
TrGen: a Traffic Generation System for Interconnection Network Simulators

F.J. Ridruejo, A. Gonzalez, J. Miguel-Alonso

Department of Computer Architecture and Technology, The University of the Basque Country

P.O. Box 649, 20080 San Sebastian – Spain

Abstract

In this paper we introduce TrGen, a traffic

generation environment specifically designed to

interact with simulators of interconnection networks

for parallel and distributed systems. This environment

is able to generate synthetic traffic, and actual traffic

taken from traces (of previous program runs). It can

also cooperate with complete-system simulators to

assemble a complete execution-driven simulation

arrangement.

1. Introduction

Design of interconnection networks is a topic of

great interest in the field of parallel computer

architecture. Evaluations of architectural proposals

need to be carried out during all design stages,

including the most preliminary ones. Simple,

functional simulators help us assessing routing

algorithms, deadlock avoidance mechanisms, fault-

tolerance, and so on. These simulators do not

incorporate all the details required in an actual,

hardware-implemented system; however, the most

relevant aspects of the design are there, allowing us to

check the viability of a proposal—or the lack of it. In
subsequent stages, more detailed simulators (such as

SICOSYS [12]) or even hardware prototypes can be

used to refine the design.

As important as a good model of the interconnection

subsystem is a good characterization of the traffic it

will deal with. In the same way processors are

designed taking into account the programs that will run

on them, interconnection subsystems must be evaluated

using workloads (interchanges of packets) as realistic

as possible. Ideally, this traffic should reflect the actual

way parallel and distributed applications communicate
[6]. How should this traffic be? That is a non-trivial

This work has been done with the support of the Ministerio de

Educación y Ciencia, Spain (TIN2004-07440-C02-02) and of the

Diputación Foral de Gipuzkoa (OF-846/2004).

Contact author: miguel@si.ehu.es.

question. Interconnection networks (IN) may work
with very different traffic patterns, depending on the

kind of system it forms part of. Some examples:

- An IN for a small-size SMP (symmetric

multiprocessor)

- An IN for a large-scale CC-NUMA (cache coherent

non uniform memory access) multiprocessor

- An IN for an even larger MPP (massively parallel

processor)

- An IN for distributed applications based on web

services

In fact, market response has been different for each

of these needs. We can even go further: what we

demand from the network is different when running

master-slave applications with infrequent interchange

of long messages and when running a fine-grained

scientific application where messages are short but

interchanged very often. In the first case we need a

high throughput, while in the second latency is the

main constraint.

For all these reasons, any environment for

simulation and evaluation of interconnection network
designs must have a good method to generate traffic.

Many techniques could be used for that purpose:

1. Synthetic traffic patterns, such as uniform traffic,

matrix transpose, hot-spot, etc. They are very

simple to implement in a simulator, and in many

cases they emulate the behavior of typical CS&E

(computational science & engineering)

applications. Very often they are criticized because

they are not “representative enough” of actual

workloads; however, in our experience, they are
extremely useful during initial design stages.

2. Traces from actual applications. The target

application is run on an existing computer, and

those traces are used to “feed” the simulation of a

different network. This technique is restricted by

the size of the computer used to obtain the traces.

3. Execution-driven simulation. The whole system,

compute nodes and interconnection subsystem, is

simulated. Nodes actually run the target

application, so they inject and consume traffic

interchanged via the network. This is, obviously,

the most realistic way of doing the simulation.

However, it can be prohibitively slow, and the size

of the system to simulate has to be necessarily
small.

An additional question may arise: which

application is representative? Some parallel computers

are built with a single application in mind (maybe a

limited set of related applications). However, from a

vendor’s position, it is more interesting to build

general-purpose computers, able to deal not only with

CS&E applications, but also with commercial

applications such as OLTP (on line transaction

processing). We know that, from the point of view of

the “pressure” exerted over the network, commercial
applications are very different from CS&E

applications.

In this paper we introduce TrGen, an environment

to generate traffic for interconnection networks. Using

TrGen, researchers can focus on the modeling and

simulation of networks, using this tool to test their

designs under a variety of traffic sources. Section 2

describes the general structure of TrGen, and the way it

communicates with simulators. The next two sections

describe some implementation details of TrGen for

synthetic and trace-based traffic (Section 3) and for
execution-driven simulation (Section 4). Section 5

reviews some related work. Finally, Section 6 contains

the conclusions of this paper, and indicates some lines

of future work.

Synthetic traffic

Traces

Execution-driven simulation

TrGen
API

Functional simulator

(FSIN)

Accurate-timing

simulator (SICOSYS)

VHDL simulator

Hardware prototype

Other evaluation tools
Other full system

simulators

Full system simulator

(SIMICS)

(Modified) profiling
libraries

Fig. 1. Model of TrGen. A common API allows for

the connection of different simulators with a variety
of traffic sources.

2. TrGen Design and API

2.1. Design

The design of TrGen follows the scheme of Fig. 1.

At the right side of the picture we have represented

different simulators for interconnection networks; the

first two are concrete, existing systems (FSIN and

SICOSYS), while the remaining three are generic. At

the left we represent the sources of traffic: totally

synthetic, traces (obtained in advance) and execution-

driven traffic.

Independently of the characteristics of the traffic
source, a common API allows the simulators to

interchange packets with it. This API allows for the

completion of three basic operations:

1. Initialization. Selection of traffic pattern, and of its

parameters. These parameters can vary

substantially from case to case: a trace file to open,

a mean of a random number generation function, an

IP address of a traffic server connected to a full

system simulator, and so on.

2. Requests of traffic to be injected into the network

nodes.
3. Notifications of arrivals of packets from the

network. This part is crucial when using execution-

driven simulation, an also when traffic is reactive:

the reception of a packet triggers the generation of

new ones.

2.2. API

Current version of TrGen’s API is very simple, so
in the future it will be expanded to add flexibility.

Right now, these are the available functions:

void source_new(source_t * s);

void source_init(source_t s, long clock,

source_e type, ...);

Functions source_new() and source_init() create

and initialize a traffic source. Relevant parameters are

the traffic source s and the type of traffic to be

generated, type. Currently available traffic types are

STREAMED for synthetic traffic, and FILED for

trace-based traffic. Function source_init() requires a

collection of additional parameters, whose number and

nature depend on the traffic type.

t_packet * source_next(source_t s, long *

npackets);

This function returns a vector of packets to be

injected in the current simulation cycle, as well as the

length of that vector. Parameter s selects the traffic

source.

void source_notify(source_t s, t_packet

packet);

This function allows the network (simulator) to

inform the source s about the delivery of a packet after

it has traversed the network. This function is important

when there are causal relationships between packets.

bool_t source_finished(source_t s);

This function tells us whether or not the source s

has more traffic to inject. A generation finishes its

work when a certain condition that depends on the

traffic type is reached. Examples are: end of trace file,

maximum number of generated packets reached,

maximum number of simulation cycles reached, etc.

The current API is biased towards time-driven

simulation. In the future we will expand it to ease

interoperability with event-driven simulators.

3. Synthetic and Trace-Based Traffic

3.1 Synthetic Traffic

This class of traffic is the easiest to generate. It

comes characterized by three distributions: temporal,

spatial and packet-size.

1. The temporal distribution determines the intervals

between packet generations, and their correlations.

2. The spatial distribution determines the packet
destination nodes.

3. The packet-size distribution determines the size of

the generated packets.

As an example, in the initial stages of the

evaluation of a network design, it is common to use

synthetic traffic with a Bernoulli temporal distribution,

a uniform spatial distribution (or another one with a

very regular pattern), and a constant packet size. TrGen

allows, though, the specification of very diverse traffic

sources, to simulate a variety of applications. The right
selection of distributions (or parameters for a given

distribution) allows the evaluation of different aspects

of the network.

TrGen uses the “stream” concept to define a source

of synthetic traffic. Each stream has a source, a spatial

distribution, a temporal distribution and a packet-size

distribution. Each source node may have several

streams associated to it, to fine-tune the traffic

behavior. Each distribution can be parameterized, and

the collection of available distributions is extensible. In

the current version of TrGen, these are the available

ones:

Temporal:

- Bernoulli

- Constant bursts

- Markov

Spatial:

- Uniform

- Distributed

- Zipf

- Hotspot

- Constant: transpose, butterfly, perfect-shuffle,
inverse, etc.

Packet-size:

- Constant

- Uniform

- Polynomial

These distributions have been frequently described

and discussed in the literature. For more information,

readers can check [2,3].

3.2. Traces

Synthetic sources provide very useful insights into

a network’s potential. However, obtained performance

metrics can be unrealistic: actual applications do not
produce random traffic patterns, so it is difficult to

model them with the sort of synthetic sources

described above. Application processes often

communicate following a precise order, at precise

moments. Additionally, it is common to find

applications in which the reception of a message

triggers the delivery of a new one. Therefore, the

traffic pattern includes causal relationships between the

reception and the sending of messages between

processes. With TrGen it is possible to use traces

obtained from the execution of actual applications to
perform simulations that closely follows the traffic

patterns explicitly defined in the traces, in terms of

spatial distributions, packet sizes and causal

relationships.

We use a modified version of MPICH (one of the

most popular implementations of MPI [5]) to obtain

trace files usable with TrGen. MPICH includes an

easy-to-use mechanism to obtain trace files from

running applications. However, these traces are not

useful for our purposes because collective operations

(such as barriers, broadcasts, reductions, etc.) appear as

such in the trace files, without reflecting the actual
interchange of packets necessary to implement those

operations in the network—for networks without

native support for collective operations. Internally,

MPICH implements collective operations with point-

to-point operations (if no better alternative is

available). Our changes in MPICH consist of making

those point-to-point operations visible, registering

them in the trace files instead of the corresponding

collective operation.

Trace files are slightly pre-processed before using

them with TrGen. Only a few, relevant fields are

selected (event type, source node, destination node,

message size) and organized in a format more suitable

for TrGen. It would be possible to use this format to

feed simulations with traces obtained from sources
different to MPICH, a network sniffer being a good

example, just building the right pre-processor.

Part of the pre-processing is the elimination of

event timestamps, however keeping temporal order and

causal relationships. This is because timestamps

strongly depend on node and network characteristics.

Without timing information, when we simulate a

network using a trace file, we submit the network to

the maximum pressure, as if infinitely fast processors

were using it, and we force the network to be the
running application’s bottleneck—and measure how

well it performs. We plan to enhance TrGen to take

into account node (CPU) speed, scaling the temporal

distance between events to reflect this speed.

NODE 0

S 15

R 15

S 1

R 1 R 15Pkt. Recv.

Pending
notifications

NODE 15

R 2

R 0

S 0

R 1 R 2Pkt. Recv.

Pending
notifications

…

Trace file

Interconnection network

Event
queue

Event
queue

Pkt. sent
Notifications

Fig. 2. Data structures used to keep event causality in trace-based traffic sources. Node 0 is waiting for the
reception of a packet from node 1, that will trigger sending a new, response packet. After that, node 0 will wait for
the reception of a packet from node 15; however, this packet has already been received, because it is in the list of
pending notifications, so TrGen will deliver immediately the message sent to node 15. Situation is similar at node
15: events “R 1” and “R 0” will stop the generation of messages at that node, until the corresponding notifications

arrive, while event “R 2” will be consumed immediately.

SIMICS Central
(synchronization)

Guest

Guest

S
yn

c

S
ync

TrGen

Message sent

Message sent

Message arrival

Message arriv
al

Network
simulator

API
.
.

.

Host computer(s)

Fig. 3. Interactions of the different elements involved in an execution-driven simulation: compute nodes, SIMICS
central, TrGen and an interconnection network simulator.

Host (actual hardware)

SIMICS

Guest

Parallel application process

User space

Driver for the PCI network
adapter

Kernel space

Packet sent through

network interface

SIMICS

synchronization

SIMICS module

simulating PCI
network adapter

Hardware writeSynchronization

LAN

SIMICS Central
synchronization

host

TrGen Network simulatorAPI TrGen

TCP/IP communication

Fig. 4. Structure of message interchange, from their creation at a parallel application (running in a simulated

compute node) until their arrival to the computer running the interconnection network simulator.

Figure 2 represents how trace-based traffic works.

Each node of the simulated applications has an event

queue. This queue is fed from the trace file. A packet is

sent to the network when an “S” (send) event is in the

queue’s head. If a “R” (receive) event is in the head, it is

necessary to access the pending notifications queue, to

check if the expected event has happened already;

otherwise, processing of events is blocked until the
network notifies the awaited reception. The pending

notifications queue at each node, thus, stores reception

events that arrive before the application requests them, and

it is crucial to keep event causality.

Traces obtained from one system are often used to

evaluate via simulation the performance potential of other

system. However, this approach has some drawbacks. In

the context of interconnection network design and

evaluation, traces obtained with the same collection of

nodes running a parallel application with IN “A” and IN

“B” may be different, because properties of “A” and “B”

are different and those properties have an influence on the
way nodes interchange messages. For this reason,

performance results obtained with traces may not be

accurate [4].

4. Execution-Driven Traffic Generation

4.1 General Schema

An execution-driven simulation requires the detailed

simulation of the behavior of compute nodes as well as the
interconnection network. The desired application will run

on top of this simulated system. Simulation will be as

realistic as detailed is the description of each component.

The price to pay is an enormous slowdown: execution

time will be several orders of magnitude slower than that

of a real system.

Currently, the simulation of the compute nodes that run

parallel applications is carried out using Virtutech’s

SIMICS [14]. It allows the detailed simulation of a range

of complete hardware systems on top of a consumer PC.

For example, we could simulate a 4-way Sparc
multiprocessor running the Solaris operating system (guest

system) on top of an Intel-based PC with the Windows

operating system (host system). For the simulation of the

interconnection network we can select the simulator of our

choice, using the TrGen interface.

We are using SIMICS on a collection of PCs running

the Linux operating system to simulate compute nodes

based on x86 processors with 256 MB of RAM. Each of

these nodes runs its part of a parallel application that

generates messages for the remaining nodes. We can have

several host PCs, each one simulating several guest PCs to

reach a network as large as our resources allow.
SIMICS includes a mechanism called SIMICS Central

to synchronize all the guest nodes. In fact, it behaves as a

simulated LAN, so it allows guests to communicate. We

keep the synchronization function of SIMICS Central, but

use a separate system (an interconnection network

simulator connected via TrGen) for communication

purposes: messages generated by a guest are intercepted

and sent to TrGen which, in turn, handles them to the

network simulator. Also, messages generated in the

simulator are injected (via TrGen) to the destination guest.

This interchange of messages is depicted in Figure 3.
As we said before, guests (compute nodes) are SIMICS

virtual machines that run as normal processes on a host

computer. SIMICS Central acts as an Ethernet switch that

also provides services such as ARP, BOOTP and DHCP.

Moreover, SIMICS Central keeps all the guest nodes

synchronized, thus allowing the simulation to run in a

deterministic way.

4.2. Implementation

A fairly complex mechanism has been developed to

redirect messages created by a running process (part of a

parallel application running in simulated compute nodes)

to the simulator of the interconnection network, and then

back to the destination process. The two most important

pieces are:

- A module for SIMICS1 that implements (simulates) a
PCI network adapter. This module manages all the

messages exchanged by the parallel application

running on the compute nodes. In fact, it is the

interface with the (simulated) interconnection network.

It has been written in C.

- A Linux kernel driver that allows applications to

access the new network adapter. We have written this

driver following the guidelines provided in [1, 13]. It is

the final responsible of writing/reading to/from the

new network adapter, when applications request these

operations via system calls.

As we stated before, SIMICS Central is another

important piece. Applications do not use the other PCI

network adapter (the standard one, connected to Central)

for traffic exchange, because the provided functionality

(that of an Ethernet network) is not valid for our purposes.

However, the synchronization of all the compute nodes is

a requirement, and Central provides it.

In our current setup, each host computer runs one or

several instances of SIMICS, each one simulating a guest

computer. Our choice of guest is a PC with 256 MB of

RAM, an Intel x86 processor, a Voodoo 3 graphic adapter,
and an IDE hard disk. For connectivity, a guest hast two

Ethernet adapters connected to the PCI bus: one connected

to SIMICS Central, the other one to TrGen. Obviously, all

this hardware is simulated using SIMICS modules2. Each

simulated computer runs under the RedHat 7.3 Linux

operating system.

When all guests are installed, configured and ready

(with the O.S. running), we can install the parallel

application of our choice, for example, any of the NAS

Parallel Benchmarks [7]. When a process participating in a

parallel application sends a MPI message to other process

(running in a different guest) it uses the new network
adapter. The driver that manages this device (running in

kernel space) gets that message, and sends it to the

network via writing in the registers and memory of the

1
 SIMICS allows the implementation of new devices via modules that

extends the simulator’s capabilities.
2
 All of them included in the SIMICS package, except for the network

adapter that interacts with TrGen.

network adapter. The adapter then redirects the message to

TrGen.

In a similar way, when the module that simulates the

new network adapter gets a message from TrGen, injects it

in the appropriate guest, again writing in the device’s

memory and registers. It also triggers interrupts that are
managed by de driver, which then delivers the message to

the appropriate receiver process.

Communication between the network adapter and

TrGen can be performed in many different ways. We use a

collection of TCP connections. TrGen acts as a bridge

with the network simulator of our choice. This simulator

must be able to incorporate all the mechanisms required

from an interconnection network for a cluster or a

multicomputer.

Figure 4 represents all the interchange of messages

(simulated and real) involved in the communication

between compute nodes.

5. Related Work

Most network simulators include mechanisms for

traffic generation. Interconnection network simulators

such as SICOSYS [12] include internal mechanism for the
generation of synthetic traffic. It is also possible to run this

simulator jointly with RSIM [11] for execution-driven

simulations, although this is done using some ad-hoc glue

software. More general network simulators like OPNET

[9] include sophisticated mechanisms for synthetic traffic

generation, including the generation of traffic that

accurately emulates typical Internet applications. Trace

files have been extensively used for simulation; for

example, in [10] a mechanism to integrate trace-driven

simulations into NS [8] is described.

As far as we know, in all cases traffic generation is

performed internally, or attached to the simulator using an
ad-hoc, non-standard API. The main advantage of TrGen

is the definition of a unified API to access a set of very

different mechanisms for feeding simulators. This feature

allows researchers to focus in modeling its network, and

also sets a fair mechanism to compare results obtained

from different simulators.

6. Conclusions and Future Work

TrGen is a live project, still being actively developed.

In this article we have stated that we are considering the

integration of new functionality, and the improvement of

those already implemented. Currently, the generation of

synthetic traffic (with the above-mentioned

characteristics) is fully functional. Capture, adaptation and

generation of traffic based on traces is also functional. The

generation of actual traffic using SIMICS is under test.

We have tested the interoperability of TrGen with
FSIN, a functional simulator developed in-house. Results

are very satisfactory: TrGen greatly improves the

spectrum of experiments that can be performed with FSIN,

without a relevant increase in used resources (memory,

CPU time)—compared with the reduced-functionality

traffic generation routines built in FSIN.

Currently, efforts of the development team focus in

completing the parts of the design that are not ready yet,

and in thoroughly testing the system. These are not,
however, the only lines for future work.

Traffic generation offers many possibilities, and TrGen

is still in its infancy. We plan to increase the choice of

available sources of synthetic traffic: spatial distributions

with memory, reactive traffic patterns, traffic types for

particular applications (such as FTP, WWW, POP, etc.),

and spatial distributions based on node distance.

Finally, in order to test the usefulness of TrGen, we

need to integrate it with additional simulators. A short-

term plan is to integrate it with SICOSYS. Also, we plan

to build TrGen-Lite, a lightweight version of TrGen (with

reduced functionality) for particular simulation
environments were resource consumption has to be kept as

low as possible.

References

[1] Donald Becker, Linux network drivers, in Scyld’s
corporate web: http://www.scyld.com

[2] Jose Duato, Sudhakar Yalamanchili, Lionel Ni.
Interconnection Networks: An Engineering Approach.
Morgan Kaufmann, 2002.

[3] Itamar Elhanany (Ed.) Fabric Benchmarking Traffic
Models Rev. 1.0. Network Processing Forum, 2003.
Available at
http://www.npforum.org/techinfo/BM_Fabric_TrafficIA.pdf

[4] S. Goldschmidt and J. Hennessy. “The accuracy of trace-
driven simulation of multiprocessors”. In ACM Sigmetrics
Conf. on Measurement and Modeling of Computer
Systems, pages 146-- 157, May 1993.

[5] Message Passing Interface Forum. MPI: A Message-

Passing Interface Standard. Available at http://www-
unix.mcs.anl.gov/mpi/standard.html

[6] J. Miguel, A. Arruabarrena, R. Beivide y J.A. Gregorio.
“Assessing the performance of the new IBM SP2
communication subsystem”. IEEE Parallel and Distributed
Technology, Vol. 4, nº 4 (1996), 12—22.

[7] NASA. The NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB.

[8] The Network Simulator ns-2. Available at
http://www.isi.edu/nsnam/ns/

[9] OPNET Technologies, Inc. corporate web page, available
at http://www.opnet.com

[10] Philippe Owezarski And Nicolas Larrieu. “A trace based
method for realistic simulation”. IEEE International
Conference on Communications (ICC’2004), QoS and
performance modeling symposium, Paris, France, 20-24

June 2004
[11] V.S. Pai, P. Ranganathan, and S.V.Adve. RSIM: An

Execution-Driven Simulator for ILP-Based Shared-
Memory Multiprocessors and Uniprocessors. IEEE TCCA
New., Oct. 1997.

[12] V. Puente, J.A. Gregorio, R.Beivide. SICOSYS: An
Integrated Framework for studying Interconnection
Network in Multiprocessor Systems, Proceedings of the

IEEE 10th Euromicro Workshop on Parallel and
Distributed Processing. Gran Canaria, Spain. January 2002.

[13] Alessandro Rubini, Jonathan Corbet. Linux Device Drivers
2nd Edition. O’Reilly.

[14] Virtutech, Inc. Simics web page
(http://www.virtutech.se/simics/simics.html), inside
Virtutech, Inc corporate web. (http://www.virtutech.se/)

