
Computing Feedback Laws for Linear Systems with a Parallel Pieri Homotopy

Jan Verschelde∗and Yusong Wang†

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago, 851 South Morgan (M/C 249)

Chicago, IL 60607-7045, USA.

Abstract

Homotopy methods to solve polynomial systems are well
suited for parallel computing because the solution paths de-
fined by the homotopy can be tracked independently. Both
the static and dynamic load balancing models are imple-
mented in C with MPI, adapting PHCpack written in Ada
using gcc, and tested on academic benchmarks and me-
chanical applications. We studied the parallelization of
Pieri homotopies to compute all feedback laws to control
linear systems. To distribute the workload, we mapped the
poset onto a tree. As the dimensions of the Pieri homo-
topies grow incrementally from the root to the leaves in the
tree, we found the Pieri homotopies well suited for parallel
computing.

Keywords: continuation methods, control of linear sys-
tems, feedback laws, load balancing, numerical Schubert
calculus, path tracking, Pieri homotopies, pole placement.

1 Introduction

Polynomial systems occur in a wide variety of applica-
tion domains, such as mechanical design, signal process-
ing, and in what is most relevant for this paper: the con-
trol of linear systems. Typically, the number of solutions
of a polynomial system grows exponentially with its di-
mension. For example, the polynomial system whose so-
lutions are feedback laws to control a machine withm
inputs andp outputs has in general as many solutions as
dm,p = 1!2!3!···(p−2)!(p−1)!·(mp)!

m!(m+1)!(m+2)!···(m+p−1)! . So the need for parallel
computation is very real.

Homotopy continuation methods are reliable and pow-
erful methods to compute numerical approximations to all
isolated complex solutions. These methods operate in two
stages. To solve a systemf(x) = 0, we first construct
g(x) = 0 whose solutions are known. This systemg(x) =

∗Email: jan@math.uic.edu, URL: http://www.math.uic.edu/˜jan
†Email: ywang25@uic.edu, URL: http://www.math.uic.edu/˜ywang25

0 then becomes the start system in the homotopy

h(x, t) = γg(x)(1− t) + tf(x) = 0, γ ∈ C. (1)

For almost all choices of the complex constantγ, all solu-
tions pathsx(t) are regular and bounded fort ∈ [0, 1). In
the second stage, continuation methods are applied to track
the paths starting at the known solutions ofg(x) = 0 to
the desired solutions off(x) = 0, ast goes from 0 to 1.
See [12] for a survey on recent methods to construct ef-
ficient homotopies. The publicly available software PHC-
pack [21] implemented the homotopy methods in a sequen-
tial version.

The homotopy algorithm is well suited for parallel com-
puting, since the paths can be tracked independently from
each other. The efficiency of the algorithms for solving
systems of nonlinear equations using probability-one homo-
topy methods in parallel is discussed in [1, 3, 8]. More re-
cently, in [7] and [20] the authors report on a parallel imple-
mentation of polyhedral homotopy methods, which exploit
the sparse structure of polynomial systems.

Tracking all paths defined byone homotopy is “em-
barassingly parallel,” as the tasks no longer communicate
with each other once they are created [5]. Pieri homotopies
are harder to parallelize because one solution at the end of
one path may serve as the start solution for another path.
The tasks communicate in a predictable pattern (like a PDE
solver). This pattern is determined by the poset of local-
ization patterns used in a combinatorial root count. When
parallelized, the Pieri homotopies follow a tree structure,
with the fewest amount of work in the edges closest to the
root.

In this paper we first outline the extension of PHCpack
with a parallel path tracker, before describing the paral-
lelization of Pieri homotopies to solve the pole placement
problem in the control of linear systems. This paper is a
sequel to [22] and [23].

30 May 2004



2 A parallel path tracker in PHCpack

In this section we describe two load balancing schemes
and report computational experiences on tracking paths de-
fined by the homotopy (1), for two large polynomial sys-
tems.

2.1 Static and dynamic workload balance

For best performance, the workload should be distributed
evenly among the processors. In the static workload dis-
tribution, the paths are distributed evenly to the processors
once at the start. While this leads to a minimal commu-
nication overhead, the workload for each processor may
have a large variance, as paths diverging to infinity require
more time. The dynamic workload assignment with a mas-
ter/slave paradigm is usually better. Each of the slave pro-
cessors will be given one job at the beginning. After a slave
finishes its job, it sends the result to the master, which sends
then a new job to the slave. While this requires more com-
munication overhead than the static workload assignment
model, we can improve it by overlapping the communica-
tion and computation with the non-blocking sending and re-
ceiving in the MPI library.

2.2 Experimental results and discussion

Our parallel code was developed on a rocketcalc atlas
cluster with four 2.4 GHz processors under Linux. To ex-
amine the speedup and the load balancing issues better on
larger problems, we ran the code on the Platinum cluster at
NCSA.

2.2.1 An academic benchmark: cyclic 10-roots

The cyclicn-roots problem is widely used as a benchmark
for publicly available software ([6], [7], [21]). Computing
all cyclic n-roots is hard because the number of paths is
often too large to be traced by a single computer [4]. For
n = 10, we need to trace 35,940 paths. With a given
start system, it takes 8 hours with the sequential version
of path tracker on a 1GHz computer. Our parallel path
tracker traces all 35,940 paths within 5 minutes on 128
1GHz CPUs.

From Table 1, we see that the dynamic workload balanc-
ing improves the total time of the static approach by 10%
to 35%. For this problem, the variance of the time needed
to trace the paths can be large (one thousand paths diverge).
The improvement of using dynamic load balancing is more
obvious with more processors since the variance becomes
larger for fewer jobs on each processor in the static work-
load assignment. Figure 1 shows that the speedup is almost

Speedup Comparison

0

20

40

60

80

100

120

140

0 50 100 150
Number of CPUs

S
p

ee
d

u
p

static

dynamic

optimal

Figure 1. The speedup comparison of the
static and dynamic load balancing for the
cyclic 10-roots problem on the Platinum Clus-
ter at NCSA.

Static Dynamic Improvement
N time speedup time speedup dynamic/static

1 480.0 1.0 480.0 1.0 –
8 75.5 6.4 66.6 7.2 11.75%
16 36.4 13.2 31.7 15.2 12.96%
32 19.0 25.3 15.7 30.7 17.56%
64 10.2 46.9 7.9 60.5 22.48%
128 6.6 73.3 4.3 112.9 35.11%

Table 1. Speedups of the static and dynamic
load balancing for the cyclic 10-roots problem
on the Platinum Cluster at NCSA. Time units
are user CPU minutes, N = #CPUs.

optimal for the dynamic model when the number of proces-
sors is less than 32. For any number of processors, dynamic
load balancing wins.

2.2.2 An application from mechanism design

This example comes from the geometric design of the five
degree-of-freedom robot formed by links connected by rev-
olute, prismatic and spherical joints to form an RPS serial
chain [17, 18, 19]. To design this robot one must solve ten
polynomial equations in ten unknowns. The homotopy we
used (using a linear-product start system as in [18]) led to
9,216 solution paths. As reported in [17], the sequential ver-
sion of PHCpack takes about 24 hours on a 2.4GHz Pentium
IV machine. On 128 1GHz CPUs of the Platinum cluster at
NCSA, all paths were traced within 22 minutes. As the time



Speedup Comparison

0

20

40

60

80

100

120

140

160

0 50 100 150
 Number of CPUs

S
p

ee
d

u
p

static

Dynamic

Figure 2. The speedup comparison of the
static and dynamic load balancing for the me-
chanical application on the Platinum Cluster
at NCSA.

for one 1GHz was unavailable, we assumed an initial opti-
mal speedup in the dynamic case, extrapolating to 3111.2
CPU minutes sequential time, obtained as8 × 388.9, see
Table 2. While assuming an initial optimal speedup with 8
CPUs is unrealistic, when doubling the number of proces-
sors we may finish more than twice as fast when the dis-
tribution of the workload is more evenly spread among the
processors, see Figure 2.

Static Dynamic Improvement
N time speedup∗ time speedup∗ dynamic/static

8 417.5 7.5 388.9 8.0 6.84%
16 195.1 15.9 183.7 16.9 5.84%
32 94.7 32.9 96.1 32.4 -1.50%
64 49.8 62.5 47.5 65.5 4.65%
128 25.1 124.0 22.0 141.4 12.43%

Table 2. Static and Dynamic Workload Bal-
ance on the RPS problem. Time units are
user CPU minutes, N = #CPUs, speedup ∗ =
from extrapolated sequential time.

In Table 2, we can find the improvement of the dynamic
over the static balancing model is not obvious here. Since in
this example, there are more than eight thousand diverging
paths, which dominate the total computation time and each
of the diverging path spend almost the same time. So there
is no large variance in the workload among the processors
in the static model. Moreover, the overhead of the com-
munications decreases the efficiency of the dynamic load
balancing model.

We took this application to illustrate what happens

when – an unfortunately still too often occurring case –
many solution paths diverge to infinity. For this par-
ticular system, the mixed volume gives the exact root
count of 1024, and thus the polyhedral homotopy (im-
plemented in [6], [7], and [21]) is optimal. The black-
box solver of PHCpack gives the complete solution list
in 24.6 minutes CPU time on a 2.4Ghz Linux ma-
chine. The system and its solutions are available online at
http://www.math.uic.edu/˜jan/demo.html .

3 Parallel Pieri homotopy

In this section, we consider the parallel implementation
of a homotopy continuation method to find a general start
systemg(x) = 0 to be used in the homotopy (1) to solve a
particular problemf(x) = 0.

3.1 Solving the pole placement problem

As in the introduction, we consider a machine withm
inputs andp outputs, whose evolution in time is governed
by a system of linear differential equations. The control of
this machine by a compensator withq internal states corre-
sponds to a problem from enumerative geometry for which
the so-called Pieri homotopies were derived. The theoreti-
cal connection was first made in [2] forq = 0, and gener-
alized in [14], [15], and [16]. Algorithms, defined by Pieri
homotopies were developed in [9], [10] and [13]. In this
paper we explain the algorithms geometrically. For the rela-
tion with inverse eigenvalue and matrix extension problems,
see [11].

For a givenm, p, andq, denoten = mp+q(m+p). The
problem we solve takes on inputn generalm-planesLi in
Cm+p andn interpolation pointssi ∈ C, i = 1, 2, . . . , n.
For this input, we want to compute all polynomial maps
X(s) of degreeq producingp-planes that meet those given
generalm-planesLi at the prescribed interpolation points
si, i.e.: we are givenn intersection conditions:

det(X(si)|Li) = 0, i = 1, 2, . . . , n. (2)

These intersection conditions define a polynomial system
in the coefficients of the mapX : C → C(m+p)×p : s 7→
X(s). In what follows, we show that the problem (2) is well
posed: we haven equations in then variables which define
a general mapX(s).

3.2 Localization patterns and Pieri homotopies

We representX(s) by a localization pattern in
{0, ?}(m+p)×p (i.e.: a matrix overZ2) in which all stars
stand for the nonzero coefficients of the generator matrix.
A p-plane fits a localization pattern if it can be represented



by a matrix of generators with zero entries everywhere the
localization pattern prescribes them. For example, in Fig-
ure 3, the left picture is the canonical form of the degree
one-map solution localization pattern forp = 2, m = 2,
q = 1, where thet is for homogenizing the polynomials to
deal with both bottom pivots and top pivots. The middle
picture is the concatenated form withp + n stars, where we
append the higher degree coefficients below the lower de-
gree coefficients and the degree of freedom isn = 8. The
right picture is a shorthand notation for the bottom pivots
which record the row indices of the bottommost stars.

X(s, t) =



? 0 + ?s
? ?t + ?s
? ?t + ?s
? ?t + 0s




Standard

⇔
4−→




? 0
? ?
? ?
? ?
0 ?
0 ?
0 ?
0 0




Concatenated

←−7

⇔ [4 7]

Shorthand

Figure 3. Localization pattern of solutions for
p=2, m=2, q=1

A valid bottom pivot localization pattern is defined as
below:

1. Let q = dp+r with d, r ∈ N andr < p. A localization
pattern for(m + p)× p-maps of degreeq has the first
p− r columns with dimension(d + 1)(m + p) and the
remaining columns have dimension(d + 2)(m + p).

2. All stars within a column should be contiguous and
the row indices in which the bottommost and topmost
stars occur strictly increasing as a function of the col-
umn index. These indices are called the top and bottom
pivots, respectively.

3. No two bottom pivots differ bym + p or more.

The above definition is extracted from [10]. In this paper
– and in our preliminary parallel implementation – we con-
sider the top pivots as fixed to[1 2 · · · p].

The special emphasis on the format ofX(s) is entirely
justified as it leads naturally to a homotopy as follows. The
bottommost pivots ofX give a recipe (see [10]) for a special
m-planeSX so thatdet(X|SX) = 0 if and only if at least
one of the entries inX at the bottommost pivots is zero.
ThePieri homotopyin (3) movesSX to Ln. Forq > 0, the
mapX(s) can meetSX only at∞, so the corresponding
interpolation point moves from∞ to sn. To represent∞
properly, we homogenize the polynomials inX(s) usingt,
and denote the maps asX(s, t). The Pieri homotopy in (3)

then moves(s, t) = (1, 0) to (sn, 1). Observe the double
use oft in (3): as continuation parameter and variable added
to homogenize the maps.

H(X(s, t), s, t) =




det(X(s, t)|(1− t)SX + tLn) = 0
(s− 1)(1− t) + (s− sn)t = 0

det(X(si, ti)|Li) = 0, i=1,2,...,n−1

for t ∈ [0, 1].

(3)

The start solutions for the Pieri homotopy all fit in the
patternsY (s, t) obtained fromX(s, t) by turning a bot-
tommost star to zero. By induction onn, we assume that
all these childrenY (s, t) meet already then − 1 general
m-planesLi at (si, ti), i.e.: det(Y (si, ti)|Li) = 0, for
i = 1, 2, . . . , n−1. To satisfy thenth intersection condition
with Ln at (sn, tn), we trace the solution paths defined by
the Pieri homotopy in (3), as t goes from 0 to 1.

Note that att = 1, we haves = sn, and all intersection
conditions in (2) are satisfied. In the next section we de-
scribe the induction onn which leads to an efficient way to
count all the roots.

3.3 Counting roots by posets and trees

The shorthand notation of the bottom pivots (see Figure 3
for an example) is a convenient way to count the solution
maps and to represent the nested sequences of homotopies
needed to compute all solutions.

[1 4]

[2 5]

[3 6]

[4 7]

H

H

H

©

©

©

© [1 3]

[2 4]

[3 5]

[4 6]

H

H

H

©

©

©

© [1 2]

[2 3]

[3 4]

[4 5]

n = 0
n = 1
n = 2
n = 3
n = 4
n = 5
n = 6
n = 7
n = 8

1

2

4

8

H

H

H

©

©

©

© 1

2

4

8

H

H

H

©

©

©

© 1

1

2

4

Figure 4. Combinatorial root count for p = 2,
m = 2, q = 1 with the poset structure. The
brackets at the left are the bottom pivots.
The trivial localization pattern corresponds to
[1 2]. The solutions are counted at the right,
starting at the top and adding up the numbers
at the leaves while moving down to the root
of the poset [4 7] yielding 8 solutions.

In Figure 4, the poset structure is described to count the
number of the solution planes. It starts from the trivial lo-
calization pattern which has its top pivots[1 2 · · · p], e.g.:



[1 2], and its bottom pivots[d(m+p)+m+r+1 · · · d(m+
p)+m+p (d+1)(m+p)+m+1 · · · (d+1)(m+p)+m+r],
e.g.:[4 7]. The bottom poset structure at the left in Figure 4
is obtained by fixing the top pivots and decreasing a bot-
tommost pivot, which is called a bottom child, to get all
the valid localization patterns recursively. At the right of
Figure 4 we see the counting procedure: we start with one
solution forn = 0; then, forn > 0, the number of maps fit-
ting X and meetingn generalm-planes equals the sum of
the number of solution maps fitting the children ofX and
meetingn − 1 general planes. Every link in the poset as in
Figure 4 corresponds to one instance of the Pieri homotopy.

The combinatorial root count with a poset is imple-
mented in the sequential version of PHCpack [21]. In the
parallel version of the Pieri homotopy program, we solve
the problem based on a tree, called Pieri trees in [9]. The
tree corresponding to the poset in Figure 4 is shown in Fig-
ure 5.

To see the virtue of Pieri trees for parallel computers,
we need to recall the induction onn in the derivation of
the Pieri homotopies. In the Pieri tree, each edge repre-
sents a job, i.e.: the tracking of one solution path. Two
jobs (represented by two edges in the Pieri tree) become
completely independent from each other once the solution
at their common ancestor node has been computed. Com-

[1 2]

[1 3]

³³³³
PPPP

[1 4] [2 3]

[2 4]
³³³ PPP

[2 4]
³³³ PPP

[2 5] [3 4] [2 5] [3 4]

[3 5]
©© HH

[3 5]
©© HH

[3 5]
©© HH

[3 5]
©© HH

[3 6] [4 5] [3 6] [4 5] [3 6] [4 5] [3 6] [4 5]

[4 6] [4 6] [4 6] [4 6] [4 6] [4 6] [4 6] [4 6]

[4 7] [4 7] [4 7] [4 7] [4 7] [4 7] [4 7] [4 7]

Figure 5. Combinatorial root count for p = 2,
m = 2, q = 1 with the Pieri tree. The brackets
at the above are the bottom pivots. The trivial
localization pattern corresponds to [1 2]. The
solutions are counted by starting at the top
and finding all the allowable paths to reach
the leave [4 7], adding up the number of leaves
through different paths yielding 8 solutions.

pared to posets, the organization of the path tracking along
Pieri trees makes them more suitable for parallel comput-
ers, since the workload for each of the processors can be
balanced well.

Also the memory management becomes simpler with
Pieri trees. Every node in the tree is only needed in the
computation of the path ending at the node, or in the paths
originating at the node, in total in no more thanp + 1 jobs.
So in general, the memory occupied by a node in the Pieri
tree can be released rather quickly after a job has finished.
In the poset however, the nodes carry the information of
many more paths and need to remain active even if only one
job is still not completed. Especially for larger problems, as
the number of roots grows exponentially, the number of in-
ternal nodes may also increase dramatically, exhausting all
the memory rather quickly.

As pointed out earlier, the Pieri homotopies used above
keep their top pivots fixed, we can increase top and decrease
bottom pivots simultaneously, hereby satisfying two new in-
tersection conditions with one Pieri homotopy [10]. The
combinatorial root count for our running example is shown
in Figure 6. This scheme needs in general fewer solution
paths than when keeping top pivots fixed. Counting the
edges in Figure 5 and in Figure 7, we find respectively 37
and 26 path tracking jobs.

[3 4]
[3 4]

[2 5]
[2 5]

ZZ ½½
[2 4]
[3 5]»»»» ½½ ZZ

XXXX
[2 3]
[3 6]

[2 3]
[4 5]

[1 4]
[3 6]

[1 4]
[4 5]

XXXX
ZZ ½½»»»»

[1 3]
[4 6]

[1 2]
[4 7]

1 1

ZZ ½½

2
»»»» ½½ ZZ

XXXX
2 2 2 2

XXXX
ZZ ½½»»»»

8

8

Figure 6. The poset for p = 2, m = 2, q = 1,
when with each Pieri homotopy two intersec-
tion conditions are satisfied at once. The top
pivots are displayed above the bottom pivots
in the nodes of the poset on the left. At the
right we see the corresponding root count.

The poset in Figure 6 gives rise to a forest of two trees,
shown in Figure 7.



[3 4]
[3 4]

[2 4]
[3 5]»»»» ½½ ZZ

XXXX
[2 3]
[3 6]

[2 3]
[4 5]

[1 4]
[3 6]

[1 4]
[4 5]

[1 3]
[4 6]

[1 3]
[4 6]

[1 3]
[4 6]

[1 3]
[4 6]

[1 2]
[4 7]

[1 2]
[4 7]

[1 2]
[4 7]

[1 2]
[4 7]

[2 5]
[2 5]

[2 4]
[3 5]»»»» ½½ ZZ

XXXX
[2 3]
[3 6]

[2 3]
[4 5]

[1 4]
[3 6]

[1 4]
[4 5]

[1 3]
[4 6]

[1 3]
[4 6]

[1 3]
[4 6]

[1 3]
[4 6]

[1 2]
[4 7]

[1 2]
[4 7]

[1 2]
[4 7]

[1 2]
[4 7]

Figure 7. The forest of two trees for p = 2, m =
2, q = 1, derived from the poset in Figure 6.

3.4 Parallel Pieri homotopy algorithm

Figure 8 illustrates the procedure of the parallel Pieri
computation. Here we apply the dynamic workload assign-
ment with a master/slave paradigm, which is proved to be
better in the previous section. At the beginning, the master
generates (at mostp) jobs by increasing the bottom pivots
and puts them in the queue. Then the master distributes the
available jobs to the slaves, which will finish the compu-
tation task. When one of the slave finishes its job, it re-
turns the result to the master. The master generates (at most
p) new jobs according to the returned information, which
includes the pivot information of the node and the target
solution of the previous homotopy, and then puts the jobs
in the queue. At first, the jobs are distributed sequentially

Head

CPU1 CPU2 CPU3 CPU4

Tail
CPU 0

A target root is used as the 
start root for next iteration 

A queue maintains 
all the active jobs.

A virtual tree for 
Pieri Homotopy

The CPUs for computation

(Generate and distribute jobs)

Figure 8. Parallel Pieri homotopy with a virtual
tree structure

according to the rank of the slave. After all slave proces-
sors are activated, the dynamic workload balance paradigm
based on the first-come-first-serve strategy is implemented
to compute the remaining jobs.

Since the workload is dynamically distributed, the slave
does not know the number of jobs needs to be done in ad-
vance. So we need to figure out a way to terminate the com-
putation subroutine properly. The intuitive idea is when all
of the slaves returned a leave, which can not generate any
new jobs, we are done. It could be the case, when some of
the slaves return leaves and find no job in the queue, they
won’t work any more, while the other slaves are still work-
ing on the internal nodes of the virtual tree. This situation
will cause an unbalanced workload distribution, therefore
the efficiency will be lower. To avoid this case, we maintain
another queue to record which slave has returned a leaf, and
activate it again when there are more jobs available to com-
pute. After all the slaves have returned leaves, the master
will send a message to each slave to terminate their busy
waiting loop.

Since we obtain a forest (as in Figure 7) when simul-
taneously increasing top and decreasing bottom pivots, we
maintain another queue to save the roots of the trees in the
forest. Then we build up a virtual tree for each of the roots
as we did with the bottom pivot case in previous section.

As the path tracking jobs are subject to a tree hierarchy,
every job has to wait till the first path starting at the root
node has terminated. Every job in the tree has to wait till
the job providing its start solution has finished. So at the
start of the of program, only very few processors are active,
while most other processors are idle, waiting for their start
solutions. Fortunately, the jobs closest to the root are the
smallest, as exemplified in Table 4. Typically, almost half
of the time is spent at the last level, towards the leaves of
the Pieri tree.

4 Applications

Table 3 shows the experimental results for different val-
ues ofm, p, and q. As m, p, and q increase, the num-
ber of solutions grows exponentially, for example: 135,660
for p = 4, m = 3, q = 1. The dimensionn of the
problem grows too, but fortunately as a polynomial, i.e.:
n = mp+ q(m+ p). Nevertheless, the problem of comput-
ing all solutions quickly becomes intractable.

Our 2.4GHz PC under Linux can only solve some low
dimensional problems in hours. On the Platinum cluster at
NCSA, we improved the time from hours to minutes for
some lower dimensional problems and solved some higher
dimensional problems which are not tractable for our PC.
The table is drawn in an upper triangular format to show the
limit of the problem which a PC can solve.



q = 0 q = 1 q = 2 q = 3
time(s) time(s) time(s) time(s)

p m #Sols PC Cluster #Sols PC Cluster #Sols PC Cluster #Sols PC Cluster

2 2 2 0.2 – 8 0.9 – 32 18.4 – 128 218.3 19.1
3 2 5 0.2 – 55 38.4 – 610 2331.7 137.2 6765 N/A 4749.0
3 3 42 8.8 – 2730 7663.8 327.7 17462 N/A –
4 3 462 638.7 52.4 135660 N/A –
4 4 24024 N/A 1891.2∗

∗done on 256 CPUs

Table 3. Solving Pieri homotopy problem on a 2.4GHz PC and 64 1GHz CPUs of Platinum Cluster at
NCSA. Time units are user CPU seconds. #Sols = number of Solutions.

n #paths user CPU time

1 1 0ms
2 2 0ms
3 3 10ms
4 5 30ms
5 8 80ms
6 13 370ms
7 21 1s 290ms
8 34 3s 830ms
9 55 8s 190ms

10 55 7s 840ms
11 55 16s 570ms

Total 252 38s 350ms

Table 4. Number of paths and user CPU times
for m = 2, p = 2, and q = 1.

For concrete applications of Pieri homotopies to control
linear systems, we refer to [22, 23].

Acknowledgments

We thank the National Center for Supercomputing Ap-
plications (NCSA) for the use of the Platinum IA32 Cluster.
This material is based upon work supported by the National
Science Foundation under Grant No. 0105739 and Grant
No. 0134611.

References

[1] D.C.S. Allison, A. Chakraborty, and L.T. Watson.
Granularity issues for solving polynomial systems via
globally convergent algorithms on a hypercube.J. of
Supercomputing, 3:5–20, 1989.

[2] R.W. Brockett and C.I. Byrnes. Multivariate Nyquist
criteria, root loci, and pole placement: a geometric
viewpoint. IEEE Trans. Automat. Control, 26:271–284,
1981.

[3] A. Chakraborty, D.C.S. Allison, C.J. Ribbens, and L.T.
Watson. The parallel complexity of embedding algo-
rithms for the solution of systems of nonlinear equa-
tions. IEEE Transactions on Parallel and Distributed
Systems.4(4), 1993.

[4] Y. Dai, S. Kim and M. Kojima. Computing all non-
singular solutions of cyclic-n polynomial using polyhe-
dral homotopy continuation methods.J. Comput. Appl.
Math.152(1-2): 83–97, 2003.

[5] I. Foster. Designing and Building Parallel Pro-
grams. Addison-Wesley Publishing 1995. Available at
http://www-unix.mcs.anl.gov/dbpp/ .

[6] T. Gao and T.Y. Li. Mixed volume computa-
tion for semi-mixed systems. Discrete Com-
put. Geom. 29(2):257-277, 2003. Available at
http://www.csulb.edu/˜tgao and at
http://www.math.msu.edu/˜li .

[7] T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fu-
jisawa, and T. Mizutani. PHoM – a polyhedral
homotopy continuation method for polynomial sys-
tems. To appear inComputing, 2004. Available at
http://www.is.titech.ac.jp/˜kojima .

[8] S. Harimoto and L.T. Watson. The granularity of homo-
topy algorithms for polynomial systems of equations.
In G. Rodrigue, editor,Parallel processing for scientific
computing, pages 115–120. SIAM, 1989.

[9] B. Huber, F. Sottile, and B. Sturmfels. Numerical Schu-
bert calculus.J. of Symbolic Computation26(6):767–
788, 1998.



[10] B. Huber and J. Verschelde. Pieri homotopies for
problems in enumerative geometry applied to pole
placement in linear systems control.SIAM J. Control
Optim.38(4):1265–1287, 2000.

[11] M. Kim, J. Rosenthal, and X. Wang. Pole Placement
and matrix extension problems: A common point of
view. SIAM J. Control. Optim.42(6):2078–2093, 2004.

[12] T.Y. Li. Numerical solution of polynomial systems
by homotopy continuation methods. InHandbook of
Numerical Analysis. Volume XI. Special Volume: Foun-
dations of Computational Mathematics, edited by F.
Cucker, pages 209–304, 2003.

[13] T.Y. Li, X. Wang, and M. Wu. Numerical Schubert
calculus by the Pieri homotopy algorithm.SIAM J. Nu-
mer. Anal.40(2): 578–600, 2002.

[14] M.S. Ravi and J. Rosenthal. A smooth compactifica-
tion of the space of transfer functions with fixed McMil-
lan degree.Acta Applicandae Mathematicae, 34:329–
352, 1994.

[15] M.S. Ravi, J. Rosenthal, and X. Wang. Dynamic pole
placement assignment and Schubert calculus.SIAM J.
Control and Optimization, 34(3):813–832, 1996.

[16] J. Rosenthal. On dynamic feedback compensation and
compactifications of systems.SIAM J. Control and Op-
timization, 32(1):279–296, 1994.

[17] H.J. Su and J.M. McCarthy. Kinematic synthesis of
RPS serial chains. InProceedings of the ASME Design
Engineering Technical Conferences(CDROM). Paper
DETC03/DAC-48813. Chicago, IL, Sept.02-06, 2003.

[18] H.J. Su, J.M. McCarthy and L.T. Watson. Generalized
linear product polynomial continuation and the compu-
tation of reachable surfaces. Technical Report TR-03-
24, Computer Science, Virginia Tech.

[19] H.J. Su, C.W. Wampler and J.M. McCarthy. Geomet-
ric Design of Cylindric PRS Serial Chains. InProceed-
ings of the ASME Design Engineering Technical Con-
ferences(CDROM). Chicago, IL, Sep 2-6, 2003.

[20] A. Takeda, M. Kojima, and K. Fujisawa. Enumeration
of all solutions of a combinatorial linear inequality sys-
tem arising from the polyhedral homotopy continuation
method. J. of Operations Society of Japan45:64–82,
2002.

[21] J. Verschelde. Algorithm 795: PHCpack: A
general-purpose solver for polynomial systems
by homotopy continuation. ACM Trans. Math.
Softw. 25(2): 251–276, 1999. Software available at
http://www.math.uic.edu/˜jan .

[22] J. Verschelde and Y. Wang. Numerical Homotopy Al-
gorithms for Satellite Trajectory Control by Pole Place-
ment. Proceedings of MTNS 2002, Mathematical The-
ory of Networks and Systems (CDROM), Notre Dame,
August 12-16, 2002.

[23] J. Verschelde and Y. Wang. Computing dynamic out-
put feedback laws. Accepted for publication in the
Technical Notes Section of theIEEE Transactions on
Automatic Control.


