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Abstract

h_ the past nvo decades, numerous scheduling and load

balancing techniques have been proposed for locally dis-

tributed multiprocessor O'stems. Howe,or; they all suffer

from significant deficiencies when extended to a Grid en-
vironment." some use a centralized approach that renders

the algorithm unscalable, while others as ,ume the overhead

involved in searching for appropriate resources to be neg-

ligible. Furthermore, classical schedul/_:g algorithms do
not consider a Grid node to be N-resource rich and merely

work towards maximizing the utilization: qf one of the re-

sources. In this paper, we propose anc w scheduling and

load balancing algorithm for a generalized Grid model of

N-resource nodes that not only takes into. account the node

and nenfork heterogenei O, but also conszdErs the overhead

involved in coordinating among the nodes. Our algorithm
is de-centralized, scalable, and overlaFs the node coor-

dination time with that of the actual pr:)cessing of ready

jobs, thus saving valuable clock cycles needed for making

decisions. The proposed algorithm is stmtied by conduct-

ing simulations using the Message PassitTg lntelface (MPI)

paradigm.

1. Introduction

Computational Grids [1, 6] are typically a conglomera-
tion of various resources with different owners, but make it

possible for users to develop complex applications that ac-
cess remote sites. Each of these sites (or nodes) could be a

uni-processor machine, a symmetric multiprocessor cluster,

a distributed memory multiprocessor system, or a massively

parallel supercomputer. Each node consists of a number

of heterogeneous resources; the heterogeneity being in the

type and capability of each of its N-resources (e.g., number

of processors, CPU speed, amount of memory, and so on).

Perhaps the biggest advantage of a heterogeneous Grid en-
vironment over an isolated multiprocessor system is that it

can offer resources to the user that are not locally available.

With the Grid becoming a viable high performance com-

puting alternative to the traditional supercomputing envi-
ronment, various aspects of effective Grid resource utiliza-

tion are gaining significance. With its multitude of re-

sources, a proper scheduling and efficient load balancing

across the Grid can lead to improved overall system per-
formance and a lower turn-around time for individual jobs.

Classical load balancing algorithms [3, 5, 14, 20] address

this problem by maximizing the utilization of a single re-

source (generally, CPU). But, the approach loses its merit

for systems like the SUN Enterprise, the SGI Origin, and

the IBM Regatta that offer multiple resources like shared
memory, large disk farms, distinct I/O channels, and soft-

ware licenses that can be independently allocated to differ-

ent jobs.

Another area where classical and even recent N-resource

load balancing approaches show their deficiency is in

scalability--not man), of them [10, 11, 12, 13, 14, 15, 18]
can be scaled to the large number of processors in a Grid.

This drawback is due either to the centralized approach of

the algorithm [13, 18] or to the need for each node to have
global system knowledge [11]. Also, most algorithms [10]
either do not consider the overhead of searching for ap-

propriate nodes or consider it to be negligible. This as-

sumption is valid for tightly-coupled multiprocessor sys-

tems [16, 17, 19], but not for geographically distributed en-
vironments like the Grid.

The present work is targeted to the Grid model where
each node is assumed to be a N-resource server and any job
submitted to the Grid can be executed at any node. The only

information our proposed algorithm needs before a node

schedules a job is the communication latency between itself

and its neighbors, thus making it fully scalable--an impor-
tant consideration for a wide-area network like NASA's In-



formationPowerGrid(IPG)[2,7].Theoverheadinvolved
incapturingtheresourceutilizationstatusofagivennode's
neighborsbeforemakingaschedulingdecisioncanbeama-
jor issuenegatingtheadvantagesofjobm_uation.Oural-
gorithmthereforeoverlapsthetimespentlookingforappro-
priatenodeswiththeactualexecutionoflhereadyjobs,thus
savingpreciousclockcycles.Also,sin,:ceachGridnode
(whetherasingleuni-processormachine,_ramultiproces-
sorsystem)canhaveitsownindepender_tschedulingalgo-
rithm,ourtechniquedoesnotoverruleth.:localschedulers'
jobassignmentpolicy.The class of pr(,blems we address

is where jobs are computation-intensive m_d can be divided

into totally independent sub-tasks with n_ communication
between them.

We have conducted extensive experiments using the

Message Passing Interface (MPI) paradigm and by simulat-

ing the job arrival rate. We compared the quality of load

balance with the ideal case (where no o_erheads are in-

volved) and found that our algorithm performs remarkably

well in an heterogeneous Grid environmeat and gives en-

couraging results. The remainder of this ?aper is organized

as follows: Section 2 describes our algorithm and presents

pseudo codes of the key procedures; Sectic_a 3 discusses the

experimental setup that we used to test ar d substantiate our

claims, and interprets the results; and Section 4 concludes

the paper.

2. Scheduling and load balancing

Two important aspects of any wide area network sched-

uler are its transfer [4, 15] and location [8, !)] policies. The

transfer policy decides if there is a need to initiate load bal-

ancing across the system, and is typicall3 threshold based.

Using workload information, it determine:a when a node be-
comes eligible to act as a sender (transfe, a job to another

node) or as a receiver (retrieve a job from another node).

The location policy selects a partner node for a job transfer

transaction. In other words, it locates complementary nodes

to/from which a node can send/receive wr_rkload to improve

overall system performance.

Location policies can be broadly classified as
sender-initiated [4, 21], receiver-initiated [4, 12], or

syrnmetrically-initiated [5, 15, 19]. Sender-initiated

policies are those where heavily-loaded nodes search

for lightly-loaded nodes while receiver initiated policies

are those where lightly-loaded nodes se:tlch for suitable

senders. Symmetrically-initiated policie_ combine the

advantages of these two by requiring both senders and

receivers to look for appropriate partners.

Load balancing policies can also be cla:,sified on the ba-

sis of how up-to-date each node's knowled,:e is about the

state of the system. Dynamic [16, 17] p, dicies make de-

cisions based on the current system state m_d can rapidly

adapt to workload fluctuations. On the other hand, policies
that use static information and are not amenable to changes

in the workload are known as static [3] policies. How-

ever, dynamic policies incur the overhead of communicat-

ing among the system nodes to keep them informed about
the state of the system.

In this section, we describe our scheduling and load bal-

ancing algorithm for N-resource Grid em,ironments. It is

dynamic, sender-initiated, and completely de-centralized.
The last feature makes it extremely scalable for Grid en-

vironments. A remarkable property of our algorithm is that

it uses a smart search strategy for finding partner nodes. It

also overlaps this decision making process of a node with
the actual execution of ready jobs, thereby saving precious

processor cycles.

2.1. Preliminaries

Before discussing the algorithm, let us introduce the con-

cepts of Internal and External queues, which we assume ex-
ist in each Grid node. The Internal Queue of a node consists

of the ready jobs which would be executed by this particu-

lar node only. Let T be the time when the tasks were last

mapped, a(tj) be the arrival time of task tj, and e(tj) be

the time tj starts executing. Then, the jobs in the b2ternal
Queue are those that have been mapped and scheduled to

this node, and are either being executed (Eq. 1) or are ready

to be executed (Eq. 2); they would never be delegated to any
other node:

{tj I a(t_) _<_-,e(tj) <_T) (1)

{t5 Ia(tj) _<% e(tj) > _} (2)

Instead, the External Queue of a node consists of jobs which
have been initially submitted to this node by a user, but are

yet to be mapped and scheduled for execution (Eq. 3):

{tj l a(tj) > 7-,e(tj) > r} (3)

Let us now enumerate the key notations we will be using

throughout the paper to explain our algorithm:
• Pi: Grid node i

• PJ: The j-th resource of Pi

• ark.:Job k

• J_ : Ideal requirement for the j-th resource by ,Ik
• Neigh(Pi): Immediate neighbors of Pi

• Compi(t): Time needed by Pi to empty its bzternal

Queue assuming no more jobs are assigned to it after time t

• CommJi: Communication latency between Pi and Pj

• ExQi: Number of jobs in the External Queue of Pi
We assume that each Grid node has knowledge about the

communication latency between itself and all of its neigh-

bors; i.e., each node Pi knows Comm_, Vj E Nei9h(Pi).

Not only does this make the algorithm highly scalable, it



also allows the network to conveniently accommodate any

changes in its topology.

We also postulate that each incoming: .job knows its re-

quirements for each of the resources avmlable at a node.

In order to generalize this concept, we define N-resource

jobs and N-resource nodes/servers. Each job Jk looks for

a node Pi with resources p/0 p/1 ---, p N-I_ , such that it

meets its requirement for each resource type, jo, j_ .....

,1_ -1. The algorithm described below would be executing

on every node of the Grid.

2.2. Proposed algorithm

Whenever a job is submitted by a use] to a node Pi, pro-

cedure Main (Fig. 1) invokes procedure NcedForTriggering

(Fig. 2) to make a decision whether the...ob need to be mi-

_ated. If the job ought to be migrated to another node,

a request is sent to all nodes j E Ncigh(Pi), provided

2 x Comm_ <_ Timeso. This condition implies that the

status request to the neighboring nodes and their responses

should be received before the Internal Queue is emptied

(denoted by TimeIQ). This strategy avoids any wastage

of the node's resources; the inequality overlaps the task of

looking for appropriate nodes with the ac real processing of

the Internal Queue, thus hiding the overhead.

Procedure Main

Repeat forever

If (a +-- new job submitted)

Time +- Current System Time (CST)

NeedForTriggering (ch Time)

If (NeedForTriggering returns TRUE)

Time]Q +-- Time to empt7 bTternaIQueue

Vj 6 Neigh(P_)

If (2 x Comm{ <_ Time10)

Request (j, Comm{ , Time <. )

Receive (Timelo)

Balance (S, R)

End If

End If

End Repeat

End Main

Figure 1. Procedure Mcin

Refer to Figures 2 and 3 for the triggering_, policy we have

incorporated into our algorithm. It is based on the simple

heuristic that greater the load at a node, the less inclined

would it be to accept future loads. Within a time window

of Compi(r), triggering is initiated if the traffic burst is

more than admissible; however, higher the resource usage,

the smaller is the traffic burst that a node ,a ill accommodate

(Fig. 3).

Procedure NeedForTriggering (a, Time)

6 +-- 6+o_ /* 6 is Cummulative

If (CST--Time _< Compi(r))

If {6 > Admissible Load at 7)

T +- CST

Return TRUE

Else

Commit 6 to Intemal Queue

T e- CST

6+-O

Return FALSE

End If

End NeedForTriggering

Load */

Figure 2. Procedure NeedForTriggering

_ Tolerable Zone

._ /" _ ,...Triggering point(x, NewLoadAdded)

i(O. _'_ hreshold Slope II

Nev, LoadAdded

rO

(0,0) (lO(k O)

Job Queue Lenglh (in % of Maximum)

Figure 3. Value of 6 when Job Queue is x% full

A node, having received a request to send the status of its

resources, packs the information about their current utiliza-

tion and sends it back to the requesting node along the route

the request came (Fig. 4). This route is also piggybacked

to the node which needs to migrate load. Besides replying

to requests, a node also recursively pings its neighbors for

their resource status if its database says that the total round-

trip latency between the sender and its neighbor would be

less than Tim<,Q. This allows the time required to look for

additional resources be hidden under processing.

Procedure Request ( i, 7, Time _Q )

Create Set S

S.Route +--- Route followed to reach i

S.ResStatus <-- Current usage of

{pg, pi] ...,P/N-I}

MPI_Send (S to i)

Vj e Neigh(Pi)

If (2x (7+Comm{) < Time,o)

Request (j, 7 + C'omm{, TimezQ )

End If

End Request

Figure 4. Procedure Request



Figure 5 shows the pseudo code for orocedure Receive.

The sender waits for time TimelQ to get replies from the

nodes that have been queried for the status of their re-
sources.

Procedure Receive (Time1<? i
While (Time <_ Time,<,)

MPl_Rece ive (S)

End While

R +-- Number of re_: _s

Return R
End Receive

Figure 5. Procedure Rcc'c_ve

Figure 6 shows our procedure to schedule the jobs soon

after TimeiQ elapses. Without loss of generality, we can

assume that 0.0 _< p/a,j_ < 1.0, 0 _< j _< N- 1. Let

M/k be a match variable which defines the number of re-
sources in node Pi that fulfill the requirements of job Jk. If

booI(Jg <_ Pg) is 1 and bool(JJk > P/J) i_ 0, then we can

formally defne M k as

N--1

j=0

(4)

Clearly, 0 _< M/k ___N. Now, let us Jefine matrices T

and C, and vector V, as described in steps 1, 2, and 3 of

procedure Balance (Fig. 6). Intuitively, the tt-th row and

k-th column of T gives the number of resources in node Pi

that meets the requirements of job Jk; the k-th entry of V

gives the number of nodes which satisfy the minimum re-

quirements of Jk ; and element C,,,j den_tcs that there is a

common node that satisfies the requirements of both or,, and

orj, and that there might be a conflict while sdmduling them.

Another possible scenario is when the _e't of nodes that

satisfy the requirements of Ju is a subset of the set which

satisfies the requirements of Jj ; in such cases, giving pref-

erence to Jj might leave J,, with no viable option. To

avoid such cases, our algorithm first schedules jobs that

have the fewest choices. T(u,min(_5)) in .qep 4.1 of Fig. 6
corresponds to the job Jrain that has the minimum num-

ber of nodes it can be mapped to. The variable z indi-
cates the node _ to which Jmin can be delegated. Step 4.2

checks matrix C' and, in case there is another job that can be

mapped to P_, chooses a different z for Jmin, if possible.

Finally, J,min is mapped and scheduled to P. This mech-

anism continues until all jobs have been scheduled or until

no more can be mapped because of the lack of resources.

3. Experimental study

Here we describe the metrics used to gauge the perfor-

mance of our scheduling and load balancing algorithm, the

setup we had for our experiments, the simulation results that
were obtained, and the conclusions we can draw from them.

3.1. Performance metrics

We analyze the performance of our algorithm using a

parameter called Normalized Pelformance, r_ (defined in

Eq. 5). Basically, 77is the effectiveness of the load balanc-

ing strategy. It is a comprehensive metric as it considers
both the initial toad balance as well as the load balancing
overheads:

T,_o - Tmu (5)
- Trio - T_b

Here, Trio is the time to completely process all the jobs on a

uniprocessor machine; Tlb is the time required by one pro-

cessor divided by the total number of processors, thus pro-
viding the runtime with ideal load balancing; and Troy is

the time needed by our algorithm to balance the load and

execute all the jobs. Clearly,

if T=v -_ Tlb, then 77 -+ 1 (6)

then 7/--_ 0 (7)if T,_u -+ T,,o,

These two conditions imply that higher the value of 7/, the

better is the load balancing; the ideal case being _?= 1.

3.2. Experimental setup

The experimental results reported in this paper were ob-
tained by using an MPI implementation of our proposed al-

gorithm. It is worth mentioning here that the various pa-

rameters of our algorithm were varied following a Poisson

distribution. Their respective mean values are given in Ta-
ble 1.

Table 1. Variables used in the experiments

Variables

Processing Power

Requirements

Memory

Requirements

I/O Requirements

Network Latency

Node Degree

I Mean I Simulated by,

2-16 50 floatingpoint
multiplications per unit

2-1 6 1KB of memory
allocated & freed per unit

2-16 [ ]KB of data written
I to disk per unit

5-1 1 sleep(3) per unit
number of

neighboring nodes



Procedure Balance(S, R)

!. Using S, define mat__-J-<T of dimensions ExQi x R where T_,_ +-A_

2. Define vector V of dimension EzQi where I/ke-ER=I bool(Tu.k---N), i < k < EzQi

3. Define matrix O of dimensions ExQi x ExQ{ where

Ot,_i--Ck.l*- ], if Tkj :TI,j :]V; 0, otherwise; l <l,k < EzQi, I < j < R

4. Repeat until (no more -obs can be mapped)

4.1 z+--u]T(_,m_(_5))= "v, l < u < R, ] < j <_ E:rQ{

4.2 If (C(_i,_(v)),k) = 1, 1 < k < ExQi)
Choose another :, if possible

4.3 Assign $min(Vj) to node Pz, ]<_j<ExQ{

4.4 Remove row rnin(_i, 1 <_j < ExQi and column z from T

End Balance

Figure 6. Procedure Balance

Experiments were conducted for three d_fferent values of

Max (15, 20, and 25) (see Fig. 3), and lepeated for 1-, 2-,

and 3-resource nodes. The following three inequalities give

the relationships between the mi's, where each rrz i refers to

the slope of the line joining the co-ordinmes (0, Max) and

I00, 0) (Fig. 3):

ma,m2,m3 < 0 (8)

ml < rn2 < m3 (9)

(lO)

3.3. Simulation results

We have conducted extensive experiments to evaluate the

performance of our algorithm and help us substantiate our

approach. Figures 7 through 9 illustrate the' results obtained

from the study.

To verify that our algorithm works well for completely

heterogeneous systems, we divided the experiments into

three groups. Thefirst set of experiments was run on sys-

tems where heterogeneity was in the capabilities of the

N-resources of a node; thus, the communication latency

between all neighboring nodes was constaat. The second

set involved keeping the node capability constant and vary-

ing only the communication latency between the nodes. Fi-

nally, the third set of experiments combined the above two

approaches, thereby exposing a totally heEerogeneous setup

to various load conditions (that were varied by changing the

job arrival rate and the load associated wilh each job). Each

set of experiments was repeated for 1-, 2-, and 3-resource

nodes. The objective was to evaluate the algorithm thor-

oughly by taking various scenarios of heterogeneity into

consideration.

Results for the first set (where only the capabilities of the

N-resources of a node are varied while keeping all other

factors unchanged) are summarized by the. graphs in Fig. 7.

The horizontal axis represents the Mean Node CapaciO: of

the network which can be defined as the mean value used

for the capacity of each of the resources in a node (all re-

source having the same mean). Increasing the resource ca-

pability of the nodes without changing the job resource re-

quirements effectively reduces the granularity of the latter.

As depicted, any increase in node capability increases r/.

However, as the threshold slopes (mi's) become steeper, r/

decreases. This is because the frequency of triggering the

load balancing algorithm is reduced.

In the second set of experiments, the Mean Node Capac-

it?,, was held constant while varying the communication la-

tency. The results presented in Fig. 8 show that r/decreases

with increasing communication cost. As in the previous set,

the algorithm performs best when the absolute value of the

threshold slope is the smallest (m3 in this case).

For the final set of experiments, we vary the input load

for a setup which has a heterogeneous mix of resource capa-

bility and communication latency. This was repeated for 1-,

2-, and 3-resource job specification for a 3-resource node.

Figure 9 shows that the execution time decreases as we get

more specific about job requirement.

4. Conclusions

In this paper, we presented a highly de-centralized, dis-

tributed, and scalable algorithm for scheduling tasks and

load balancing resources in heterogeneous Grid environ-

ments. Our algorithm takes into consideration the over-

heads of coordination and communication between the Grid

nodes which were assumed to be N-resource servers that

varied in their respective capacities across resources. The

goal was to assign each node a job which would utilize

its resources in the best possible manner, thus providing

an effective scheduling and resource management strategy.

We introduced a new load balance triggering policy based

on the endurance of a node reflected by its current queue

length. Also, our algorithm overlaps the time needed for
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various communication overheads with th al of executing the

jobs already committed to the nodes, m_,king the effective

time for overheads virtually zero. The a gorithm has been

discussed in detail with pseudo codes bein,g provided for all

the major modules of the algorithm.

To substantiate our claims, a compreh_msive experimen-

tal study was conducted using the Messa,gc. Passing Inter-

face (MPI) paradigm. Heterogeneity in re:_ource capabil-

ities and communication latency was mmntained while re-

peating the set of experiments for 1-,_,% and 3-resource jobs

and nodes. The Normalized Performan,c parameter was

0.79 for 3-resource nodes and as high as 085 for l-resource

nodes. These excellent performance leveb could be attained

only by overlapping the various overheads with the actual

execution of the jobs.
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