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Abstract
 
 

 

In this paper we introduce TrGen, a traffic 

generation environment specifically designed to 

interact with simulators of interconnection networks 

for parallel and distributed systems. This environment 

is able to generate synthetic traffic, and actual traffic 

taken from traces (of previous program runs). It can 

also cooperate with complete-system simulators to 

assemble a complete execution-driven simulation 

arrangement. 

 

1. Introduction 
 
Design of interconnection networks is a topic of 

great interest in the field of parallel computer 

architecture. Evaluations of architectural proposals 

need to be carried out during all design stages, 

including the most preliminary ones. Simple, 

functional simulators help us assessing routing 

algorithms, deadlock avoidance mechanisms, fault-

tolerance, and so on. These simulators do not 

incorporate all the details required in an actual, 

hardware-implemented system; however, the most 

relevant aspects of the design are there, allowing us to 

check the viability of a proposal—or the lack of it. In 
subsequent stages, more detailed simulators (such as 

SICOSYS [12]) or even hardware prototypes can be 

used to refine the design. 

As important as a good model of the interconnection 

subsystem is a good characterization of the traffic it 

will deal with. In the same way processors are 

designed taking into account the programs that will run 

on them, interconnection subsystems must be evaluated 

using workloads (interchanges of packets) as realistic 

as possible. Ideally, this traffic should reflect the actual 

way parallel and distributed applications communicate 
[6]. How should this traffic be? That is a non-trivial 

                                                        
 
This work has been done with the support of the Ministerio de 

Educación y Ciencia, Spain (TIN2004-07440-C02-02) and of the 

Diputación Foral de Gipuzkoa (OF-846/2004).  

Contact author: miguel@si.ehu.es. 

question. Interconnection networks (IN) may work 
with very different traffic patterns, depending on the 

kind of system it forms part of. Some examples: 

 

- An IN for a small-size SMP (symmetric 

multiprocessor) 

- An IN for a large-scale CC-NUMA (cache coherent 

non uniform memory access) multiprocessor 

- An IN for an even larger MPP (massively parallel 

processor) 

- An IN for distributed applications based on web 

services 
 

In fact, market response has been different for each 

of these needs. We can even go further: what we 

demand from the network is different when running 

master-slave applications with infrequent interchange 

of long messages and when running a fine-grained 

scientific application where messages are short but 

interchanged very often. In the first case we need a 

high throughput, while in the second latency is the 

main constraint. 

For all these reasons, any environment for 

simulation and evaluation of interconnection network 
designs must have a good method to generate traffic. 

Many techniques could be used for that purpose: 

 

1. Synthetic traffic patterns, such as uniform traffic, 

matrix transpose, hot-spot, etc. They are very 

simple to implement in a simulator, and in many 

cases they emulate the behavior of typical CS&E 

(computational science & engineering) 

applications. Very often they are criticized because 

they are not “representative enough” of actual 

workloads; however, in our experience, they are 
extremely useful during initial design stages.  

2. Traces from actual applications. The target 

application is run on an existing computer, and 

those traces are used to “feed” the simulation of a 

different network. This technique is restricted by 

the size of the computer used to obtain the traces. 

3. Execution-driven simulation. The whole system, 

compute nodes and interconnection subsystem, is 



 

 

 

simulated. Nodes actually run the target 

application, so they inject and consume traffic 

interchanged via the network. This is, obviously, 

the most realistic way of doing the simulation. 

However, it can be prohibitively slow, and the size 

of the system to simulate has to be necessarily 
small. 

 

An additional question may arise: which 

application is representative? Some parallel computers 

are built with a single application in mind (maybe a 

limited set of related applications). However, from a 

vendor’s position, it is more interesting to build 

general-purpose computers, able to deal not only with 

CS&E applications, but also with commercial 

applications such as OLTP (on line transaction 

processing). We know that, from the point of view of 

the “pressure” exerted over the network, commercial 
applications are very different from CS&E 

applications. 

In this paper we introduce TrGen, an environment 

to generate traffic for interconnection networks. Using 

TrGen, researchers can focus on the modeling and 

simulation of networks, using this tool to test their 

designs under a variety of traffic sources. Section 2 

describes the general structure of TrGen, and the way it 

communicates with simulators. The next two sections 

describe some implementation details of TrGen for 

synthetic and trace-based traffic (Section 3) and for 
execution-driven simulation (Section 4). Section 5 

reviews some related work. Finally, Section 6 contains 

the conclusions of this paper, and indicates some lines 

of future work. 
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Fig. 1. Model of TrGen. A common API allows for 

the connection of different simulators with a variety 
of traffic sources. 

 

2. TrGen Design and API 
 

2.1. Design  
 

The design of TrGen follows the scheme of Fig. 1. 

At the right side of the picture we have represented 

different simulators for interconnection networks; the 

first two are concrete, existing systems (FSIN and 

SICOSYS), while the remaining three are generic. At 

the left we represent the sources of traffic: totally 

synthetic, traces (obtained in advance) and execution-

driven traffic.  

Independently of the characteristics of the traffic 
source, a common API allows the simulators to 

interchange packets with it. This API allows for the 

completion of three basic operations: 

 

1. Initialization. Selection of traffic pattern, and of its 

parameters. These parameters can vary 

substantially from case to case: a trace file to open, 

a mean of a random number generation function, an 

IP address of a traffic server connected to a full 

system simulator, and so on. 

2. Requests of traffic to be injected into the network 

nodes. 
3. Notifications of arrivals of packets from the 

network. This part is crucial when using execution-

driven simulation, an also when traffic is reactive: 

the reception of a packet triggers the generation of 

new ones. 

 

2.2. API 
 

Current version of TrGen’s API is very simple, so 
in the future it will be expanded to add flexibility. 

Right now, these are the available functions: 

 
void source_new(source_t * s); 

void source_init(source_t s, long clock, 

source_e type, ...); 

 

Functions source_new() and source_init() create 

and initialize a traffic source. Relevant parameters are 

the traffic source s and the type of traffic to be 

generated, type. Currently available traffic types are 

STREAMED for synthetic traffic, and FILED for 

trace-based traffic. Function source_init() requires a 

collection of additional parameters, whose number and 

nature depend on the traffic type. 

 
t_packet * source_next(source_t s, long * 

npackets); 

 

This function returns a vector of packets to be 

injected in the current simulation cycle, as well as the 

length of that vector. Parameter s selects the traffic 

source. 

 
void source_notify(source_t s, t_packet 

packet); 

 

This function allows the network (simulator) to 

inform the source s about the delivery of a packet after 



 

 

 

it has traversed the network. This function is important 

when there are causal relationships between packets. 

 
bool_t source_finished(source_t s); 

 

This function tells us whether or not the source s 

has more traffic to inject. A generation finishes its 

work when a certain condition that depends on the 

traffic type is reached. Examples are: end of trace file, 

maximum number of generated packets reached, 

maximum number of simulation cycles reached, etc. 

The current API is biased towards time-driven 

simulation. In the future we will expand it to ease 

interoperability with event-driven simulators. 

 

3. Synthetic and Trace-Based Traffic 
 

3.1 Synthetic Traffic 

 

This class of traffic is the easiest to generate. It 

comes characterized by three distributions: temporal, 

spatial and packet-size. 

 

1. The temporal distribution determines the intervals 

between packet generations, and their correlations. 

2. The spatial distribution determines the packet 
destination nodes. 

3. The packet-size distribution determines the size of 

the generated packets. 

 

As an example, in the initial stages of the 

evaluation of a network design, it is common to use 

synthetic traffic with a Bernoulli temporal distribution, 

a uniform spatial distribution (or another one with a 

very regular pattern), and a constant packet size. TrGen 

allows, though, the specification of very diverse traffic 

sources, to simulate a variety of applications. The right 
selection of distributions (or parameters for a given 

distribution) allows the evaluation of different aspects 

of the network. 

TrGen uses the “stream” concept to define a source 

of synthetic traffic. Each stream has a source, a spatial 

distribution, a temporal distribution and a packet-size 

distribution. Each source node may have several 

streams associated to it, to fine-tune the traffic 

behavior. Each distribution can be parameterized, and 

the collection of available distributions is extensible. In 

the current version of TrGen, these are the available 

ones: 
 

Temporal: 

- Bernoulli 

- Constant bursts 

- Markov 

Spatial: 

- Uniform 

- Distributed 

- Zipf 

- Hotspot 

- Constant: transpose, butterfly, perfect-shuffle, 
inverse, etc. 

Packet-size: 

- Constant 

- Uniform 

- Polynomial 

 

These distributions have been frequently described 

and discussed in the literature. For more information, 

readers can check [2,3]. 

 

3.2. Traces 

 

Synthetic sources provide very useful insights into 

a network’s potential. However, obtained performance 

metrics can be unrealistic: actual applications do not 
produce random traffic patterns, so it is difficult to 

model them with the sort of synthetic sources 

described above. Application processes often 

communicate following a precise order, at precise 

moments. Additionally, it is common to find 

applications in which the reception of a message 

triggers the delivery of a new one. Therefore, the 

traffic pattern includes causal relationships between the 

reception and the sending of messages between 

processes. With TrGen it is possible to use traces 

obtained from the execution of actual applications to 
perform simulations that closely follows the traffic 

patterns explicitly defined in the traces, in terms of 

spatial distributions, packet sizes and causal 

relationships. 

We use a modified version of MPICH (one of the 

most popular implementations of MPI [5]) to obtain 

trace files usable with TrGen. MPICH includes an 

easy-to-use mechanism to obtain trace files from 

running applications. However, these traces are not 

useful for our purposes because collective operations 

(such as barriers, broadcasts, reductions, etc.) appear as 

such in the trace files, without reflecting the actual 
interchange of packets necessary to implement those 

operations in the network—for networks without 

native support for collective operations. Internally, 

MPICH implements collective operations with point-

to-point operations (if no better alternative is 

available). Our changes in MPICH consist of making 

those point-to-point operations visible, registering 

them in the trace files instead of the corresponding 

collective operation.  



 

 

 

Trace files are slightly pre-processed before using 

them with TrGen. Only a few, relevant fields are 

selected (event type, source node, destination node, 

message size) and organized in a format more suitable 

for TrGen. It would be possible to use this format to 

feed simulations with traces obtained from sources 
different to MPICH, a network sniffer being a good 

example, just building the right pre-processor. 

Part of the pre-processing is the elimination of 

event timestamps, however keeping temporal order and 

causal relationships. This is because timestamps 

strongly depend on node and network characteristics. 

Without timing information, when we simulate a 

network using a trace file, we submit the network to 

the maximum pressure, as if infinitely fast processors 

were using it, and we force the network to be the 
running application’s bottleneck—and measure how 

well it performs. We plan to enhance TrGen to take 

into account node (CPU) speed, scaling the temporal 

distance between events to reflect this speed. 
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Fig. 2. Data structures used to keep event causality in trace-based traffic sources. Node 0 is waiting for the 
reception of a packet from node 1, that will trigger sending a new, response packet. After that, node 0 will wait for 
the reception of a packet from node 15; however, this packet has already been received, because it is in the list of 
pending notifications, so TrGen will deliver immediately the message sent to node 15. Situation is similar at node 
15: events “R 1” and “R 0” will stop the generation of messages at that node, until the corresponding notifications 

arrive, while event “R 2” will be consumed immediately. 
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Fig. 3. Interactions of the different elements involved in an execution-driven simulation: compute nodes, SIMICS 
central, TrGen and an interconnection network simulator. 
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Fig. 4. Structure of message interchange, from their creation at a parallel application (running in a simulated 

compute node) until their arrival to the computer running the interconnection network simulator. 
 
 

Figure 2 represents how trace-based traffic works. 

Each node of the simulated applications has an event 

queue. This queue is fed from the trace file. A packet is 

sent to the network when an “S” (send) event is in the 

queue’s head. If a “R” (receive) event is in the head, it is 

necessary to access the pending notifications queue, to 

check if the expected event has happened already; 

otherwise, processing of events is blocked until the 
network notifies the awaited reception. The pending 

notifications queue at each node, thus, stores reception 

events that arrive before the application requests them, and 

it is crucial to keep event causality. 

Traces obtained from one system are often used to 

evaluate via simulation the performance potential of other 

system. However, this approach has some drawbacks. In 

the context of interconnection network design and 

evaluation, traces obtained with the same collection of 

nodes running a parallel application with IN “A” and IN 

“B” may be different, because properties of “A” and “B” 

are different and those properties have an influence on the 
way nodes interchange messages. For this reason, 

performance results obtained with traces may not be 

accurate [4]. 

 

4. Execution-Driven Traffic Generation 
 

4.1 General Schema 

 

An execution-driven simulation requires the detailed 

simulation of the behavior of compute nodes as well as the 
interconnection network. The desired application will run 

on top of this simulated system. Simulation will be as 

realistic as detailed is the description of each component. 

The price to pay is an enormous slowdown: execution 

time will be several orders of magnitude slower than that 

of a real system. 

Currently, the simulation of the compute nodes that run 

parallel applications is carried out using Virtutech’s 

SIMICS [14]. It allows the detailed simulation of a range 

of complete hardware systems on top of a consumer PC. 

For example, we could simulate a 4-way Sparc 
multiprocessor running the Solaris operating system (guest 

system) on top of an Intel-based PC with the Windows 

operating system (host system). For the simulation of the 

interconnection network we can select the simulator of our 

choice, using the TrGen interface. 

We are using SIMICS on a collection of PCs running 

the Linux operating system to simulate compute nodes 

based on x86 processors with 256 MB of RAM. Each of 

these nodes runs its part of a parallel application that 

generates messages for the remaining nodes. We can have 

several host PCs, each one simulating several guest PCs to 

reach a network as large as our resources allow.  
SIMICS includes a mechanism called SIMICS Central 

to synchronize all the guest nodes. In fact, it behaves as a 

simulated LAN, so it allows guests to communicate. We 

keep the synchronization function of SIMICS Central, but 

use a separate system (an interconnection network 

simulator connected via TrGen) for communication 

purposes: messages generated by a guest are intercepted 

and sent to TrGen which, in turn, handles them to the 

network simulator. Also, messages generated in the 

simulator are injected (via TrGen) to the destination guest. 

This interchange of messages is depicted in Figure 3. 
As we said before, guests (compute nodes) are SIMICS 

virtual machines that run as normal processes on a host 

computer. SIMICS Central acts as an Ethernet switch that 



 

 

 

also provides services such as ARP, BOOTP and DHCP. 

Moreover, SIMICS Central keeps all the guest nodes 

synchronized, thus allowing the simulation to run in a 

deterministic way. 

 

4.2. Implementation 
 

A fairly complex mechanism has been developed to 

redirect messages created by a running process (part of a 

parallel application running in simulated compute nodes) 

to the simulator of the interconnection network, and then 

back to the destination process. The two most important 

pieces are: 

 

- A module for SIMICS1 that implements (simulates) a 
PCI network adapter. This module manages all the 

messages exchanged by the parallel application 

running on the compute nodes. In fact, it is the 

interface with the (simulated) interconnection network. 

It has been written in C. 

- A Linux kernel driver that allows applications to 

access the new network adapter. We have written this 

driver following the guidelines provided in [1, 13]. It is 

the final responsible of writing/reading to/from the 

new network adapter, when applications request these 

operations via system calls. 

 
As we stated before, SIMICS Central is another 

important piece. Applications do not use the other PCI 

network adapter (the standard one, connected to Central) 

for traffic exchange, because the provided functionality 

(that of an Ethernet network) is not valid for our purposes. 

However, the synchronization of all the compute nodes is 

a requirement, and Central provides it. 

In our current setup, each host computer runs one or 

several instances of SIMICS, each one simulating a guest 

computer. Our choice of guest is a PC with 256 MB of 

RAM, an Intel x86 processor, a Voodoo 3 graphic adapter, 
and an IDE hard disk. For connectivity, a guest hast two 

Ethernet adapters connected to the PCI bus: one connected 

to SIMICS Central, the other one to TrGen. Obviously, all 

this hardware is simulated using SIMICS modules2. Each 

simulated computer runs under the RedHat 7.3 Linux 

operating system.  

When all guests are installed, configured and ready 

(with the O.S. running), we can install the parallel 

application of our choice, for example, any of the NAS 

Parallel Benchmarks [7]. When a process participating in a 

parallel application sends a MPI message to other process 

(running in a different guest) it uses the new network 
adapter. The driver that manages this device (running in 

kernel space) gets that message, and sends it to the 

network via writing in the registers and memory of the 

                                                        
1
 SIMICS allows the implementation of new devices via modules that 

extends the simulator’s capabilities. 
2
 All of them included in the SIMICS package, except for the network 

adapter that interacts with TrGen.  

network adapter. The adapter then redirects the message to 

TrGen. 

In a similar way, when the module that simulates the 

new network adapter gets a message from TrGen, injects it 

in the appropriate guest, again writing in the device’s 

memory and registers. It also triggers interrupts that are 
managed by de driver, which then delivers the message to 

the appropriate receiver process. 

Communication between the network adapter and 

TrGen can be performed in many different ways. We use a 

collection of TCP connections. TrGen acts as a bridge 

with the network simulator of our choice. This simulator 

must be able to incorporate all the mechanisms required 

from an interconnection network for a cluster or a 

multicomputer. 

Figure 4 represents all the interchange of messages 

(simulated and real) involved in the communication 

between compute nodes. 
 

5. Related Work 
 

Most network simulators include mechanisms for 

traffic generation. Interconnection network simulators 

such as SICOSYS [12] include internal mechanism for the 
generation of synthetic traffic. It is also possible to run this 

simulator jointly with RSIM [11] for execution-driven 

simulations, although this is done using some ad-hoc glue 

software. More general network simulators like OPNET 

[9] include sophisticated mechanisms for synthetic traffic 

generation, including the generation of traffic that 

accurately emulates typical Internet applications. Trace 

files have been extensively used for simulation; for 

example, in [10] a mechanism to integrate trace-driven 

simulations into NS [8] is described. 

As far as we know, in all cases traffic generation is 

performed internally, or attached to the simulator using an 
ad-hoc, non-standard API. The main advantage of TrGen 

is the definition of a unified API to access a set of very 

different mechanisms for feeding simulators. This feature 

allows researchers to focus in modeling its network, and 

also sets a fair mechanism to compare results obtained 

from different simulators. 

 

6. Conclusions and Future Work 
 

TrGen is a live project, still being actively developed. 

In this article we have stated that we are considering the 

integration of new functionality, and the improvement of 

those already implemented. Currently, the generation of 

synthetic traffic (with the above-mentioned 

characteristics) is fully functional. Capture, adaptation and 

generation of traffic based on traces is also functional. The 

generation of actual traffic using SIMICS is under test. 

We have tested the interoperability of TrGen with 
FSIN, a functional simulator developed in-house. Results 

are very satisfactory: TrGen greatly improves the 

spectrum of experiments that can be performed with FSIN, 



 

 

 

without a relevant increase in used resources (memory, 

CPU time)—compared with the reduced-functionality 

traffic generation routines built in FSIN. 

Currently, efforts of the development team focus in 

completing the parts of the design that are not ready yet, 

and in thoroughly testing the system. These are not, 
however, the only lines for future work. 

Traffic generation offers many possibilities, and TrGen 

is still in its infancy. We plan to increase the choice of 

available sources of synthetic traffic: spatial distributions 

with memory, reactive traffic patterns, traffic types for 

particular applications (such as FTP, WWW, POP, etc.), 

and spatial distributions based on node distance.  

Finally, in order to test the usefulness of TrGen, we 

need to integrate it with additional simulators. A short-

term plan is to integrate it with SICOSYS. Also, we plan 

to build TrGen-Lite, a lightweight version of TrGen (with 

reduced functionality) for particular simulation 
environments were resource consumption has to be kept as 

low as possible.  
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