
Dynamic Load-Balancing of Jini and .NET Services ∗

Ying Chen Lin Sy-Yuan Li Yuan-Shin Hwang
Department of Computer Science and Engineering

National Taiwan Ocean University
Keelung 20224

Taiwan

Abstract

Jini and .NET are the two most popular distributed
computing environments nowadays. Jini architecture pro-
vides an infrastructure for defining, advertising, and find-
ing services in a network, while .NET lets developers build
Internet-based, distributed applications using .NET Remot-
ing. These two environments are very similar in many
aspects and both are capable of facilitating implementa-
tion of distributed programs. However, they are not com-
patible. Clients in Jini can not request remote services
from .NET systems and clients in .NET can not find Jini
services. Furthermore, none of these environments pro-
vides load-balancing mechanisms. To solve these two prob-
lems, this paper integrates Jini and .NET and proposes a
smart proxy architecture. Consequently, Jini and .NET ser-
vices can now make themselves visible to both Jini and
.NET clients, and any Jini or .NET client can transpar-
ently switch to a less-loaded Jini or .NET service through
a smart proxy once the current service is too busy. Specif-
ically, this paper solves two important issues for Jini and
.NET: interoperability and dynamic load-balancing. Exper-
imental results show that this technique can dynamically
distribute Jini and .NET clients quite evenly over Jini and
.NET services when proper load-balancing strategies are
implemented onto smart proxies.

1. Introduction

Jini is a Java-based infrastructure developed by Sun Mi-
crosystems that can provide all the services necessary to
support parallel and distributed applications [1, 6, 19].
Since its introduction, Jini has been applied to enterprise ap-
plications [11], grid computing [2], embedded systems [3],
sensor networks [18], and even home networking [9]. A Jini

∗This research was supported by NSC grant NSC94-2213-E-019-008
and MOEA project 95-EC-17-A-01-S1-034

service can place its own proxy object in any Lookup ser-
vices in order to register to offer itself for use to Jini clients.
Any client looking for a service finds Lookup services and
receives a service proxy from any available Lookup ser-
vices. Afterward, the client can request the service directly
through the service proxy.

The .NET framework is Microsoft’s initiative to deliver
a new way of building and deploying applications and ser-
vices [8]. Specifically, .NET remoting provides power-
ful remote interaction among objects and hence enables
developers to build widely distributed applications easily,
whether application components are all on one computer
or spread out across the entire world [14]. .NET remoting
provides an abstract approach to interprocess communica-
tion that separates remote objects from a specific client or
server application domain and from a specific mechanism
of communication. As a result, it is flexible and easily cus-
tomizable.

Jini and .NET are the two most popular distributed com-
puting environments nowadays. Although these technolo-
gies are implemented quite differently and are based on dif-
ferent philosophies, they are remarkably similar in many
ways. However, they are not compatible. In other words,
clients in Jini can not request remote services from .NET
systems and .NET clients can not find Jini services. This
paper presents an approach to make Jini and .NET interop-
erable. Specifically, Jini and .NET services can now make
themselves visible to both Jini and .NET clients by register-
ing to the Jini Lookup services, while Jini or .NET clients
can locate Jini or .NET services through the Lookup ser-
vices and then make requests directly to Jini or .NET ser-
vices. Furthermore, since requests to services are in fact
initiated through proxies, clients will not be able to tell
whether they are connected to Jini services or .NET ser-
vices.

In addition to the issue of interoperability for Jini and
.NET, another important topic is dynamic load-balancing
among Jini and .NET services. Since the prototype im-
plementations of Jini and .NET do not provide any load-

balancing mechanism [15, 17], programmers have to explic-
itly incorporate code in clients to communicate with load-
balancing systems. Couples of load-balancing systems have
been proposed and analyzed, and clients in these systems
make requests to the load-balancing systems [4, 5, 7]. In
other words, the process of load balancing is not transpar-
ent to clients. As a result, the clients in these systems will
look significantly different from the clients in the original
Jini system. This paper proposes a smart proxy architecture
as a remedy [10, 12, 13]. A Jini or .NET client can eas-
ily switch to any less-loaded Jini or .NET service through a
smart proxy without knowing it.

In order for a smart proxy to decide if a client should
switch from the current service to a less-loaded Jini or .NET
service, the load information of services is stored in the Ser-
viceTable on Jini Lookup services. A smart proxy will con-
sult the ServiceTable to choose an appropriate Jini or .NET
service for the client according to its load-balancing strat-
egy. As a result, the switching process is transparent to
the client. Several strategies have been developed and the
experimental results demonstrate these strategies can dis-
tribute loads evenly.

Since smart proxies of clients consult the ServiceTable
on Lookup services before making requests, services must
periodically report their load information to the Lookup ser-
vices. However, such update actions will introduce extra
network communications. This paper presents an easy way
to reduce such extra overheads—a service updates its load
information when it renews its lease with Lookup services.

The main results of this paper are as follows:

• This paper integrates Jini and .NET. Jini and .NET ser-
vices can now make themselves visible to both Jini and
.NET clients by registering to the Jini Lookup services,
while Jini or .NET clients can locate Jini or .NET ser-
vices through the Lookup services and then make re-
quests directly to Jini or .NET services.

• This paper presents a dynamic load-balancing mecha-
nism for Jini and .NET, which is based on the smart
proxy architecture. A Jini or .NET client can easily
switch to any less-loaded Jini or .NET service when
the current service is over-loaded.

• The load information of services is stored in Lookup
services, and is updated when services renew leases
with Lookup services. Consequently, updating load in-
formation does not incur additional network communi-
cations.

The rest of this paper is organized as follows. Section 2
briefly overviews main features of the Jini and .NET, and
Section 3 introduces the smart proxy architecture for dy-
namic load-balancing. Experimental results will be pre-
sented in Section 4, and Section 5 concludes this paper.

2. Background

This section provides brief descriptions of the Jini and
.NET.

2.1. Jini

Jini is a Java-based connection technique developed by
Sun Microsystems that can be used to build a flexible net-
work of resources and services to be shared by a group of
clients [1, 6, 19]. It provides the necessary protocols for
services to register themselves with Lookup services and
for clients to discover services.

2.1.1. Jini Proxies

Proxies play an important role in the Jini system. They act
as the gateway to remote services. That is, they deal with
any network-related functions for clients, transmitting any
parameters to remote services and receiving any return val-
ues from the services.

Service Proxy Object

Discovery request

Discovery
Response

Lookup
Request

Lookup Response

Jini Client
Lookup
Service

Figure 1. Service Registration

Service Proxy Object

Discovery request

Discovery
Response

Lookup
Request

Lookup Response

Jini Client
Lookup
Service

Figure 2. Service Lookup

A Jini service can place its own proxy object in any
Lookup services in order to register to offer itself for use

Service
Proxy
Object

Jini Client Jini Service

Figure 3. Service Request

to Jini clients, as shown in Figure 1. Any client looking
for a service finds Lookup services and receives a service
proxy from any available Lookup services (Figure 2). Af-
terward, the client can request the service directly through
the service proxy, as depicted in Figure 3.

2.1.2. Leasing

Jini deploys the notion of leasing to allow clients and ser-
vices to leave easily without disrupting other members.
Jini’s leasing model sets time limits that services are avail-
able to clients. A Jini member offering a resource does so
through a lease, which represents a period of time which the
service is available. As a result, a service usually periodi-
cally renews its lease with the Lookup service.

2.2. .NET

.NET is a set of Microsoft software technologies for con-
necting information, people, systems, and devices [15].

2.2.1. C#

C# is a new programming language designed for building a
wide range of enterprise applications that run on the .NET
Framework. It is simple, modern, type safe, and object ori-
ented. C# is very similar to Java syntactically and can be
interoperable with Java via bridging tools such as JNBridge.

2.2.2. .NET Remoting

Microsoft .NET remoting provides a framework that allows
objects to interact with one another across application do-
mains [14]. The framework provides a number of services,
including activation and lifetime support, as well as com-
munication channels responsible for transporting messages
to and from remote applications. .NET Remoting has a log-
ical and cohesive object model that facilitates both simple
configuration changes and advanced extensions to the .NET

Clients

Proxy

formatter

transport

server

dispatcher

formatter

transport

channelservice

crosscontextchannel

servercontexterminator

leasesink

stackbuilder

Remoting
Object

Figure 4. .NET Remoting Infrastructure

Remoting infrastructure. .NET Remoting architecture is
shown in Figure 4.

2.2.3. Proxies

Similar to Jini, .NET Remoting uses proxies to per-
form a variety of remote task depending on the archi-
tecture. In the Microsoft .NET Framework there are
two classes that work together to form the Remoting
proxy: TransparentProxy and RealProxy [16].
The client of a remote object instance always commu-
nicates with that remote object through an instance of
a TransparentProxy, which gives the caller the ap-
pearance of the target object. TheRealProxy class is
the source of information about and communication with
the actual remote object. A caller obtains an instance of
theTransparentProxy class from theRealProxy in
which theTransparentProxy is contained.

2.2.4. Leasing

A lease is an object that encapsulatesTimeSpan value
that the Remoting infrastructure user to manage the lifetime
of a remote object. The Remoting infrastructure provides
theIlease interface that defines the functionality. When
the runtime activates an instance of either a well-known
Singleton or a client-activated remote object, it asks the
object for a lease. When the client calls a method on a re-
mote object, the .NET Remoting infrastructure will decide
how much time remains until the lease expires.

3. Smart Proxy Architecture

In order to distribute service requests as evenly as possi-
ble, a Jini and .NET system must provide the following two
features:

• Services can update their load information.

• Clients can obtain the load information of services and
switch to less-loaded services easily.

This section presents a smart proxy architecture that pro-
vides these two features through the leasing models and
proxies of Jini and .NET. Services will periodically update
their load information to the Jini Lookup service when they
renew leases, and clients will consult with the Lookup ser-
vice to determine if it is necessary to switch to less-loaded
Jini or .NET services. This approach can perform dynamic
load-balancing of Jini and .NET services while not incuring
extra network communications. Figure 5 depicts the system
with dynamic load-balancing mechanism via smart proxies.

Jini

LookupService

ServiceTable

Jini service Service ID

IP

Port

Number of Jobs

.NET service
Update information

Client
(Jini or .NET)

Lookup service
Proxy

Smart Proxy

Get less-loaded service

Get less-loaded service

Reference

Switch

JNBridge

Update information

Figure 5. Smart Proxy Architecture

3.1. Integrating Jini and .NET via JN-
Bridge

JNBridge is a Java/.NET interoperability tool that en-
ables Java code to fully participate in the cross-language
development capabilities of Microsoft .NET. Consequently,
Java code can be called from .NET code and Java classes
can be extended by .NET classes, and vice versa. How-
ever, .NET does not implement the main feature of Jini: a
trio of protocols calleddiscovery,join, andlookup. Specif-
ically, .NET does not contain the Lookup services provided

by Jini. Therefore, .NET services will now have to regis-
ter themselves and upload their proxies to the Jini Lookup
services.

3.2. Updating Load Information via Leases

A ServiceTable residing on the Lookup service keeps the
load information of all services. Services must periodically
report their load information to the Lookup services. How-
ever, each update action will initiate one extra network com-
munication, even though the load information contains only
few bytes, Such an overhead can be easily avoided since
there is already a periodic communication existed between
any service and the Lookup service— lease renewal. There-
fore, the load information can be piggybacked onto the lease
renewal object of services. As a result, no extra network
communications will be incurred.

3.3. Switching Services via Smart Proxies

When a client first looks for a service, it will down-
load a smart proxy from the Lookup service. Afterward,
the client will request a service directly through the smart
proxy, which will consult the load information on the Ser-
viceTable and choose an appropriate service based on its
load-balancing strategy (Section 4 will compare the effi-
ciencies of several load-balancing strategies). That is, the
client can switch freely between Jini and .NET services
as shown in Figure 5 and the process is transparent to the
client.

Host CPU Memory O.S. Clients Services

S1 P4 512M Windows 2k 2 Jini + 1 .NET 1 (Jini)

S2 P3 256M Windows XP 2 Jini + 1 .NET 1 (Jini)

S3 P4 512M Windows 2k 2 Jini 1 (.NET)

Table 1. Clients and Services

4. Experimental Results

The experiment platform consists of 3 network-
connected computers, as listed in Table 1. Each computer
hosts a Jini or .NET service that accepts requests from a
pool of 8 Jini and .NET clients. In addition, a Lookup ser-
vice is hosted by the first server, S1. The configuration of
the experiment platform is depicted in Figure 6.

Experiments have been conducted for the configura-
tions with different load-balancing strategies implemented
in smart proxies, as listed in Table 2.

SP0 is the original prototype implementation of Jini and
.NET, which does not have dynamic load-balancing mech-
anisms [15, 17]. Once a client has chosen a Jini or .NET

Jini Service Jini Service C# Service

Lookup
Service

Ethernet

Client
(C#)

Client Client
Client
(C#)

Client Client Client Client

Figure 6. System Configuration

������
���
	
� 		� 	�� 	� ��� ��� ��� ��� ��� ��� �
� �	� ��� ���������������

� !" #�����$%���#�����$%���&'��$%���
Figure 7. Numbers of Clients Served by Ser-
vices

service, it will not switch to other services at all. Figure 7
shows that S1 has only 1 job all the time, while S2 and S3
are requested by 3 and 4 clients, respectively. This figure
demonstrate that such a strategy leads to very unbalanced
loads — the queue length of S3 is 4 times of the length of
S1.

Any smart proxy in the SP1 configuration will always
check the load information of all services and then make its
client switch to the least-loaded Jini or .NET service. How-
ever, Figure 8(a) shows that the Jini and .NET system under
SP1 is not balanced either. The reason is because the load
information of services might not be up-to-date since ser-
vices only update the information when leases are due. As
a result, almost all the clients might switch to the same ser-
vice that appears to be the least-loaded. Figure 8(a) reveals
that frequently all clients request the same service, while
leaving other services unoccupied. SP1UB is a variation
of SP1 that services will update their load information once
an upper bound is reached, which is set to 3 in this paper.
Consequently, load information of services will always be
up-to-date and hence the loads are more balanced, as shown
in Figure 8(b).

SP2 tries to avoid the situation of SP1 that all clients rush

Configuration Load-Balancing Strategy

SP0 Original configuration of Jini

SP1 A client always uses the least-loaded service

SP1UP A client always uses the least-loaded service;

A service updates its load information

when the upper bound is reached

SP2 A client randomly pick one of the two

least-loaded services

SP2UP A client randomly pick one of the two

least-loaded services; A service updates its load

information when the upper bound is reached

SP3 A client finds a service using a weighted voting

strategy (weight = 1/queue length)

SP3UP A client finds a service using a weighted voting

strategy; A service updates its load information

when the upper bound is reached

SP3UP SC A client finds a service using a weighted voting

strategy (weights are scaled);

A service updates its load information

when the upper bound is reached

SP4 A client finds a service using a weighted voting

strategy (weight = service rank)

SP4UP A client finds a service using a weighted voting

strategy; A service updates its load information

when the upper bound is reached

SP4UP SC A client finds a service using a weighted voting

strategy (weights are scaled);

A service updates its load information

when the upper bound is reached

Table 2. Setup of Experiments

to one same service by choosing two least-loaded services
and then randomly picking one for request. Figure 8(c)
demonstrates that the Jini and .NET system under SP2 is
better balanced than SP1. However, the services in the Jini
and .NET system under SP2 might still have to serve up to 6
or 7 clients from time to time. Similar to SP1UB, services
in SP2UB update their load information once a pre-set up-
per bound is reached, and the loads are better distributed
than SP2, as depicted in Figure 8(d).

SP3 uses a totally different strategy from SP1 and SP2.
Each service Si uses the reciprocal of its queue length as
its load, i.e.Li = 1/|Si|. The only exception is when the
queue of any service is empty and the queue length will be
set artificially to 0.1. When a client makes a request, its
smart proxy will use a random number generator to pick a

()*+,-.
/0
123 113 143 153 673 683 693 8:3 863 833 423 413 443 453;<=>?@>ABCDEF

G<C<@>HI<A> G<C<E>HI<A> JKE>HI<A>LMNO
(a) SP1

PQRSTUV
WX
YZ[YY[Y\[Y][_̂[^̀[â[b̀[`̂[[̀[\Z[\Y[\\[\][cdefghfijklmn

odkdhfpqdifodkdmfpqdifrsmfpqdiftuvw
(b) SP1UB

xyz{|}~
��
��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����������������

�����������������������������������
(c) SP2

 ¡¢£¤¥¦
§̈
©ª« ©©« ©¬« ©« ®̄« ®°« ®±« °²« °®« °«« ¬ª« ¬©« ¬¬« ¬«³́µ¶·̧¶¹º»¼½¾

¿́»́ ¶̧ÀÁ́¹¶¿́»́½¶ÀÁ́¹¶ÂÃ½¶ÀÁ́¹¶ÄÅÆÇ
(d) SP2UB

ÈÉÊËÌÍÎ
ÏÐ
ÑÒÓ ÑÔÓ ÕÖÓ ÕÕÓ ÕÓÓ Ò×Ó ÒÑÓ ÒØÓ ÒÙÓ ØÚÓ ØÒÓ ØÔÓ ÓÖÓ ÓÕÓÛÜÝÞßàÞáâãäåæ

çÜãÜàÞèéÜáÞçÜãÜåÞèéÜáÞêëåÞèéÜáÞìíîï
(e) SP3

ðñòóôõö
÷ø
ùúû ùüû ýþû ýÿû ý�û ÿ�û ÿýû ÿûû ú�û úùû úúû úüû ûþû ûÿû�������	
���

���������	���������	�������	�����
(f) SP3UB

�������
�
!"# !$# %&# %%# %## "'# "!# "(# ")# (*# ("# ()# #*# #"#+,-./0.123456

7,3,0.89,1.7,3,5.89,1.:;5.89,1.<=>?
(g) SP3UB SC

@ABCDE
FGH
IJK LMK LIK LKK NOK NPK NNK NQK KRK KLK KJK JMK JIK JKKSTUVWXVYZ[\]̂

_T[TXV̀aTYV_T[T]V̀aTYVbc]V̀aTYVdefg
(h) SP4

hijklmn
op
qrs qss rts rqs rus rvs wxs wws wys uzs urs uss sts sqs{|}~��~������

�|�|�~��|�~�|�|�~��|�~���~��|�~����
(i) SP4UB

������
���
��� ��� ��� ��� ��� � � �¡� ¢� �� �� ��� ��� ��� ���£¤¥¦§̈¦©ª«¬®°̄±² ³¤«¤̈ ¦́µ¤©¦³¤«¤¦́µ¤©¦¶·¦́µ¤©¦

(j) SP4UB SC

Figure 8. Experimental Results

service and the service Si will be chosen with the probabil-
ity of Li/

∑
3

j=1
Lj . Figure 8(e) shows that SP3 performs

better than SP1 and SP2. Similar to SP2UB, services in
SP3UB update their load information once an upper bound
is reached. In addition, SP3UB SC is a scaled version
of SP3UB, that is, the weight of the service Si is com-
puted asLi = 1/(2 × |Si|). Figure 8(f) and Figure 8(g)
show the loads are very well balanced under SP3UB and
SP3UB SC.

SP4 is similar to SP3 and the only difference is how the
load is computed. The load of service Si is its rank in queue
length, i.e. Li =(service rank ofSi). In other words, the
service with shortest queue length (ranked 3) will have a
load of 3, while the busiest service will get a load of 1.
Similarly, services in SP4UB update their load informa-
tion once an upper bound is reached, and SP4UB SC uses
the square of the rank of service Si as the scaled weight of
Si (i.e. Li =(service rank ofSi)2). Figures 8(h)∼(j) show
that SP4 delivers even better load-balancing efficiency than
SP3.

¹̧̧̧¹º»¹̧»¹º¼¹̧¼¹º
½¹̧½¹º¾¹̧¾¹º

SP0 SP1

SP1
_U

B
SP2

SP2_
UB

SP3

SP3
_U

B

SP3_U
B_S

C
SP

4

SP4
_U

B

SP4
_U

B_S
C

Jini service

Jini service

C# service

Figure 9. Average Numbers of Jobs

Figure 9 presents the average numbers of clients served
by services under all configurations. It shows that the av-
erage numbers of requests from clients to S3 and S2 in the
original Jini and .NET system are 4 and 3 times of the num-
ber to S1, respectively. After deploying the load-balancing
strategy SP1, the situation gets worse since all clients rush
to the same service that appears to be the least-loaded. On
the other hand, it depicts that loads get better balanced when
SP2 is adopted. In addition, the average queue lengths of
services under SP3 in Figure 9 show services are well bal-
anced. Finally, Figure 9 demonstrates that the strategy used
by SP4 can lead to well-balanced distributions of Jini and
.NET client requests.

Figure 10 shows the distributions of the numbers of jobs
on services. It reveals that under SP0 and SP1, the num-
bers of jobs on servers are not balanced. On the other hand,
it illustrates that under SP2, SP3, and SP4 dynamic load-
balancing strategies services have spent most of time serv-
ing 2 to 3 requests from Jini and .NET clients, which indi-

0

100

200

300

400

500

600

700

SP
0

SP
1

SP1
_U

B
SP2

SP2_
UB

SP3

SP3_
UB

SP
3_

UB_S
C

SP
4

SP
4_

UB

SP
4_

UB_S
C

0 1 2 3 4 5 6 7 8

Figure 10. Distributions of Numbers of Jobs

cates the Jini and .NET system is well balanced.

5. Conclusions

This paper has integrated Jini and .NET into one dis-
tributed computing environment so that Jini and .NET
clients can make request to Jini and .NET services. In ad-
dition, this paper has presented a dynamic load-balancing
technique for Jini and .NET services. This technique uses
a smart proxy architecture to dynamically redistribute Jini
and .NET clients among Jini and .NET services based on
its load-balancing strategy. In addition, the dynamic load-
balancing process is transparent to clients. Several load-
balancing strategies have been developed and the experi-
mental results have demonstrated these strategies could dis-
tribute loads quite evenly. Furthermore, the load informa-
tion of any service is updated when the service renews its
lease with the Lookup Service. Consequently, updating load
information does not incur additional network communica-
tions.

References

[1] K. Arnold. The Jini architecture: dynamic services in a flex-
ible network. InProceedings of the 36th ACM/IEEE confer-
ence on Design automation, pages 157–162, 1999.

[2] M. Baker and G. Smith. Jini meets the grid. InProceedings
of the 2001 International Conference on Parallel Processing
Workshops, pages 193–198, Sept. 2001.

[3] M. Beveridge and P. Koopman. Jini meets embedded control
networking: A case study in portability failure. InProceed-
ings of the The Seventh IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS
2002), pages 11–18, Jan. 2002.

[4] L.-S. Cheung and Y.-K. Kwok. The design and performance
of an intelligent jini load balancing service. InProceed-
ings of 2001 International Conference on Parallel Process-
ing Workshops, pages 361–366, sep 2001.

[5] L.-S. Cheung and Y.-K. Kwok. A new fuzzy-decision
based load balancing system for distributed object comput-
ing. In Proceedings of 7th International Euro-Par Confer-
ence, pages 183–190, 2001.

[6] W. K. Edwards.Core Jini. Prentice-Hall, 2nd edition, 2001.
[7] V. Georgiev and V. Getov. Assignment schemes for repli-

cated services in jini. InProceedings. 10th Euromicro Work-
shop on Parallel, Distributed and Network-based Process-
ing, pages 129–136. IEEE, 2002.

[8] S. Guest. Microsoft .NET and J2EE Interoperatibility
Toolkit. Microsoft Press, 2003.

[9] R. Gupta, S. Talwar, and D. P. Agrawal. Jini home network-
ing: A step toward pervasive computing.IEEE Computer,
35(8):34–40, Aug. 2002.

[10] P. Ledru. Smart proxies for Jini services.ACM SIGPLAN
Notices, 37(4):57–61, April 2002.

[11] S. Li. Professional Jini. Wrox, 2000.
[12] H.-H. Lin. Load-balancing Jini services with smart prox-

ies. Master’s thesis, National Taiwan Ocean University, June
2004.

[13] H.-H. Lin, C.-H. Tu, and Y.-S. Hwang. Dynamic load-
balancing of Jini services with smart proxies. InPro-
ceedings of The 2005 International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’05), Vol. II, pages 721–726, 2005.

[14] S. McLean, J. Naftel, and K. Williams.Microsoft .NET Re-
moting. Microsoft Press, 2002.

[15] Microsoft Corp. .NET: Driving busi-
ness value with the microsoft platform.
http://www.microsoft.com/net/default.mspx.

[16] J. Sievert. Create a custom marshaling implementation using
.net remoting and com interop.MSDN Magazine, 18(9), sep
2003.

[17] Sun Microsystems, Inc. Jini network technology.
http://www.sun.com/software/jini/index.xml.

[18] T. Urnes, A. S. Hatlen, P. S. Malm, and Ø. Myhre. Building
distributed context-aware applications.Personal and Ubiq-
uitous Computing, 5(1):38–41, Feb. 2001.

[19] J. Waldo. The Jini architecture for network-centric comput-
ing. Communications of the ACM, 42(7):76–82, July 1999.

