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Abstract 
 
Fault detection is critical for all-optical networks 

(AONs). This paper introduces the concept of monitoring 
cycle and proposes a fault detection mechanism based on 
decomposing AONs into a set of cycles (a cycle cover), in 
which each one is defined as a monitoring cycle. Two 
cycle-finding algorithms are developed and compared for 
the proposed fault detection mechanism: heuristic depth 
first searching (HDFS) and shortest path Eulerian 
matching (SPEM). The degradation of wavelength 
utilization and the cardinality of cycle covers are 
analyzed for evaluating the proposed mechanism. 

The proposed mechanism is applied to four network 
examples: NSFNET, ARPA2, SmallNet and Bellcore. The 
evaluation results show that the proposed fault detection 
mechanism is effective and cost efficient. 

 
 

1. Introduction 
 
With the development and deployment of dense 

wavelength division multiplexing (DWDM) technology, 
all-optical networks (AONs) continue to evolve towards 
higher data rates and increased wavelength numbers and 
density. It greatly improves the data transmission 
efficiency but, at the same time, even a very short 
disruption of service caused by a network fault may lead 
to a very high data loss in such networks. Consequently 
the network function for monitoring and fault detection is 
critical for them. 

There are numerous fault detection mechanisms for 
traditional electrical communication networks. 
Unfortunately, such mechanisms cannot be applied 
directly to AONs due to the lack of electrical terminations 
in AONs. Even some detection methods deployed in 
optical networks with opto-electro-opto (OEO) 
conversion cannot be transplanted to AONs. Reference 
[1], for example, has shown that some typical schemes for 
SDH/SONET could not be applied to AONs. 

Therefore new methodologies and mechanisms are 

necessary for fault detection in AONs. The optical power 
detection, optical spectral analysis, pilot tones and optical 
time domain reflectometry (OTDR) could be deployed for 
fault detection and also attack detection [2] in AONs. 
Reference [3] developed a fault detection scheme by 
assigning monitors to the sinks of each optical multiplex 
section and optical transmission section. A heuristic 
algorithm was proposed in [4] to efficiently assign 
monitors and thus reduce the required number of 
monitors. This kind of schemes are channel-based and 
introduces large numbers of monitors thus they are not 
feasible in today’s AONs due to the reasons of channel 
dynamics, scalability and costs. Other methods like a 
finite state machine described in [5] were proposed but 
their complexity for large-scale and dynamic networks 
impedes their deployment. 

Most routing protocols, e.g. OSPF and IS-IS, also have 
inherent functionality of fault detection. Some key 
parameters of OSPF were optimized in [6] to achieve fast 
fault detection. A joint optical and IP layer method was 
proposed in [7] to accelerate the detection speed. 
Unfortunately the typical fault detection time of routing 
protocols is at seconds-level, even with some accelerating 
techniques. However, the typical time constraint for fault 
recovery in optical networks is 50 milliseconds. This 
constraint inhibits moving the fault detection from optical 
layer to IP layer. Thus some effective and efficient fault 
detection mechanisms at optical layer are still expected. 

In this paper, we propose a fault detection mechanism 
for AONs which utilizing independent wavelengths as 
supervisory channels. The monitors are assigned based on 
cycle covers of the network topology. Two cycle cover 
finding algorithms are developed and compared in terms 
of the wavelength utilization and the cycle cover 
cardinality, under four typical example networks: 
NSFNET, ARPA2, SmallNet and Bellcore. 

This paper is organized into the following sections. 
Section 2 briefly describes the background of cycle cover 
for bridgeless graphs and introduces the concept of 
monitoring cycles. Section 3 develops two cycle finding 
algorithms. Some metrics are defined in Section 4 for 



evaluating the algorithms. In Section 5 the algorithms are 
applied to four network examples and the results are 
compared in terms of the metrics described in Section 4. 
Finally some conclusions are drawn in Section 6. 

 
2. Monitoring cycles 

 
The impact scope of failure is various for different 

network faults: some faults only affect a single or some 
specific wavelengths, e.g. optical crossconnect port 
blocking, while others may affect all the wavelengths 
pass through the faulty module, e.g. fibre cuts. In this 
paper, we propose a fault detection mechanism for 
combating the latter. The main idea is to decompose a 
network into a set of cycles. All nodes and links of the 
given network are covered at least by one cycle. We 
define these cycles as “monitoring cycles”. A transceiver 
is assigned to one node in each monitoring cycle and thus 
a loopback dedicated supervisory channel is set up. 
Consequently, all of the optical network performance 
indices, including optical power, optical spectrum, optical 
signal-to-noise ratio, and more importantly, bit error ratio, 
can be measured within each monitoring cycle. Once a 
fault occurs in any link or node belongs to such a cycle, it 
will trigger an alarm in this monitoring cycle. Such a 
mechanism can achieve fault detection and isolation in 
AONs. 

A network can be modelled as a finite undirected graph 
),( EVG , where V is the set of vertices (network nodes) 

and E is the set of edges (network link). A cycle (denoted 
as c) of the graph G is a sub-graph of G that is connected 
and regular of degree two. A cycle is often identified with 
its edge-set. A cycle cover (denoted as C) of a graph is a 
family of cycles in which each vertex and edge of the 
graph appears at least in one of these cycles. Fig. 1 gives 
an example of a network with 10 nodes and an instance of 
its cycle covers. This cover consists of 4 cycles. Some 
nodes and links appear only in one cycle of the cover. For 
example node c, link bc and cg, are covered by cycle (4) 
only. But some others appear in multiple cycles, e.g. edge 
bd is covered by both cycle (1) and (4), node f by cycle 
(2), (3) and (4). 
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Fig. 1. A graph example and a cycle cover instance 

 

To detect network fault for all nodes and links of a 
given network, a cycle cover has to be found. At the same 
time, for maximizing the wavelength utilization, we have 
also to minimize the number of wavelengths occupied by 
monitoring channels in all nodes and links. That is to say, 
the goal is to find a cycle cover C for graph ),( EVG  that 
minimizes the number of each node and link’s occurrence 
in all monitoring cycles. C will be called a cycle double 
cover if every edge appears in exactly two of those cycles 
of C. The following conjecture was studied in [8], 

Cycle Double Cover Conjecture: Every bridgeless 
graph has a cycle double cover. 

Although the conjecture has not been completely 
proven, it was shown in [8] that a minimum 
counterexample to the cycle double cover conjecture must 
be a snark that has girth at least seven. A snark is a 
cyclically 4-edge-connected cubic graph of girth at least 
five. It is worth to note that no snark of girth at least 
seven is known. In fact some literatures, e.g. [9], had 
conjectured that such snarks did not exist. Thus it is 
safely to say, even if the counterexamples to the 
conjecture do exist, it is not expected that communication 
networks with such topologies will be encountered in the 
real world. 

The cycle double cover conjecture not only shows the 
feasibility of the setup of monitoring cycles, but also 
gives a reference for evaluating the performance of 
monitoring cycle finding algorithms regarding the 
network resource utilization. That is, an achievable 
minimum average number of occupied wavelengths for 
monitoring each link is two. 

 
3. Cycle finding algorithms 

 
In this section we describe two heuristic algorithms for 

finding a cycle cover in given graphs: the heuristic depth 
first searching algorithm and the shortest path Eulerian 
matching algorithm. 

 
3.1. Heuristic depth first searching (HDFS) 

 
Given a graph ),( EVG , starting from any node Vn∈ , 

we can traverse all links in E by depth first searching 
(DFS). Let the traversed part of G be ),( EVG ′′′  during 
the DFS. While a link e from node x to node y being 
traversed, if Vy ′∈ , then there must exist a path 

Gxyp ′∈⋅⋅⋅ ),,( . Thus path ),,( xyp ⋅⋅⋅  and link ),( yxe  
consist a cycle. Based on this fact, a heuristic cycle cover 
finding algorithm is developed as below, 

1) Given graph ),( EVG , let the cycle cover nullC = ; 
number all nodes in V; and label all nodes in V and 
all links in E as “uncovered”; 

2) Select an uncovered link e in E, if multiple such 



links available, select the uncovered link whose 
endpoints are also uncovered. Start DFS from e and 
go to that uncovered endpoint of e if possible; 

3) At each step of each DFS, select an uncovered link. 
If multiple links available, alternatively apply the 
largest/smallest node number first rule, e.g. if in last 
DFS we select a link whose end-node has the largest 
number among multiple nodes with same priority, 
then in the current DFS we select the link whose 
end-node has the smallest number; 

4) Once a link returns to the previously visited part, a 
cycle c can be formed and added to the cover C; 
label all the links and nodes in cycle c as “covered”; 

5) Repeat (2)-(4) until all links in E are “covered”. 
The selection of starting link tries to avoid covering a 

link with many different cycles in the cover. The 
alternative largest/smallest numbered node first rule 
distributes cycles evenly among nodes and links. Both 
heuristic rules therefore avoid occupying large number of 
wavelengths for monitoring. 

Fig. 2 describes the results of HDFS applying to the 
graph example given in Fig. 1. Before starting the DFS, 
the nodes are numbered from 1 to 10. All nodes and links 
are labeled as “uncovered” and set nullC = . During the 
DFS the following iterations are executed, 

Iteration 1: start from node 1 and there are 3 
“uncovered” links: (1,5)and(1,4)(1,2), . Applying the 
smallest numbered node first rule, we select link (1,2) . 
After a DFS iteration the cycle 1-2-3-7-4-1 is obtained 
and added to C. Nodes in set {1,2,3,7,4} and links in set 
{(1,2), (2,3), (3,7), (7,4), (4,1)} are labeled as “covered”. 

Iteration 2: start from node 5 and there are 3 
“uncovered” links: (5,8)and(5,6)(5,1), . Since node 6 
and 8 are uncovered, link (5,6)  and (5,8) are prior 
to (5,1) . Alternatively to iteration 1, we apply the largest 
numbered node first rule and select link (5,8) . After the 
DFS the cycle 5-8-10-9-6-5 is obtained and added to C. 
Nodes in set {5,8,10,9,6} and links in set {(5,8), (8,10), 
(10,9), (9,6), (6,5)} are labeled as “covered”.  

Similarly, cycles 6-4-2-1-5-6, 8-6-10-8, and 6-7-9-6 are 
obtained and added to C in the remainder iterations. After 
iteration 5 all links in the graph are covered and a 5-cycle 
cover is obtained as depicted in Fig. 2. 
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Fig. 2. The cycle cover obtained by HDFS 

3.2. Shortest path Eulerian matching (SPEM) 
 
For an Eulerian graph, there exists an Eulerian cycle 

that covers all links once. If we traverse the Eulerian 
cycle by following links in it until a node is re-visited, the 
traversed part forms a sub-cycle. Then we remove this 
part from the Eulerian cycle and traverse the remainder 
part until all links are removed. In this way, the Eulerian 
cycle is decomposed into a cycle cover C consisting of all 
sub-cycles obtained in the traversing. Due to the fact that 
no two cycles in C have a common link; the minimum 
number of monitoring wavelengths incident to each link 
can be achieved. 

Euler proved that a graph is Eulerian if and only if 
every node has an even degree. Thus a non-Eulerian 
graph has some nodes with odd degrees. Since each link 
connects two nodes, the total number of odd-degree nodes 
is even. We can augment the given graph to construct an 
Eulerian graph by adding links between pairs of odd-
degree nodes, i.e. Eulerian matching. In the matching 
each added new link corresponds to a path consisting of 
existing links between the node pair in the original graph. 
Links included in one augment will be covered one more 
time in a cycle cover. To minimize the average number of 
wavelengths occupied by monitoring in links, i.e. 
minimize the average link cover times, the shortest path 
augments between odd-degree node pairs are added. This 
heuristic shortest path Eulerian matching (SPEM) is 
described below,  

(1) For a non-Eulerian graph ),( EVG , find the set 
V ′ of odd-degree nodes; 

(2) From V ′ , start from a node x and find the shortest 
path to every other node, select the smallest one 
among them, denote as ),( yxp . Add the path 

),( yxp  to G  (now some links in G are “doubled”) 
and remove yx,  from V ′ ; 

(3) Repeat (2) until nullV =′ . Now ),( EVG  is 
Eulerian; 

(4) Find an Eulerian cycle of the augmented ),( EVG  
and decompose it to a cycle cover as above-
mentioned. 

For example, in the graph given in Fig. 1 we firstly 
label the degree for all nodes and the odd-degree node set 
is {1,2,5,8,9,10}. The degrees of all nodes are labelled in 
Fig. 3(a). For node 1, the shortest path to another node is 
(1,5) and (1,2), which are a single hop. Select (1,2) and 
remove node 1,2 from the odd-degree node set. 
Repeatedly we get the matching path set {1-2, 5-8, 9-10} 
(total length is 3) as shown in Fig. 3(a). If we select (1,5) 
at the first step, the matching path set would be {1-5, 2-3-
7-9, 8-10}. The total length is 5, larger than the first 
matching path set and thus was dropped. In this way by 
enumerating all possible tiers at each step, we can get the 



shortest path matching. The node degrees changed by the 
matching paths are labelled in the brackets in Fig. 3(a). 
Now all node degrees are even and the augmented graph 
is Eulerian. 

An Eulerian cycle can be found by any existing 
traversing algorithm, such as DFS. In this example an 
Eulerian cycle is listed in Fig. 3(b). This Eulerian cycle is 
decomposed into 4 cycles as shown in Fig. 3(c). Note that 
a two-edge cycle, e.g. 10-9-10, is not considered as a 
“real” cycle. 
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Fig. 3 The graph example for SPEM: (a) The 
shortest path Eulerian matching; (b) An Eulerian 
cycle and decomposing; (c) The cycle cover 
obtained by SPEM 

 
4. Evaluation Metrics 

 
4.1. Effects on wavelength utilization 

 
Since some wavelengths are assigned to monitoring 

channels within each node and link, the wavelength 
utilisation of the network will decrease. The maximum 
number of occupied wavelengths in a node or link is the 
maximum number of wavelengths assigned for 
monitoring in this single node or link. It is equivalent to 
the maximum cover times of a single node/link in a cycle 
cover. The average number of occupied wavelengths is 
the average number of wavelengths assigned for 
monitoring in all nodes or links. It is equivalent to the 

average number of appearance of all nodes or links in a 
cycle cover. 

To quantitatively analyse the relative degradation of 
wavelength utilization, we defined the maximum and 
average wavelength overhead brought to the network by 
monitoring cycles per node and per link respectively, 

link)ornode(per 
λs available  totalofnumber 
λs  occupied of # maximum

max =H  

link)ornode(per 
λsavailabletotalofnumber
λs occupiedof#average

=aveH  

Here aveH  indicates the average degradation of 
wavelength utilization and maxH  is for the worst case of 
wavelength utilization degradation among all nodes/links. 

Nowadays along with the deployment of DWDM 
technology, the number of wavelengths in a single link 
tends to become larger and larger. For example, it is 
reported even in 2001 that 432 wavelengths could be 
multiplexed into a single fibre [9]. Therefore we set the 
number of total available wavelengths in a node or link to 
be 432 for calculating aveH  and maxH  in example 
networks given in Section 5. 

 
4.2. Cost analysis 

 
The cardinality is the measurement of the size of a 

countable set. If a countable set is finite, its cardinality is 
the number of its elements. A countable but infinite set is 
said to have the cardinality 0ℵ . For a finite undirected 
graph, each cycle cover is a finite set of cycles. The 
cardinality of a cycle cover is defined as the number of 
cycles in the cover. 

In monitoring-cycle based fault detection, since a 
transceiver is assigned to each cycle and a dedicated 
supervisory channel is established along the cycle for 
monitoring (one wavelength is used), the cardinality 
(cycle number) of a cycle cover represents the total 
required transceivers as well as the wavelengths for 
monitoring. Thus it is the measurement of the costs for 
the fault detection based on monitoring cycles. 

 
5. Examples 

 
We tested and compared the proposed fault detection 

mechanism using the described two heuristic algorithms 
respectively upon four example networks: NSFNET, 
ARPA2, SmallNet, and Bellcore, as shown in Fig. 4. The 
performance of the two cycle finding algorithms are 
compared in terms of the metrics described in Section IV. 
The comparison results are listed in Table 1. 

The results in Table 1 have shown that the number of 
occupied wavelengths per link or node in all examples are 
small: in maximum 5 λs/node and 3 λs/link using HDFS, 



and 3 λs/node and 2 λs/link using SPEM. With the 
assumption of available wavelengths described in Section 
4 (432 wavelengths available per link/node), the 
maximum overhead (in worst case) is only 1.16% per 
node and 0.7% per link using HDFS, 0.7% per node and 
0.5% per link using SPEM. Such overhead doesn’t impact 
the network utilization much, if it is not negligible. 

NSFNET: 14 nodes, 21 links ARPA2: 21 nodes, 25 links

SmallNet: 10 nodes, 22 links Bellcore: 15 nodes, 28 links

NSFNET: 14 nodes, 21 links ARPA2: 21 nodes, 25 links

SmallNet: 10 nodes, 22 links Bellcore: 15 nodes, 28 links  
Fig. 4 Topologies of four example networks: 
NSFNET, ARPA2, SmallNet, and Bellcore 

The required number of transceivers for monitoring is 
determined by the cycle cover cardinality of each network 
example. We define the ratio between the number of 
required transceivers and the number of links in a 
network, to measure the relative costs for fault detection, 

network in the links of #
monitoringfor  rs tranceiverequired of #

=linkR  

The ratios are pretty small for all network examples. 
For example, the worst case is the SmallNet that linkR  is 

36.4% and 40.9% for using HDFS and SPEM 
respectively. Comparing to the conventional fault 
detection schemes, e.g. one-monitor-per-link case, the 
proposed mechanism cut more than half of the costs of 
the transceivers. Therefore the proposed fault detection 
mechanism is cost efficient for meshed AONs. 

 
6. Conclusions and future work 

 
This paper introduced the concept of monitoring cycle 

and proposed a fault detection mechanism based on 
decomposing meshed all-optical networks into cycles. 
Two algorithms, heuristic depth first searching (HDFS) 
and shortest path Eulerian matching (SPEM), are 
developed for finding monitoring cycles in AONs. The 
two algorithms are compared in terms of the node and 
link wavelength utilization, as well as the number of 
required transceivers. The results for example networks 
show that the degradation of wavelength utilization is 
pretty low and the costs for monitoring are much smaller 
than one-monitor-per-link scheme. Therefore the 
proposed mechanism based on monitoring cycles is a 
promising fault detection method for AONs. 

The future work might include the development of 
more effective algorithms for finding cycle covers to 
further reduce the wavelengths overhead in links and 
nodes. The integration of the fault detection mechanism 
with the control plane is also one of the potential 
advantages for the mechanism. 

 
Table 1. Comparison of cycle finding algorithms: HDFS and SPEM 

HDFS SPEM HDFS SPEM HDFS SPEM HDFS SPEM

6 4 4 4 8 9 6 5
28.6% 19.0% 16.0% 16.0% 36.4% 40.9% 21.4% 17.9%

Max # of occupied λs 4 2 3 2 5 3 4 3

Hmax  (node) 0.93% 0.46% 0.69% 0.46% 1.16% 0.69% 0.93% 0.69%

Ave # of occupied λs 2.36 1.71 1.62 1.29 3.40 2.50 2.67 1.87

Have  (node) 0.55% 0.40% 0.38% 0.30% 0.79% 0.58% 0.62% 0.43%

Max # of occupied λs 3 2 3 2 3 2 3 2

Hmax  (link) 0.69% 0.46% 0.69% 0.46% 0.69% 0.46% 0.69% 0.46%

Ave # of occupied λs 1.57 1.24 1.36 1.20 1.55 1.18 1.43 1.14

Have  (link) 0.36% 0.29% 0.31% 0.28% 0.36% 0.27% 0.33% 0.26%

21 10 15
21 25 22 28

Bellcore

node

link

Cardinality of cycle cover

Algorithm 

Number of nodes
Number of links

Rlink

14

NSFNET ARPA2 SmallNet
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