For the simulation
without Tornado encoding, the 1MB data file is divided
into 400 packets, each with a size of 2.5KB. All these
400 packets have to be received by each requesting peer in
order to restore the file. For the simulation with Tornado
encoding, a stretch factor of 2 is used. Therefore, 800
packets of size 2.5KB are generated, out of which 422 (� �� ���) packets are needed by each requesting peer to correctly
re-construct the file. We observe that the first requesting
peer becomes ‘infected’ after 25 seconds in the Tornado
encoding simulation, while it takes more than 100 seconds
to infect the first requesting peer in the simulation without
Tornado encoding. Almost all the requesting peers become
‘infected’ after 150 seconds in the Tornado encoding simu-

B S

S

B

S

B S

S S

B

B

S
S

S

S

B

S S

SB

S S S

B
B

B

S : Street

B : Building

: trace of
motion of
a node

start point

end point

S S

Figure 3. A trace of the motion of a particular
peer during the simulation.

lation, while it takes around 450 seconds in the simulation
without Tornado encoding to infect all the requesting peers.
This experiment demonstrates the efficiency of Tornado-
coding-based dissemination of popular content in a mobile
ad-hoc environment.

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 n

od
es

 in
fe

ct
ed

Time (sec)

No Coding
Coding

Figure 4. Progress of data dissemination:
with and without Tornado coding

Figure 5 shows the progress of Tornado-coding-based
data dissemination, under various packet sizes. As in the
previous experiment, the 1MB data file is stretched to 2MB
of encoded data under a stretch factor of 2. However, this
may be done by generating 800 packets of size 2.5KB,
200 packets of size 10KB, 40 packets of size 50KB, or 20
packets of size 100KB. The transmission rate is 128Kbps.

For packets of size 2.5KB or 10KB, they can be transmitted
in an overlapping period as short as 1 second. However,
packets of size 50KB can be fully transmitted only when
the overlapping period is at least 4 seconds; and packets
of size 100KB require an overlapping period of at least 7
seconds. Recall that a packet is deemed useless if it cannot
be received in full by a requesting peer. This explains why
the curves that correspond to packet sizes 2.5KB and 10KB
grow faster than that for the 50KB packet size, which in turn
grows faster than the curve for the 100KB packet size. We
also notice that the curve for 2.5KB packet size is slightly
steeper than the curve for 10KB packet size. This can
be explained as follows: suppose the average overlapping
period between a supplying peer and a requesting peer
is 1 second, then six 2.5KB packets, or 15KB of data
can be transmitted, while only one 10KB packet can be
fully transmitted during the same period. Similarly, if
the overlapping period is 3 seconds, then nineteen 2.5KB
packets, or 47.5KB of data can be transmitted fully, versus
only four 10KB packets or 40KB of data fully transmitted.
This experiment shows that bandwidth wastage is reduced
with decrease in packet size. However, excessively small
packet size will lead to a large number of packets and thus
increase the Tornado decoding overhead.

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r

of
 n

od
es

 in
fe

ct
ed

Time (sec)

packet size 2.5kB
packet size 10kB
packet size 50kB

packet size 100kB

Figure 5. Progress of data dissemination:
under different packet sizes

Figure 6 shows the Tornado-coding-based data dis-
semination overhead, under various stretch factors. The
overhead is measured by the number of duplicate packets
received by each requesting peer. Each point on the x-
axis corresponds to one of the 700 (i.e. 70 (of the 1000
nodes) requesting peers. In this figure, all three curves are
monotonically increasing because the requesting peers are
sorted by the number of duplicate packets they receive. In
this experiment, the packet size is 5KB, while the stretch
factor is 1.2, 2, or 4. In all cases, 211 (� � �) packets

are needed to re-construct the data file. We observe that
the higher the stretch factor, the lower the number of
duplicate packets received by a requesting peer. Since
Tornado encoded packets are sent in a random order by
each supplying peer, a higher stretch factor leads to lower
probability of receiving duplicates. However, we also notice
that when the stretch factor increases, its effect in duplicate
packet reduction becomes less significant.

0

100

200

300

400

500

0 100 200 300 400 500 600 700

N
um

be
r

of
 d

up
lic

at
ed

 p
ac

ke
ts

 r
ec

ei
ve

d

Node ID

stretch factor 1.2
stretch factor 2
stretch factor 4

Figure 6. Number of duplicate packets re-
ceived by each requesting peer: under
different stretch factors

Figure 7 compares the performance of data dissemi-
nation under various stretch factors. The performance is
measured by the total file downloading time experienced
by each requesting peer. Similar to Figure 6, the curves
are monotonically increasing as the requesting peers are
sorted by the total file downloading time they experience.
For a stretch factor of 2, the first peer fully receives and
re-constructs the data file after 25 seconds, and all 700
requesting peers are able to re-construct the file within
155 seconds. We notice that this is very close to the
downloading time under the stretch factor of 4. In the latter
case, the first peer re-constructs the file after 20 seconds,
and all the 700 requesting peers re-construct the file within
150 seconds. However, under a stretch factor of 1.2, the
downloading time increases considerably: the first peer re-
constructs the file in 45 seconds, and all the 700 requesting
peers re-construct the file within 215 seconds. This is
because with a low stretch factor, there are more duplicate
packets received by the requesting peers, thus requiring
them to wait longer to collect the sufficient distinct packets
to re-construct the file.

Finally, Figure 8 compares the file downloading time
under different packet sizes. In this experiment, the stretch
factor is fixed at 2. When the packet size is 5KB or
10KB, we observe that all requesting peers experience very

0

50

100

150

200

250

0 100 200 300 400 500 600 700

D
ow

nl
oa

di
ng

 ti
m

e
(s

ec
)

Node ID

stretch factor 1.2
stretch factor 2
stretch factor 4

Figure 7. File downloading time of each re-
questing peer: under different stretch factors

similar downloading time, with minimum and maximum
downloading time of 30 seconds and 150 seconds, respec-
tively. When the packet size is 20KB, the downloading
time increases - but not significantly, with minimum and
maximum downloading time of 30 seconds and 180 sec-
onds, respectively. However, when the packet size becomes
50KB, the downloading time increases significantly. The
explanation is that as packet size increases, the reception
of incomplete packets increases, resulting in bandwidth
wastage and longer file downloading time.

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

D
ow

nl
oa

di
ng

 ti
m

e
(s

ec
)

Node ID

packet size 5kB
packet size 10kB
packet size 20kB
packet size 50kB

Figure 8. File downloading time of each
requesting peer: under different packet sizes

5 Related Work

In this section, we discuss the related work previously
proposed to improve data accessibility in mobile (not neces-
sarily ad hoc) networks. Kubach et al propose a prefetching
approach to accessing data in wide-area wireless networks
[6]. Their approach predicts the information needed in the
future, and hoards this information on the mobile device
from Info-stations before the user begins roaming. The
limitation of this approach is that it assumes the information
is location-dependent, and that the information will be
requested only when the user is close to the corresponding
location. Future requests are predicted by learning from
the history of mobility/request patterns of the same or other
users, assuming a recurring pattern in user preference and
motion. The amount of information hoarded is limited
by the memory size of mobile devices. Meanwhile, their
approach assumes a wide deployment of Info-stations,
which may not be true in practice.

Various mobility models have been proposed for mobile
ad hoc networks [9, 8, 5]. Hong et al have proposed a
Reference Point Group Mobility Model in which groups
of mobile nodes are formed based on their geographical
proximity [5]. Wang et al have proposed a Reference
Velocity Group Mobility Model in which groups of mobile
nodes are formed based on the relative velocities of the
nodes [9]. In both [9] and [5], each peer must know the
identities of all group members. In terms of information
exchange, this may prove quite expensive. The frequency at
which group membership information is exchanged, as well
as the paths along which group membership information is
propagated require careful consideration. Papadopouli et al
have adopted a Random Walk Model for mobility modeling
in their simulation experiments [8]. The Random Walk
Model may not be suitable for highly regulated civilian
environment, because it assumes that a mobile node has
equal probability of moving in any direction.

In [4], Hara proposes a placement and partition scheme
for replicated data access in wireless ad hoc networks.
It focuses on the provision of high data availability in a
partitionable ad hoc network, so that each mobile node can
access a copy of the data it needs with high probability.
However, it does not address the issue of dynamic data
dissemination, especially in a peer-to-peer fashion.

Byers et al first propose Tornado coding [1, 2, 3, 7].
Their scheme involves the encoding of a large file (of k
packets) to n encoded packets (where n = stretch factor *
k). The original file can then be recovered by decoding� � � arbitrary but distinct encoded packets. They apply
Tornado coding to parallel file downloading from multiple
static hosts, while we propose to apply Tornado coding to
data dissemination in mobile ad hoc environments. We
argue that the selection of Tornado coding parameters

has to reflect the mobility model of the targeted ad hoc
environment.

6 Conclusions

In this paper, we propose the application of Tornado
coding to data dissemination in mobile ad-hoc networks,
with the objective of enabling efficient and reliable peer-to-
peer data sharing among mobile users. Our solution consists
of (1) a Street-and-Building mobility model suitable for
modeling mobile users in a regulated civilian environment
and (2) a peer-to-peer data dissemination protocol to dis-
semination Tornado encoded file segments (packets). We
discuss the impact of Tornado coding parameters on the
performance of our peer-to-peer data dissemination proto-
col. Our simulation results show satisfactory performance
of the protocol: it reduces the file downloading time of a
requesting peer by as much as ��� (. The simulation results
also demonstrate the importance of mobility-aware Tornado
coding parameter selection.

References

[1] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost.
Informed content delivery across adaptive overlay networks.
In Proceedings of ACM SIGCOMM 2002, August 2002.

[2] J. Byers, M. Luby, and M. Mitzenmacher. Accessing multiple
mirror sites in parallel: Using tornado codes to speed up
downloads. In Proceedings of IEEE INFOCOM’99, pages
275–83, March 1999.

[3] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital
fountain approach to reliable distribution of bulk data. In
Proceedings of ACM SIGCOMM’98, September 1998.

[4] T. Hara. Effective replica allocation in ad-hoc networks
for improving data accessibility. In Proceedings of IEEE
INFOCOM 2001, April 2001.

[5] X. Hong, M. Gerla, G. Pei, and C. Chiang. A group
mobility model for ad-hoc wireless networks. In Proceedings
of the 2nd ACM International Workshop on Modeling and
Simulation of Wireless and Mobile Systems, 1999.

[6] U. Kubach and K. Rothermel. Exploiting location information
for infostation-based hoarding. In Proceedings of ACM/IEEE
MOBICOM 2001, 2001.

[7] M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analysis
of random processes via and-or tree evaluation. ACM/SIAM
Symposium on Discrete Algorithms (SODA’98), 1998.

[8] M. Papadopouli and H. Schulzrinne. Design and implementa-
tion of a peer-to-peer data dissemination and prefetching tool
for mobile users. In Proceedings of the 2nd ACM Interna-
tional Workshop on Modeling and Simulation of Wireless and
Mobile Systems, 1999.

[9] K. Wang and B. Li. Efficient and guaranteed service coverage
in partitionable mobile ad-hoc networks. In Proceedings of
IEEE INFOCOM 2002, June 2002.

