Computing Feedback Laws for Linear Systems with a Parallel Pieri Homotopy

Jan Verscheldeand Yusong Wanlg
Department of Mathematics, Statistics, and Computer Science
University of lllinois at Chicago, 851 South Morgan (M/C 249)
Chicago, IL 60607-7045, USA.

Abstract 0 then becomes the start system in the homotopy

Homotopy methods to solve polynomial systems are well
suited for parallel computing because the solution paths de-
fined by the homotopy can be tracked independently. Both
the static and dynamic load balancing models are imple- For almost all choices of the complex constangll solu-
mented in C with MPI, adapting PHCpack written in Ada tions pathsx(¢) are regular and bounded fore [0,1). In
using gcc, and tested on academic benchmarks and methe second stage, continuation methods are applied to track
chanical applications. We studied the parallelization of the paths starting at the known solutionsggk) = 0 to

Pieri homotopies to compute all feedback laws to control the desired solutions of(x) = 0, ast goes from 0 to 1.
linear systems. To distribute the workload, we mapped theSee [12] for a survey on recent methods to construct ef-
poset onto a tree. As the dimensions of the Pieri homo-ficient homotopies. The publicly available software PHC-
topies grow incrementally from the root to the leaves in the pack [21] implemented the homotopy methods in a sequen-
tree, we found the Pieri homotopies well suited for parallel tial version.

computing.

h(x,t) =v9(x)(1—t) +tf(x)=0, v€C. (1)

The homotopy algorithm is well suited for parallel com-
)) . puting, since the paths can be tracked independently from
Keywords: continuation methods, control of linear sys- gach other. The efficiency of the algorithms for solving
tems, feedback laws, load balancing, numerical Schubertyy qioms of nonlinear equations using probability-one homo-
calculus, path tracking, Pieri homotopies, pole placement. topy methods in parallel is discussed in [1, 3, 8]. More re-
cently, in [7] and [20] the authors report on a parallel imple-
1 Introduction mentation of polyhedral homotopy methods, which exploit
the sparse structure of polynomial systems.

Polynomial systems occur in a wide variety of applica- Tracking all paths defined bgne homotopy is “em-
tion domains, such as mechanical design, signal processbarassingly parallel,” as the tasks no longer communicate
ing, and in what is most relevant for this paper: the con- with each other once they are created [5]. Pieri homotopies
trol of linear systems. Typically, the number of solutions are harder to parallelize because one solution at the end of
of a polynomial system grows exponentially with its di- one path may serve as the start solution for another path.
mension. For example, the polynomial system whose so-The tasks communicate in a predictable pattern (like a PDE
lutions are feedback laws to control a machine with solver). This pattern is determined by the poset of local-
inputs andp outputs has in general as many solutions as ization patterns used in a combinatorial root count. When
A p = ml!!(fﬂi')<fz;L%2’2(ﬁj}2;'§r’;f)f)!_ So the need for parallel ~ parallelized, the Pieri homotopies follow a tree structure,
computation is very real. with the fewest amount of work in the edges closest to the

Homotopy continuation methods are reliable and pow- "0Ot.
erful methods to compute numerical approximations to all |n this paper we first outline the extension of PHCpack
isolated complex solutions. These methods operate in twowith a parallel path tracker, before describing the paral-
stages. To solve a systefi{x) = 0, we first construct |elization of Pieri homotopies to solve the pole placement
g(x) = 0 whose solutions are known. This systg(ix) = problem in the control of linear systems. This paper is a

— , _ _ sequel to [22] and [23].
*Email: jan@math.uic.edu, URL: http://www.math.uic.edu/"jan
tEmail: ywang25@uic.edu, URL: http://www.math.uic.edu/"'ywang25 30 May 2004

2 A parallel path tracker in PHCpack Speedup Comparison
140
In this section we describe two load balancing schemes| 120
and report computational experiences on tracking paths de
fined by the homotopy (1), for two large polynomial sys- Qloo i
tems. a
§ 80
2.1 Static and dynamic workload balance &% — static
40 —— dynamic
For best performance, the workload should be distributed| 5 / -~ optimal
evenly among the processors. In the static workload dis- /
tribution, the paths are distributed evenly to the processors © ‘ ‘ ‘
once at the start. While this leads to a minimal commu- 0 50 100 150
Number of CPUs

nication overhead, the workload for each processor may
have a large variance, as paths diverging to infinity require] .
more time. The dynamic workload assignment with a mas- F'gl_lre 1. The Sp_eedUp comparison of the
ter/slave paradigm is usually better. Each of the slave pro- Static and dynamic load balancing for the
cessors will be given one job at the beginning. After aslave ~ cyclic 10-roots problem on the Platinum Clus-

finishes its job, it sends the result to the master, which sends " 8t NCSA.

then a new job to the slave. While this requires more com-
munication overhead than the static workload assignment
model, we can improve it by overlapping the communica-

Static Dynamic Improvement

! i . ' : N |[time | speedup|| time | speedup| dynamic/static
tIO!’l _and_ computathn with the non-blocking sending and re- T 1 2800) 7800 1o =
ceiving in the MP library. 8 |[755 | 64 | 666 | 7.2 11.75%

16 36.4 13.2 31.7 15.2 12.96%

2.2 Experimental results and discussion 32 || 19.0 | 253 157 | 307 17.56%

64 10.2 46.9 7.9 60.5 22.48%
Our parallel code was developed on a rocketcalc atla 128] 66 733 4.3 112.9 35.11%

cluster with four 2.4 GHz processors under Linux. To ex-

amine the speedup and the load balancing issues better on Table 1. Speedups of the static and dynamic

larger problems, we ran the code on the Platinum cluster at load balancing for the cyclic 10-roots problem

NCSA. on the Platinum Cluster at NCSA. Time units
are user CPU minutes, N =#CPUs.

2.2.1 Anacademic benchmark: cyclic 10-roots

The cyclicn-roots problem is widely used as a benchmark
for publicly available software ([6], [7], [21]). Computing optimal for the dynamic model when the number of proces-
all cyclic n-roots is hard because the number of paths is sors is less than 32. For any number of processors, dynamic
often too large to be traced by a single computer [4]. For load balancing wins.
n = 10, we need to trace 35,940 paths. With a given
start system, it takes 8 hours with the sequential version
of path tracker on a 1GHz computer. Our parallel path
tracker traces all 35,940 paths within 5 minutes on 128 This example comes from the geometric design of the five
1GHz CPUs. degree-of-freedom robot formed by links connected by rev-
From Table 1, we see that the dynamic workload balanc- olute, prismatic and spherical joints to form an RPS serial
ing improves the total time of the static approach by 10% chain [17, 18, 19]. To design this robot one must solve ten
to 35%. For this problem, the variance of the time needed polynomial equations in ten unknowns. The homotopy we
to trace the paths can be large (one thousand paths divergelsed (using a linear-product start system as in [18]) led to
The improvement of using dynamic load balancing is more 9,216 solution paths. As reported in [17], the sequential ver-
obvious with more processors since the variance becomesion of PHCpack takes about 24 hours on a 2.4GHz Pentium
larger for fewer jobs on each processor in the static work- IV machine. On 128 1GHz CPUs of the Platinum cluster at
load assignment. Figure 1 shows that the speedup is almosNCSA, all paths were traced within 22 minutes. As the time

2.2.2 An application from mechanism design

Speedup Comparison when — an unfortunately still too often occurring case —
160 1 many solution paths diverge to infinity. For this par-
140 1 ticular system, the mixed volume gives the exact root
120 - count of 1024, and thus the polyhedral homotopy (im-
2 100 - plemented in [6], [7], and [21]) is optimal. The black-
3 804 box solver of PHCpack gives the complete solution list
;’;) 60 —static | in 24.6 minutes CPU time on a 2.4Ghz Linux ma-
20 —oynamic | chine. The system and its solutions are available online at
20 http://www.math.uic.edu/ jan/demo.html
0 ‘ ; ‘ .
0 50 100 150 3 Parallel Pieri homotopy
Number of CPUs
In this section, we consider the parallel implementation
Figure 2. The speedup comparison of the of a homotopy continuation method to find a general start
static and dynamic load balancing for the me- systemg(x) = 0 to be used in the homotopy (1) to solve a
chanical application on the Platinum Cluster particular problemy (x) = 0.
at NCSA.

3.1 Solving the pole placement problem

for one 1GHz was unavailable, we assumed an initial opti- AS in the introduction, we consider a machine with

mal speedup in the dynamic case, extrapolating to 3111.2iNPuts andp outputs, whose evolution in time is governed
CPU minutes sequential time, obtainedsas 388.9, see by a system of linear differential equations. The control of
Table 2. While assuming an initial optimal speedup with g this machine by a compensator wiffinternal states corre-
CPUs is unrealistic, when doubling the number of proces- SPONdS to & problem from enumerative geometry for which
sors we may finish more than twice as fast when the dis- the so-called Pieri homotopies were derived. The theoreti-

tribution of the workload is more evenly spread among the €&l connection was first made in [2] fer= 0, and gener-

processors, see Figure 2. alized in [14], [15], and [16]. Algorithms, defined by Pieri
homotopies were developed in [9], [10] and [13]. In this
Static Dynamic improvement | Paper we explain the algorithms geometrically. For the rela-
N time | speedup || time [speedup || dynamic/static tion with inverse eigenvalue and matrix extension problems,
8 [4175 7.5 | 388.9] 8.0 6.84% | see[ll].
16 || 195.1| 15.9 | 183.7| 16.9 5.84% For a givenm, p, andg, denoten = mp+q(m+p). The
32 94.7 32.9 96.1 32.4 -1.50% problem we solve takes on inpuatgeneraln-planesr; in
64 || 49.8 62.5 475 65.5 4.65% C™*? andn interpolation pointss; € C,i = 1,2,...,n.
128 || 25.1 124.0 22.0 141.4 12.43% For this input, we want to compute all polynomial maps
X (s) of degregg producingp-planes that meet those given
Table 2. Static and Dynamic Workload Bal- generalm-planesL; at the prescribed interpolation points
ance on the RPS problem. Time units are si, i.e.. we are givem intersection conditions:

user CPU minutes, N = #CPUs, speedup * =

from extrapolated sequential time. det(X(si)|L:i) =0, i=12,...,n &)

These intersection conditions define a polynomial system
in the coefficients of the ma : C — Cm+P)xp . 5
In Table 2, we can find the improvement of the dynamic X (s). In what follows, we show that the problem (2) is well
over the static balancing model is not obvious here. Since inPosed: we have equations in the: variables which define
this example, there are more than eight thousand diverging2 general magx (s).
paths, which dominate the total computation time and each
of the diverging path spend almost the same time. So there3.2 Localization patterns and Pieri homotopies
is no large variance in the workload among the processors
in the static model. Moreover, the overhead of the com- We representX(s) by a localization pattern in
munications decreases the efficiency of the dynamic load{0,+}(™*P)*P (i.e.: a matrix overZ,) in which all stars
balancing model. stand for the nonzero coefficients of the generator matrix.
We took this application to illustrate what happens A p-plane fits a localization pattern if it can be represented

by a matrix of generators with zero entries everywhere the
localization pattern prescribes them. For example, in Fig-
ure 3, the left picture is the canonical form of the degree
one-map solution localization pattern for= 2, m = 2,

q = 1, where the is for homogenizing the polynomials to
deal with both bottom pivots and top pivots. The middle
picture is the concatenated form wijth+ n stars, where we

append the higher degree coefficients below the lower de-

gree coefficients and the degree of freedom is 8. The
right picture is a shorthand notation for the bottom pivots
which record the row indices of the bottommost stars.

* 0
X(s,t) = * *
* 04 %xs 4 : :
—1
* *xt + %S o 0 * o [4 7]
* %t + %S horthand
% %t L 0s 0 x Shorthan
0 * 7
Standard 0 0
Concatenated

Figure 3. Localization pattern of solutions for
p=2, m=2, qg=1

A valid bottom pivot localization pattern is defined as
below:

1. Letq = dp+rwithd,r € Nandr < p. Alocalization
pattern for(m + p) x p-maps of degree has the first
p — r columns with dimensioid + 1) (m + p) and the
remaining columns have dimensi¢i+ 2)(m + p).

. All stars within a column should be contiguous and
the row indices in which the bottommost and topmost
stars occur strictly increasing as a function of the col-
umn index. These indices are called the top and bottom
pivots, respectively.

3. No two bottom pivots differ byn + p or more.

The above definition is extracted from [10]. In this paper
—and in our preliminary parallel implementation — we con-
sider the top pivots as fixed {6 2 - - - p).

The special emphasis on the formatXfs) is entirely
justified as it leads naturally to a homotopy as follows. The
bottommost pivots ok give a recipe (see [10]) for a special
m-planeSx so thatdet(X|Sx) = 0 if and only if at least
one of the entries inX at the bottommost pivots is zero.
ThePieri homotopyin (3) movesSx to L,,. Forg > 0, the
map X (s) can meetSx only at oo, so the corresponding
interpolation point moves fromo to s,,. To represento
properly, we homogenize the polynomialsif(s) usingt,
and denote the maps a5(s, t). The Pieri homotopy in (3)

then movegqs,t) = (1,0) to (s,,1). Observe the double
use oft in (3): as continuation parameter and variable added
to homogenize the maps.

H(X(s,t),8,t) =

det(X (s,t)|(1 —t)Sx +tL,) =
(s=1DA—=t)+ (s—sp)t =
det(X (s;,t:)|Li) =0, i=1,2,... n—

fort € [0, 1].

0
0 3)
1

The start solutions for the Pieri homotopy all fit in the
patternsY (s, t) obtained fromX(s,t) by turning a bot-
tommost star to zero. By induction on we assume that
all these childrerl’(s,¢) meet already thes — 1 general
m-planesL; at (s;,t;), i.e.: det(Y(s;,t;)|L;) = 0, for
1=1,2,...,n—1. To satisfy theath intersection condition
with L,, at (s,,t,), we trace the solution paths defined by
the Pieri homotopy in (3), as t goes from 0 to 1.

Note that at = 1, we haves = s,,, and all intersection
conditions in (2) are satisfied. In the next section we de-
scribe the induction on which leads to an efficient way to
count all the roots.

3.3 Counting roots by posets and trees

The shorthand notation of the bottom pivots (see Figure 3
for an example) is a convenient way to count the solution
maps and to represent the nested sequences of homotopies
needed to compute all solutions.

12] n=>0 1
/[-
n=1 1
a1 >[23] n=2 17 > 1
n=3 2
~ ~ — T
[25]\ /[34] 2;451 2\4/2
~ ~ — N
[36]\ /[45] 2;675 4\8/4
47" n=8 87
Figure 4. Combinatorial root count for p = 2,

m = 2, ¢ = 1 with the poset structure. The
brackets at the left are the bottom pivots.
The trivial localization pattern corresponds to
[1 2]. The solutions are counted at the right,
starting at the top and adding up the numbers
at the leaves while moving down to the root
of the poset [4 7] yielding 8 solutions.

In Figure 4, the poset structure is described to count the
number of the solution planes. It starts from the trivial lo-
calization pattern which has its top pivdis2 --- p], e.g.:

[12], and its bottom pivot&l(m+p)+m—+r+1 --- d(m+ pared to posets, the organization of the path tracking along
p)+m+p (d+1)(m+p)+m+1 --- (d+1)(m~+p)+m+r], Pieri trees makes them more suitable for parallel comput-
e.g.:[4 7]. The bottom poset structure at the left in Figure 4 ers, since the workload for each of the processors can be
is obtained by fixing the top pivots and decreasing a bot- balanced well.

tommost pivot, which is called a bottom child, to get all]]
the valid localization patterns recursively. At the right of _ AlSO the memory management becomes simpler with

Figure 4 we see the counting procedure: we start with onePi€ri trees. Every node in the tree is only needed in the
solution forn = 0; then, forn > 0, the number of maps fit- cOmputation of the path ending at the node, or in the paths

ting X and meeting: generalm-planes equals the sum of orig_inating at the node, in total in no more thar- 1 jobs. o
the number of solution maps fitting the childrenXfand S in general, the memory occupied by a node in the Pieri
meetingn — 1 general planes. Every link in the poset as in tree can be released rather quickly after a job has finished.

Figure 4 corresponds to one instance of the Pieri homotopy.N the poset however, the nodes carry the information of
The combinatorial root count with a poset is imple- many more paths and need to remain active even if only one

mented in the sequential version of PHCpack [21]. In the job is still not completed. Especially f_or larger problems, as
parallel version of the Pieri homotopy program, we solve the number of roots grows exponentlally, the number Qf n-
the problem based on a tree, called Pieri trees in [9]. Theternal nodes may also increase dramatically, exhausting all

tree corresponding to the poset in Figure 4 is shown in Fig- (€ memory rather quickly.

ure 5. . o As pointed out earlier, the Pieri homotopies used above
To see the virtue of Pieri trees for parallel computers, yeep their top pivots fixed, we can increase top and decrease
we need to recall the induction onin the derivation of pottom pivots simultaneously, hereby satisfying two new in-
the Pieri homotopies. In the Pieri tree, each edge repre-tersection conditions with one Pieri homotopy [10]. The
sents a job, i.e.: the tracking of one solution path. TWO ¢ompinatorial root count for our running example is shown
jobs (represented by two edges in the Pieri tree) becomen Figyre 6. This scheme needs in general fewer solution
complietely independent from each other once the solutionpathS than when keeping top pivots fixed. Counting the
at their common ancestor node has been computed. Comedges in Figure 5 and in Figure 7, we find respectively 37
and 26 path tracking jobs.

[1‘2]
[13]
B4 [25]
T T 34 [25] 1 1
[14] (23] N NS
| | 5 2
— T~ — T~ (23] [23 [14 [14]
[2 5] 3 4] [2 5] 13 4] 36] 45 [36] (45 2 2 2 2
| | | | T S TS
[35] [35] [35] [35] b 8
PN N P N ‘
[3‘6] [4‘5] [3‘6] [4‘5] [3‘6] [4‘5] [3‘6] [4‘5] [1 2] 8
[47]
[46] [46] [46] [46] [46] [46] [46] [46]
| | | | | | | | ,
when with each Pieri homotopy two intersec-
Figure 5. Combinatorial root count for ~ p = 2, tion conditions are satisfied at once. The top
m = 2, ¢ = 1 with the Pieri tree. The brackets pivots are displayed above the bottom pivots
at the above are the bottom pivots. The trivial in the nodes of the poset on the left. At the
localization pattern corresponds to [1 2]. The right we see the corresponding root count.

solutions are counted by starting at the top

and finding all the allowable paths to reach

the leave [4 7], adding up the number of leaves

through different paths yielding 8 solutions. The poset in Figure 6 gives rise to a forest of two trees,
shown in Figure 7.

according to the rank of the slave. After all slave proces-

E ﬂ g 2} sors are activated, the dynamic workload balance paradigm
| | based on the first-come-first-serve strategy is implemented
(2 4] (2 4] to compute the remaining jobs.

/}{\ /}i\ Since the workload is dynamically distributed, the slave
(23 [23] [14 [4 [23 (23 [14 [14 does not know the number of jobs needs to be done in ad-
[36] [45] [36] [45] [36] [45] [36] [45] vance. So we need to figure out a way to terminate the com-

| | | | | | | | putation subroutine properly. The intuitive idea is when all
El 2} Ei é} El 2} Ei g} El 2} Ei g% EL g% El g} of the slaves returned a leave, which can not generate any

| | | | | | | | new jobs, we are done. It coul_d be thg case, when some of
M2 [z [z [p2 02 n2 12 (12 the slaves return leaves and find no job in the queue, they
47 (a7 [47 [47 47 47 [4a7 [47 won’t work any more, while the other slaves are still work-

ing on the internal nodes of the virtual tree. This situation
will cause an unbalanced workload distribution, therefore
the efficiency will be lower. To avoid this case, we maintain
another queue to record which slave has returned a leaf, and
activate it again when there are more jobs available to com-
pute. After all the slaves have returned leaves, the master
3.4 Parallel Pieri homotopy algorithm will send a message to each slave to terminate their busy
waiting loop.

Since we obtain a forest (as in Figure 7) when simul-
taneously increasing top and decreasing bottom pivots, we
maintain another queue to save the roots of the trees in the

Figure 7. The forest of two treesfor p =2, m =
2, ¢ = 1, derived from the poset in Figure 6.

Figure 8 illustrates the procedure of the parallel Pieri
computation. Here we apply the dynamic workload assign-
ment with a master/slave paradigm, which is proved to be) :
better in the previous section. At the beginning, the masterforeSt' 'I.'her) we build up a y|rtual treg for ea}ch of thg roots
generates (at mosf jobs by increasing the bottom pivots as we did with the bottom pivot case in previous section.
and puts them in the queue. Then the master distributes the AS the path tracking jobs are subject to a tree hierarchy,
available jobs to the slaves, which will finish the compu- €Very job has to wait till the first path starting at the root
tation task. When one of the slave finishes its job, it re- N0de has terminated. Every job in the tree has to wait il
turns the result to the master. The master generates (at modf€ job providing its start solution has finished. So at the
p) new jobs according to the returned information, which Start of the of program, only very few processors are active,
includes the pivot information of the node and the target wh|lg most other processors are idle, waiting for their start
solution of the previous homotopy, and then puts the jobs solutions. Fortunately, the jobs closest to the root are the

in the queue. At first, the jobs are distributed sequentially SMallest, as exemplified in Table 4. Typically, almost half
of the time is spent at the last level, towards the leaves of

the Pieri tree.

CPU 0 (Generate and distribute jobs) \ 4 Appllcatlons

[[TITITIT11]
A virtual tree for
Pieri Homotopy

A queue maintains Table 3 shows the experimental results for different val-
all the active jobs. .
ues ofm, p, andq. As m, p, andq increase, the num-
A target root is used as the
start root for next iteration

ber of solutions grows exponentially, for example: 135,660
forp = 4, m = 3, ¢ = 1. The dimensiom of the
problem grows too, but fortunately as a polynomial, i.e.:
n = mp+ g(m+ p). Nevertheless, the problem of comput-
ing all solutions quickly becomes intractable.

Our 2.4GHz PC under Linux can only solve some low
1 CPU4 | |
dimensional problems in hours. On the Platinum cluster at

The CPUS for computation NCSA, we improved the time from hours to minutes for
some lower dimensional problems and solved some higher

Figure 8. Parallel Pieri homotopy with a virtual dimensional problems which are not tractable for our PC.
tree structure The table is drawn in an upper triangular format to show the

limit of the problem which a PC can solve.

q=0 q=1 q=2 q=3
time(s) time(s) time(s) time(s)
p | m || #Sols | PC [Cluster | #Sols PC | Cluster | #Sols PC [Cluster || #Sols| PC | Cluster
2| 2 2 0.2 - 8 0.9 - 32 18.4 - 128 | 218.3| 19.1
3| 2 5 0.2 - 55 38.4 - 610 2331.7| 137.2 6765 | N/A 4749.0
3| 3 42 8.8 - 2730 | 7663.8| 327.7 17462 | N/A —
4| 3 462 638.7 524 135660 | N/A -
4| 4 24024 | N/A 1891.2%
*done on 256 CPUs

Table 3. Solving Pieri homotopy problem on a 2.4GHz PC and 64 1GHz CPUs of Platinum Cluster at
NCSA. Time units are user CPU seconds. #Sols = number of Solutions.

] n | #paths| user CPU time]
1 1 Oms

2 2 Oms

3 3 10ms

4 5 30ms

5 8 80ms

6 13 370ms

7 21 1s 290ms

8 34 3s 830ms

9 55 8s 190ms

10 55 7s 840ms

11 55 16s 570ms
| Total [252 | 38s 350mg|

Table 4. Number of paths and user CPU times
for m=2,p=2,and ¢ = 1.

For concrete applications of Pieri homotopies to control

(2]

3]

[4]

[5]

[6]

linear systems, we refer to [22, 23].

Acknowledgments

We thank the National Center for Supercomputing Ap-

[7]

plications (NCSA) for the use of the Platinum 1A32 Cluster.
This material is based upon work supported by the National
Science Foundation under Grant No. 0105739 and Grant

No. 0134611.

References

(8]

[1] D.C.S. Allison, A. Chakraborty, and L.T. Watson.
Granularity issues for solving polynomial systems via [9]
globally convergent algorithms on a hypercuhg. of
Supercomputing3:5-20, 1989.

R.W. Brockett and C.l. Byrnes. Multivariate Nyquist
criteria, root loci, and pole placement: a geometric
viewpoint. IEEE Trans. Automat. ControR6:271-284,
1981.

A. Chakraborty, D.C.S. Allison, C.J. Ribbens, and L.T.
Watson. The parallel complexity of embedding algo-
rithms for the solution of systems of nonlinear equa-
tions. IEEE Transactions on Parallel and Distributed
Systems4(4), 1993.

Y. Dai, S. Kim and M. Kojima. Computing all non-
singular solutions of cyclic-n polynomial using polyhe-
dral homotopy continuation methods. Comput. Appl.
Math. 152(1-2): 83-97, 2003.

I. Foster. Designing and Building Parallel Pro-
grams. Addison-Wesley Publishing 1995. Available at
http://www-unix.mcs.anl.gov/dbpp/

T. Gao and T.Y. Li. Mixed volume computa-
tion for semi-mixed systems. Discrete Com-
put. Geom. 29(2):257-277, 2003. Available at
http://www.csulb.edu/"tgao and at
http://www.math.msu.edu/"li

T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fu-
jisawa, and T. Mizutani. PHoM - a polyhedral
homotopy continuation method for polynomial sys-
tems. To appear ifComputing 2004. Available at
http://www.is.titech.ac.jp/"kojima

S. Harimoto and L.T. Watson. The granularity of homo-
topy algorithms for polynomial systems of equations.
In G. Rodrigue, editoiRarallel processing for scientific
computing pages 115-120. SIAM, 1989.

B. Huber, F. Sottile, and B. Sturmfels. Numerical Schu-
bert calculus.J. of Symbolic ComputatioR6(6):767—
788, 1998.

[10] B. Huber and J. Verschelde. Pieri homotopies for [18] H.J. Su, J.M. McCarthy and L.T. Watson. Generalized

problems in enumerative geometry applied to pole linear product polynomial continuation and the compu-
placement in linear systems contrdsdlAM J. Control tation of reachable surfaces. Technical Report TR-03-
Optim.38(4):1265-1287, 2000. 24, Computer Science, Virginia Tech.

[11] M. Kim, J. Rosenthal, and X. Wang. Pole Placement [19] H.J. Su, C.W. Wampler and J.M. McCarthy. Geomet-
and matrix extension problems: A common point of ric Design of Cylindric PRS Serial Chains. Rroceed-
view. SIAM J. Control. Optim42(6):2078—2093, 2004. ings of the ASME Design Engineering Technical Con-

) .)) ferenceCDROM). Chicago, IL, Sep 2-6, 2003.
[12] T.Y. Li. Numerical solution of polynomial systems

by homotopy continuation methods. handbook of [20] A. Takeda, M. Kojima, and K. Fujisawa. Enumeration

Numerical Analysis. Volume XI. Special Volume: Foun- of all solutions of a combinatorial linear inequality sys-

dations of Computational Mathematjcedited by F. tem arising from the polyhedral homotopy continuation

Cucker, pages 209-304, 2003. method. J. of Operations Society of Japaib:64—82,
2002.

[13] T.Y. Li, X. Wang, and M. Wu. Numerical Schubert
calculus by the Pieri homotopy algorithi8IAM J. Nu- [21] J. Verschelde. Algorithm 795: PHCpack: A
mer. Anal.40(2): 578-600, 2002. general-purpose solver for polynomial systems

. . by homotopy continuation. ACM Trans. Math.
[14] M.S. Ravi and J. Rosenthal. A smooth compactifica- Softw. 25(2): 251-276, 1999. Software available at
tion of the space of transfer functions with fixed McMil- http://www.math.uic.edu/jan

lan degree.Acta Applicandae Mathematicad4:329—
352, 1994. [22] J. Verschelde and Y. Wang. Numerical Homotopy Al-
)) gorithms for Satellite Trajectory Control by Pole Place-
[15] M.S. Ravi, J. Rosenthal, and X. Wang. Dynamic pole mant proceedings of MTNS 2002, Mathematical The-

placement assignment and S(?hubert calculIaMm J. ory of Networks and Systems (CDROM), Notre Dame,
Control and Optimization34(3):813-832, 1996. August 12-16, 2002.

[16] J. Rosep_thal_. On dynamic feedback compensation and[23] J. Verschelde and Y. Wang. Computing dynamic out-
compactifications of systemSIAM J. Control and Op- put feedback laws. Accepted for publication in the

timization 32(1):279-296, 1994. Technical Notes Section of tHEEE Transactions on
[17] H.J. Su and J.M. McCarthy. Kinematic synthesis of ~ Automatic Contral
RPS serial chains. IRroceedings of the ASME Design

Engineering Technical Conferenc€8DROM). Paper
DETCO03/DAC-48813. Chicago, IL, Sept.02-06, 2003.

