Gene Ordering in Microarray Data Using Parallel Memetic Algorithms

Alexandre Mendes!, Carlos CottaZ, Vinicius Garcia®, Paulo Fran(;a3 and Pablo Moscato!

'Newcastle Bioinformatics Initiative, University of Newcastle, Callaghan, NSW, 2308, Australia
2ETSI Informatica, University of Mélaga, Campus de Teatinos, 29071 - Malaga, Spain
3DENSIS-FEE, Universidade Estadual de Campinas C.P. 6101, 13083-970, Campinas, Brazil

Abstract

This paper addresses the Microarray Gene Ordering
problem. It consists in ordering a set of genes, grouping
together the ones with similar behavior. This behavior can
be measured as the gene’s activity level across a number of
measurements. The Gene Ordering problem belongs to the
NP-hard class and has strong implications in genetic and
medical areas. The method employed is a Memetic Algo-
rithm, which is a variant of the well known Genetic Algo-
rithms. The algorithm employs several features like pop-
ulation structure, problem-specific crossover and mutation
operators, local search, and parallel processing. The in-
stances utilized are extracted from the literature and rep-
resent real systems with 106 up to 979 genes. The algo-
rithm has a superior performance, successfully grouping
the genes. Moreover, in this paper we evaluate the impact of
parallel processing in the performance of the algorithm, es-
pecially for the larger instances, which required more com-
putational effort.

1. Introduction

The use of the microarray technology [10] has consti-
tuted one of the most impressive breakthroughs in Molecu-
lar Biology. With it, we can monitor the activity of a whole
genome in a single experiment. Enormous amounts of data
are thus increasingly becoming available thanks to the uti-
lization of these microchips. Interpreting the underlying
relationships among the genes whose expression is being
monitored poses a formidable challenge from a computa-
tional point of view. Consider that microarray experiments
involve from hundreds up to tens of thousands of genes,
with usually tens of measurements per gene. Clearly reduc-
tion techniques are in order in this context (as an illustration
of the need for reduction, it is believed that genes are influ-
enced on average by no more than eight to ten other genes
[3].) Such reduction techniques try to group together genes

with related expression patterns since such genes are likely
to regulate each other, or be co-regulated. Clustering tech-
niques can be used for this purpose (see e.g. [5, 11, 12, 15].)
However, there is still much room for improvement in the
solutions they provide.

In this work we propose the utilization of memetic al-
gorithms (MAs) [18] as a tool for aiding in this process.
More precisely, we consider the use of MAs for finding a
high-quality re-arrangement of gene-expression data, such
that related (from the point of view of their expression
level) genes be placed in nearby locations within a gene se-
quence. As it has been shown by [8], these high-quality
re-arrangements can be very useful for improving the per-
formance of clustering algorithms. This use of MAs results
in a computation-intensive application whose execution in
a sequential environment may require untenable computa-
tional resources. For this reason, we have considered the
parallelization of the algorithm. This has been done using
a master-slave model deployed on a local network of com-
puters.

2. Microarray Data Analysis

DNA microarrays consists of large numbers of DNA
molecules spotted in a systemic order on a solid substrate.
A microarray experiment consists of exposing these DNA
spots to complementary DNA (cDNA) —a process called
hybridization— obtained from messenger RNA (mRNA).
These mRNA molecules are marked with fluorescent dye
visible under a microscope (usually red and green for a
target and a reference sample, respectively.) Due to the
complementary nature between DNA and cDNA molecules,
they couple together by means of base-pairing. Of course,
c¢DNA molecules not corresponding to any gene in the mi-
croarray will be uncoupled, and can be easily removed. Af-
ter this process, the microarray is scanned, measuring the
red/green fluorescence of each spot. This fluorescence value
indicates the level of expression of the corresponding gene
with respect to each sample.

The result of a microarray experiment can be expressed
as a matrix G = {g;;}’=}"7,, where n is the number of
genes, and m is the number of experiments per gene. These
experiments correspond to the state of the gene under differ-
ent conditions or at different time points. The goal now is
finding an optimal order of genes such that genes with simi-
lar expression patterns are close in this order. Implicit in this
definition of the problem is a notion of “distance” among
genes. A number of distance measures have been proposed
in the literature. For example, centered Pearson correlation
has been used by [19]. Other correlation measures such as
Kendall’s 7 correlation or Spearman Rank correlation can
be used as well. In this work we have considered a sim-
ple distance metric: the Euclidean distance. As usual, this

metric is defined as D][g;, g;] \/Zk gk — gir)? . At
any rate, notice that the methodology presented in this work
does not rely on a particular choice of distance measure.

Once a distance measure has been defined, and matrix
D has been computed, several approaches can be used to
find an adequate gene order. For example, a hierarchical
clustering algorithm can be used in the first place. A popu-
lar approach for doing this clustering is arranging all genes
in a list of singletons S; = {g;}, 1 < i < n, and itera-
tively merge the two “closest” groups until only one group
remains. The order in which these groups are joined de-
termines the topology of the tree. Common methods for
measuring the distance ¢(.S, S’) among groups .S and S’ are
the single-link, average-link, and complete-link (see [12].)

After having obtained a hierarchical clustering, a gene
ordering can be found in different ways. On one hand, in-
ternal nodes can be flipped so as to obtain a good ordering
consistent with the tree topology [4]. [6] have proposed a
polynomial algorithm for finding the best of such orderings
for a TSP-like distance measure (the optimality criterion is
minimizing the sum of distances between adjacent genes in
the sequence,) given the hierarchical clustering structure.
This TSP-like optimality criterion has been also used by
[14] in the context of a self-organizing map algorithm, and
by [19] in the context of a genetic algorithm. This simple
optimality criterion can serve as a first approximation to the
best ordering, but it is not capable of grasping the global
aspect of the resulting sequence as shown below.

3. Memetic Algorithms

In this section we will discuss the implementation of
the MA. The MA is a population-based algorithm that uses
analogies to natural, biological and genetic concepts, very
similar to a Genetic Algorithm (GA). The ‘Memetic’ termi-
nology refers to ‘memes’ [9], or portions of cultural infor-
mation that can be transmitted among the individuals of a
population. In other words the MAs share characteristics of
genetic evolution and cultural evolution. These algorithms

are also known as ‘Local Search GA’ or ‘Hybrid GA’. The
MA employed in this work has some features that increases
its performance. Among them, we should cite the hierarchi-
cal population structure, multiple population model, and a
pairwise-type local search.

3.1 The Fitness Function

The fitness function plays an important role in the evolu-
tionary process, by determining the quality of an individual.
Therefore, it must be strongly attached to the characteristics
wanted in high-quality solutions. For the Gene Ordering
problem, a good solution will have similar genes grouped
together, in clusters. As mentioned in the previous section,
the most simple is to calculate the total distance between
adjacent genes, similarly to what is done in the Traveling
Salesman Problem when one tries to minimize the total dis-
tance. Let w7 = (1, 7o, - - -, 7,) be the order of the n genes
in a given solution. Then, the total distance between adja-
cent genes can be described as the Y7—' D[m;, 7 11].

A drawback of this objective function is that, since it
only uses information of adjacent genes, it has a very nar-
row vision of the solution. This makes some solutions,
where genes are grouped in small disjoint sets, be classi-
fied as very good. For a better grouping of the genes, a
wider vision is necessary. The use of ‘moving windows’
is a better choice in this case. The total distance becomes
a two-term sum. The first one sums up the distances be-
tween the window’s central gene and all others within the
window’s length. The second term sums up those partial
distances as it moves the window along the entire sequence.
This function can be represented as:

min(l+sy,n)

DS

=1 i=max(l—s,1)

total gis (7 Dimy, 73] (D

where 2s,, + 1 is the window size (the number of genes
involved in each partial distance calculation.) The use of
such function gives higher ratings to solutions where genes
are grouped in larger sets, with few discontinuities between
them. Nevertheless, the distance between any two genes
within the window has the same weight on the objective
function value. This is not a good feature, since intuitively,
the weight for closer genes should be higher than for farther
ones. This variance of weight can be achieved by adding a
term multiplying the distance, making the total distance be
calculated as:

min(l+sy,n)

D S

I=1 i=max(l—Sw,1)

total gise (m Sw — |l — 4| +1)D[my, ;]
(2)

This function returned the best results and thus was used

to evaluate the quality of the solutions in the rest of this

Leader \

Cluster |\

Supporter

Figure 1. Diagram of the population structure.

work. Experiments focusing on the effect of the window
size indicate that a size of window between s,, = 5% and
sw = 10% of the instance size is a good tradeoff between
solution quality and computational cost [7]. It should be
also emphasized that although the use of the ‘moving win-
dows’ function was a major breakthrough, the correct ad-
justment of the MA also played an important role. If other
methods utilized the same function, the results should also
be good, but the extensive testing on local search techniques
and crossover strategies were determinant for the quality of
the results found.

3.2 Population Structure

The use of hierarchically structured populations boosts
the performance of the GA/MA (see [13].) There are two
aspects that should be noticed. First, the placement of the
individuals in the population structure according to their fit-
ness. And second, a well-tailored selection mechanism that
selects pairs of parents for recombination according to their
position in the population. In our approach, the popula-
tion is organized following a complete ternary tree struc-
ture. In contrast with a non-structured population, the com-
plete ternary tree can also be understood as a set of overlap-
ping 4-individual sub-populations (that we will refer to as
clusters.)

As shown in Fig. 1, each cluster consists of one leader
and three supporter individuals. Any leader individual in an
intermediate layer has both leader and supporter roles. The
leader individual always contains the best solution of all in-
dividuals in the cluster. This relation defines the population
hierarchy. The number of individuals in the population is
equal to the number of nodes in the complete ternary tree,
i.e. we need 13 individuals to make a ternary tree with 3 lev-
els, 40 individuals to have 4 levels, and so on. The general
equation is (3" — 1)/2, where n is the number of levels.

The choice of the ternary tree structure was based mainly
on empirical aspects. The first is motivated by the fact that
any hierarchical tree behaves like a set of overlapping pop-
ulations, as said before. Therefore, the dynamics is similar

to four populations evolving in parallel - each cluster acts
as an independent population - and exchanging individu-
als at a given rate. This individual exchange comes as a
consequence of the tree re-structuring phase, carried out to
maintain the hierarchical consistence.

A binary tree population would be formed by 3-
individual clusters only, with only two recombinations pos-
sibilities. This would degrade the ‘multiple population’
character of the tree structure. Trees with a greater order -
quaternary or more - increase the multiple population char-
acter, but initial tests indicated that the quality does not im-
prove proportionally and moreover, the number of individ-
uals rapidly jumps to prohibiting levels in terms of compu-
tational effort requirements. The best trade-off points to the
selected ternary tree structure (see [13].)

3.3 Representation and Operators

The representation chosen for the Gene Ordering prob-
lem takes some ideas from hierarchical clustering. To be
precise, solutions are represented as a binary tree whose
leaves are the genes. By doing so, solutions are endowed
with extra information regarding the level of relationship
among genes, information that would be missing in other
representations that only concentrated on the actual leaf or-
der (e.g., permutations). It is pursued to have the MA ex-
ploiting this information, evolving sensible hierarchies of
genes. This way, reproductive operators such as crossover
and mutation can be less disruptive.

Selection is based on the position of the individuals in the
ternary tree. We adopted the restriction that recombination
can only be made between a leader and one of its supporters
within the same cluster. The recombination procedure (the
Prune-Delete-Graft operator, check [7]) thus selects any
leader uniformly at random and then it chooses - also uni-
formly at random - one of the three supporters. Indirectly,
this recombination is also fitness-biased, since individuals
situated at the upper nodes are better than the ones at the
lower nodes. Therefore, it is unlikely that high-quality indi-
viduals recombine with low-quality one, although it might
happen a few times.

The number of new individuals created every generation
is equal to the number of individuals present in the popula-
tion. This crossover rate, apparently high, is due to the off-
spring acceptance policy. The acceptance rule makes sev-
eral new individuals be discarded. The acceptance of new
solutions will be later discussed (see Subsection 3.5.) As
to mutation, it is based on gene-sequence flip. A subtree is
selected uniformly at random and the entire sequence be-
longing to it is flipped. This mutation preserves the gene
grouping inside the subtree, thus creating very little noise.
The tree structure is also flipped, to keep consistency with
the gene sequence change

3.4 Local Search

The local search in this problem plays a ‘fine-tune’ role.
While the recombination and mutation operators will be
successful in finding the overall aspect of the sequence, sub-
tle changes are usually out of reach of the genetic operators.
For instance, if a given gene sequence can only be improved
by a single swap of genes, the genetic operators will prob-
ably not find such a swap. Even if they are successful in
swapping the genes, this operation will probably create too
much noise in the other parts of the chromosome, erasing
any chances for improvement. In such cases, a local search
is the best choice for such fine-tuning movements. Gener-
ally, local searches utilize neighborhoods definitions to de-
termine which movements will be tested.

A somewhat common neighborhood is the all-pairs. In
our case, it should be equivalent to test all possible posi-
tion swaps for every gene, i.e, for each gene, try to swap
its position with all other ones, keeping the movements that
improve the fitness. This local search turns out to be very
computationally expensive since the evaluation of the fit-
ness is costly. We thus needed a smaller neighborhood.
The lightest swap local search type is the pairwise inter-
change, which only tests pairs of adjacent genes for swap.
This neighborhood reduction results in a reasonable com-
putational cost, with an acceptable improvement in terms of
solution quality.

The other local search implemented acts at the cluster-
ing tree structure level, by inverting the branches of every
subtree present in the solution, much like it is done dur-
ing mutation. Such an inversion is a good choice to make
radical changes in the chromosome without loosing infor-
mation about the gene grouping. As a matter of fact, this
local search is very successful in joining together separated
groups that contain similar genes. The recombination oper-
ator could do the same job, but given its stochastic nature,
it would require several trials to obtain a successful move,
and depending on the size of the instance, such a success
move could take simply too long to be achieved. Both local
searches are applied once or twice, depending on whether
or not in the first pass the solution was improved, and se-
quentially. The branch-inversion local search is applied on
the initial solution and the resulting individual goes through
the gene-swap local search.

Another important matter is to decide which individuals
should go through local search. In the Gene Ordering prob-
lem, for instance, the application of local search on every
new individual is simply too costly and the algorithm wastes
a lot of time optimizing individuals that are not worth it.
In our implementation, the application of the local search
is on the entire population, but only after its convergence.
This reduces the number of local searches and guarantees
that most individuals are promising, since the population

must have evolved for many generations before converging.
Moreover, we noticed that when the population converges,
the individuals are similar, but not equal, thus validating the
application of the local search on all of them. The conver-
gence criterion is discussed in next subsection.

3.5 Offspring Insertion into the Population

Every time a new offspring is created it is tested for in-
sertion into the population. In this work, the acceptance of
the new individuals will follow two rules:

e The offspring is inserted into the population replacing
the supporter that took part in the recombination that
generated it.

e The replacement occurs only if the fitness of the new
individual is better than the supporter.

These acceptance rules are very restrictive and cause a
quick loss of diversity among the population. Neverthe-
less, the impact on the MA of this scheme was noticeable,
making the algorithm reach much better solutions using less
CPU time. After each generation the population is restruc-
tured to maintain the hierarchy relation among the individ-
uals. Such hierarchy states that the fitness of the leader of
a cluster must be lower than the fitness of the leader of the
cluster just above it. The adjustment is done comparing the
supporters of each cluster with their leader. If any supporter
is found to be better than its respective leader, they swap
their place.

It must be emphasized that this scheme must be used
together with a check procedure for premature population
convergence, in order not to waste CPU time. The check
procedure implemented verifies the number of generations
without improvement of the incumbent solution. If more
than 200 generations have passed and no improvement was
obtained, we conclude that the population has converged
and apply local search on all individuals. Moreover, the lo-
cal search is also carried out every time a new incumbent
solution is found through recombination/mutation. Such
an event signalizes a new starting point, where the appli-
cation of a local search could improve that incumbent so-
lution even more. In this second case, it is also very likely
that the rest of the population is well-fitted too, since it also
usually requires several generations to find, just by recom-
bination and mutation, a better solution than the incumbent,
especially if the incumbent has already gone through at least
one local search process.

4. Parallelization Scheme

The performance if the MA is strongly dependent on the
two local searches defined. Both of them require n eval-
uations of the individual, where 7 is the number of genes.

Since each evaluation is O(kn), where k is the size of the
window, we have a final complexity of O(kn?). This is
extremely time-consuming considering the sizes of the in-
stances used in this work. Actually, preliminary tests in-
dicated that the local search was responsible for over 90%
of the total CPU time during the search process, making
it the key candidate for parallelization. This has been pre-
cisely the approach used in this work, performing several
local searches in parallel by distributing them over a net-
work of computers. The parallelization of other operators -
like selection, recombination or mutation - is not interesting
since they consume a negligible CPU time compared to the
local search.

The distribution of the local search effort is simple.
It employs a canonical master-slave architecture, with the
master machine controlling the MA flow, assigning the pro-
cesses to the slave-machines and receiving the optimized
individuals that are sent by the slaves. Since the distribu-
tion routine was implemented using Java Threads, the sock-
ets control, object serialization, etc., are directly managed
by the Java system, thus simplifying the programming task.
Overall traffic through the network is minimized because
only the individual’s chromosome is transferred. The lo-
cal search routine and the instances are locally accessed by
each machine, producing a lower overhead communication.

As said in the previous section, the local search phase
takes place only when the population has converged, i.e.,
when all individuals present in the population are well-
fitted. The optimization phase starts by putting all the in-
dividuals in a request queue, and each individual is sent to
the next slave that is idle, one each time, through the cor-
respondent socket. The sockets are opened at the first time
the local search is called, and are not closed until the algo-
rithm ends. When a slave finishes its job, it returns the re-
sulting individual to the master machine through the same
socket, which puts it in a response queue. When the request
queue is empty and the response queue is complete, the lo-
cal search phase ends and the MA continues. That means
the next generation begins only when all the individuals
have gone through local search and were received back by
the master machine, in a 100%-synchronous master-slave
architecture.

It must be noted that this parallelization is purely com-
putational, and does not affect the behavior of the algorithm
since local search is deterministic. This implies that the
classic speedup measure can be used to assess the effects
of the parallelization. This contrasts with other approaches
for parallelizing evolutionary algorithms such as using mul-
tiple populations distributed over a network, with migrating
individuals. In this latter case the behavior of the parallel al-
gorithm would be clearly different from its sequential coun-
terpart, and hence the classical measure can lead to anoma-
lous results such as super-linear speedups [1].

Master machine Network
Socket 1
sty 0
o = Socket 2
: pELLS
=
£ " Socket 3
: <——>
g bz Slave 3
@ g o o
p o 0
=
S ‘\\
g i Socket &

Figure 2. Master-Slave architecture employed
to distribute the local search effort.

5. Computational Results

The computational tests evaluated the performance of the
master-slave architecture, as well as the quality of the final
solutions obtained. The experiments were realized using a
Java implementation of the MA (build 1.4.0-b92). The al-
gorithm was run on a network of SUN Workstations (Ul-
traSparc lii — 440Mhz, 256 Mb RAM, 48 Gb de HDD,)
communicating through a 100-Mbit, Ethernet network, and
running under UNIX (Solaris 2.8) operating system. Four
instances were tested. These are the following:

e HERPES: this data set is taken from [17]. It comprises
expression levels for 106 genes (21 experiments per
gene.) These data were used to describe Kaposi’s
sarcoma-associated herpes virus gene expression dur-
ing latency and after the induction of lytic replication.

e LYMPH: this data set is taken from [2]. It comprises
gene expression levels for 380 genes (19 experiments
per gene) corresponding to selectively expressed
genes in diffuse large B-cell lymphoma.

e FIBRO: this data set is taken from [16]. It comprises
expression levels for 517 genes (18 experiments
per gene) corresponding to the response of human
fibroblasts to serum.

e YEAST: this data set is taken from [4], which in
turn extracted it from [11]. It comprises expression
levels for 979 genes (79 experiments per gene) known

Table 1. CPU time utilized in the MA, CPU
percentage required to apply local search
(LS), and theoretically achievable asymptot-
ical speedup.

CPUtime (s) LS % max. speedup

HERPES 106 66.22% 2.875
LYMPH 380 88.63% 8.794
FIBRO 517 91.42% 11.658
YEAST 979 95.72% 23.373

to participate in some complex creation in Yeast
cell-cycle.

These instances cover a wide range of sizes, and allows
testing the algorithm in different optimizations scenarios.
In each case, the initial population of the MA has been
fed with the solutions provided by the three clustering al-
gorithms mentioned in Section 2. The tests were carried out
using one up to 13 machines as slaves, which is the number
of individuals in the population. The performance is mea-
sured in two ways. The first is the speed increment itself, in
terms of speedup. The second is the quality of the final solu-
tion obtained, in terms of improvement over the sequential
approach result with the same CPU time.

First, we show in Table 1, the instances’ characteristics,
the CPU time utilized for them and also the percentage of
this time that is devoted to local search in a sequential run.
This last information is relevant because the MA distributes
the local search to the slaves, and the larger this percentage,
the greater the theoretical speedup achievable. This theoret-
ical speedup can be computed assuming no communication
time, and infinite processors using the well-known formula:

max. speedup = L 3)
L—p
where p is the percentage of the CPU time that can be par-
allelized (assumed to be infinitely divisible for distribution
purposes.) Of course this is an overoptimistic estimation,
but it can provide a first bound on the achievable results.

The times allotted to each instances are roughly propor-
tional to n?, where n is the number of genes, due to the
growth trend of the local search cost. Notice the increas-
ing percentage of CPU time devoted to local search as the
number of genes increase.

The communication time between machines is very low.
For the larger instance it is less than one second. That is due
to the characteristics of the network and also to the amount
of data navigating in the network. As only individuals are
transported, the maximum size of a package sent from one

Table 2. Description of the slaves’ work load.
As more slaves are used, each slave becomes
responsible for the optimization of less indi-
viduals, increasing the theoretical maximum
speedup value of local search (LS).

proc # individuals per proc (D) w(m)
I {13} 1.000
2 (6,7} 1.857
3 {4,4,5) 2.600
4 (3,3,3,4} 3.250
5 {2,2,3,3,3) 4.333
7 {1,2,2,2,2,2,2} 6.500
13 {1,1,1,1,1,1,1, 1,1, 1,1, 1,1} 13.000

machine to another is around 8KB - a YEAST-type individ-
ual with 979 genes, whose chromosome has 1957 positions,
each of them represented by an integer-type value (32-bit).
Next we present in Table 2 the relation between the num-
ber of machines and the number of individuals theoretically
optimized by each one of them. The resulting theoretical
speedup can then be calculated using the following formula:

B 1
~ 1—p+p/w(m)

where p is the percentage of computational time devoted to
local search, m is the number of machines, and 1/w(m) is
the maximum fraction of the local search effort assigned to
any machine (w(m) = mif()D) .) This later factor accounts
for the fact that the local search phase is not freely divisible,
but can only be subdivided in the application of local search
to isolated individuals. The actual values for w(m) can be
seen in Table 2.

Each configuration tested has a different maximum num-
ber of individuals evaluated by a machine. The testing of
such cases only, aims to check how the algorithm took ad-
vantage of the workload reduction when the number of ma-
chines increased. It is important to consider that the theo-
retical LS speedup is calculated assuming negligible com-
munication times, and more crucially, that all local searches
have the same computational cost. This later assumption
has turned out to be unrealistic, and hence a deviation from
this speedup is expected. Of course, the actual speedup will
be under these values due to the fact that there is a non-
parallelized portion of the algorithm (recall Equation (4)).

Figure 3 (left) shows the speedup increase for each in-
stance, illustrating these tests. The results are quite illustra-
tive to explain how parallel processing works. The smallest
instance has a very small speedup for two reasons: firstly,
local search is only a small fraction of the CPU time for this
instance, and hence the speedup cannot be very high (recall

speedup(m) 4)

5.5
FIBROBLAST

LYMPHOMA

speed-up
[

HERPES

0.5

of processors

FIBROBLAST

YEAST

LYMPHOMA

mean fitness improvement (%)
I

021 1
HERPES

2 3 4 5 7 13
of processors

Figure 3. (Left) Speedup results (averaged for ten runs) for the four instances tested. (Right) Mean

fitness improvement over the sequential algorithm.

Table 1); secondly, local search times rival with the com-
munication time between machines. In fact, when 13 com-
puters are utilized, the speedup even decreases due to the
communication overhead. The next two instances returned
expected results, with the speedup increasing smoothly up
to the 13-machine configuration. The 979-gene instance, on
the other hand, had a complex behavior. Its speedup results
were worse than the ones obtained by the 517-gene instance
for 7 and 13 machines despite the fact that local search takes
a larger portion of the CPU time. The reason for this behav-
ior is the different time required to apply local search to dif-
ferent individuals, as mentioned before. We verified that for
the largest instance, the difference between the local search
times required by two solutions might top 400%. For 7 and
13 individuals, such difference is very harmful, since the
master-machine waits until the last process was completed
to go on with the algorithm. This situation is very simi-
lar to those found in ‘bin-packing’-related problems: when
the “bins” (total time used by a slave to complete assigned
tasks) are large with respect to the size of “items” (individ-
ual times for each task) a rather balanced solution can be
found; as these quantities become closer, solutions tend to
be more unbalanced. Nevertheless, the speedup was con-
siderably good for up to five machines (these anomalies can
even be positive sometimes for this small number of pro-
cessors since more balanced workload distributions can be
achieved,) with a relative performance decrease for the last
two configurations only.

The second performance criterion was the improvement
of the final solution obtained by the parallel approaches over
the sequential one. The results are shown in Figure 3 (right).
Although the percentage values obtained may appear to be

small, the improvement is easily noticeable when we take
into account the visual aspect of the solutions. Further-
more, they are about 10% better than basic clustering algo-
rithms. Indeed, the MA did not find trouble in identifying
large clusters. Moreover, an important aspect of these solu-
tions is that the transition between different groups is very
smooth, a result derived from the fitness function utilized,
which penalizes rough transitions.

As expected, the improvement increases with the num-
ber of machines, except for the pathological cases of the
106-gene instance, which were already explained. The be-
havior of the curves is smoothly asymptotic, with few ups-
and-downs, what is a sign of algorithmic robustness. More-
over, it also indicates that the network is very reliable, with
efficient, fast communication between machines.

6. Conclusions

We have presented a memetic algorithm for finding the
best gene ordering in microarray data. The main features of
this MA are the use of a fitness function capturing global
properties of the gene arrangement, the utilization of a tree
representation of solutions, and the definition of ad-hoc op-
erators for manipulating this representation. Two different
local search procedures have been used. As it has been
shown in Section 5, the local search phase can take up
to 95% of the computational time in a 979-gene instance.
Based on this finding, a master-slave parallelization model
of the algorithm has been proposed.

From the point of view of the quality of the results, the
MA provides solutions with a smooth visual appearance.

Focusing on the efficiency of the parallelization, the compu-
tational results have been encouraging, since good speedups
have been obtained with up to 5 processors. This good
speedup is coupled with a sustained improvement of the so-
lution quality on the basis of a constant computational time.
When more processors are used, the efficiency of the par-
allel model starts to drop, due to inherent unbalance in the
workload sent to the slaves. This suggests several lines for
future developments.

First of all, the use of larger populations, or even multi-
population MAs can be considered. By doing so, it would
be possible to achieve a more balanced distribution of tasks
among slaves, since there would be a finer granularity in the
parallelized portion of the MA. Additionally, and connected
to the use of multiple populations, it was mentioned in Sec-
tion 4 that an island-based distribution of a multi-population
MA (i.e., distributing populations in different processors) is
compatible with this master-slave parallelization model of
the local search phase. Furthermore, we have shown that
such island-based MAs can provide remarkable algorithmic
speedups [7]. Thus, we could think of having the com-
puter network organized in several groups of computers: in
each of these groups a computer would be in charge of run-
ning a population, and the remaining ones would serve as
slaves for the local search phase of this population. This
way, it would be possible to combine two levels of paral-
lelism, making a joint exploitation of the good speedups
of the master-slave model for a moderate number of pro-
cessors, and the diversified search performed by partially
isolated populations. We are currently conducting further
research in this line.

Acknowledgements

This work was partially supported by Spanish MCyT, and
FEDER under contract TIC2002-04498-C05-02, and by
Brazilian CNPq.

References

[1] E. Alba. Parallel evolutionary algorithms can achieve
super-linear performance. Information Processing Letters,
82(1):7-13, 2002.

[2] A. Alizadeh et al. Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature,
403:503-511, 2001.

[3] A. Arnone and B. Davidson. The hardwiring of develop-
ment: Organization and function of genomic regulatory sys-
tems. Development, 124:1851-1864, 1997.

[4] Z. Bar-Joseph, D. Gifford, and T. Jaakkola. Fast optimal
leaf ordering for hierarchical clustering. Bioinformatics,
17(1):22-29, 2001.

[5] A.Ben-Dor and Z. Yakhini. Clustering gene expression pat-
terns. In Proceedings of the ACM RECOMB’99, pages 33—
42, Lyon, France, 1999. ACM Press.

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

[18]

(19]

T. Biedl, B. Brejova, E. Demaine, A. Hamel, and T. Vinar.
Optimal arrangement of leaves in the tree representing hier-
archical clustering of gene expression data. Technical Re-
port 2001-14, University of Waterloo, 2001.

C. Cotta, A. Mendes, V. Garcia, P. Franca, and P. Moscato.
Applying memetic algorithms to the analysis of microarray
data. In G. Raidl et al., editors, Applications of Evolution-
ary Computing, volume 2611 of Lecture Notes in Computer
Science, pages 22-32. Springer-Verlag, Berlin, 2003.

C. Cotta and P. Moscato. A memetic-aided approach to
hierarchical clustering from distance matrices: Application
to gene expression clustering and phylogeny. Biosystems,
72(1-2):75-97, 2003.

R. Dawkins. The Selfish Gene. Clarendon Press, Oxford,
1976.

J. DeRisi, V. Lyer, and P. Brown. Exploring the metabolic
and genetic control of gene expression on a genomic scale.
Science, 278:680-686, 1997.

M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster
analysis and display of genome-wide expression patterns.
Proceedings of the National Academy of Sciences of the
USA, 95:14863-14868, 1998.

D. Fasulo. An analysis of recent work on clustering algo-
rithms. Technical Report UW-CSEO1-03-02, University of
Washington, 1999.

P. Franga, A. Mendes, and P. Moscato. A memetic algorithm
for the total tardiness single machine scheduling problem.
European Journal of Operational Research, 132(1):224—
242,2001.

L. Gomes, F. von Zuben, and P. Moscato. Ordering mi-
croarray gene expression data using a self-organising neu-
ral network. In A. Lotfi, J. Garibaldi, and R. John, editors,
Proceedings of the 4th International Conference on Recent
Advances in Soft Computing, pages 307-313, Nottingham,
UK, 2002. The Nottingham Trent University.

E. Hartuv, A. Schmitt, J. Lange, S. Meier-Ewert,
H. Lehrach, and R. Shamir. An algorithm for clustering cD-
NAs for gene expression analysis. In Proceedings of the
ACM RECOMB’99, pages 188-197, Lyon, France, 1999.
ACM Press.

V. Iyer et al. The transcriptional program in the response of
human fibroblasts to serum. Science, 283:83—-87, 1999.

R. Jenner, M. Alba, C. Boshoff, and P. Kellam. Kaposi’s
sarcoma-associated herpesvirus latent and lytic gene ex-
pression as revealed by DNA arrays. Journal of Virology,
75:891-902, 2001.

P. Moscato and C. Cotta. A gentle introduction to memetic
algorithms. In F. Glover and G. Kochenberger, editors,
Handbook of Metaheuristics, pages 105-144. Kluwer Aca-
demic Publishers, Boston MA, 2003.

H.-K. Tsai, J.-M. Yang, and C.-Y. Kao. Applying genetic
algorithms to finding the optimal gene order in displaying
the microarray data. In W. Langdon et al., editors, Pro-
ceedings of the 2002 Genetic and Evolutionary Computa-
tion Conference, pages 610-617, San Francisco, CA, 2002.
Morgan Kaufmann.

