
Work supported in part by the US Department of Energy contract DE-AC02-76SF00515

Framework for Interactive Parallel Dataset Analysis
on the Grid

David A. Alexander, Balamurali Ananthan

Tech-X Corporation
5621 Arapahoe Ave, Suite A

Boulder, CO 80303
{alexanda,bala}@txcorp.com

Tony Johnson, Victor Serbo
Stanford Linear Accelerator Center

SLAC, Mail Stop 71
Stanford, CA 94309

{tony_johnson,serbo}@slac.stanford.edu

Abstract

We present a framework for use at a typical Grid

site to facilitate custom interactive parallel dataset
analysis targeting terabyte-scale datasets of the type
typically produced by large multi-institutional science
experiments. We summarize the needs for interactive
analysis and show a prototype solution that satisfies
those needs. The solution consists of desktop client tool
and a set of Web Services that allow scientists to sign
onto a Grid site, compose analysis script code to carry
out physics analysis on datasets, distribute the code
and datasets to worker nodes, collect the results back
to the client, and to construct professional-quality
visualizations of the results.

1 Introduction

Part of what could be considered hype associated
with Grid Computing [1] is the promise that shared
resources can be easy to use. For the user who wants
to interactively analyze data on a Grid with the current
version of the Grid middleware, this is only true in a
limited sense. Once middleware is properly installed
on the target resources, and once the user has the
proper credentials, and once the user is properly
recognized by the Virtual Organization (VO) [2], then
it is true that the user can run grid jobs invoking any
installed application. To fully meet the expectations
stirred by promotional publicity that promise services
such as being able to run truly custom and interactive
processes, out-of-the-box Grids such as the Open
Science Grids [3] or EGEE Grids [4] need certain
modifications.

We define interactivity as the ability to analyze a
dataset and give back partial results on time scales of
less than a minute. This is opposed to batch processing
where jobs that may take many minutes or hours are
run without any feedback to the user until the jobs are
finished. By interactivity, we also mean that the user

can change their analysis algorithms on the fly,
implying the need for controls to stop and restart an
analysis that is in progress. Furthermore, with respect
to datasets, this means that the user must be able to
easily select the dataset to be analyzed and change the
dataset during the analysis session, all while interacting
with the dataset by name or metadata rather than on a
file basis. To accomplish this, a system that provides
interactive dataset analysis must be in close contact
with the client and be able to handle datasets in a
sophisticated way.

Modern physics experiments and simulations like
the Large Hadron Collider (LHC) [5] and International
Linear Collider (ILC) [6] produce many terabytes of
data each year. These large datasets can be analyzed in
a batch mode that requires no interactivity. But in
many cases interactivity in terms of custom analysis is
necessary to fine tune an analysis that may eventually
become a production batch analysis. The process of
fine tuning or custom analysis requires a system that
allows rapid development and re-running of an analysis
while making incremental changes. Since researchers
need large datasets to produce statistically meaningful
results, the ability to take advantage of grid processing
power while performing interactive analysis may be
essential to advance the science.

We must make the distinction that what we refer to
as parallel analysis in this paper involves the perhaps
more simplified case where the data is record or event
based and the same analysis is to be performed on each
event. This kind of parallelism is not the same as the
parallelism referred to in codes that use some sort of
message passing interface to heavily communicate
between the processes of the analysis. Our framework
is targeted to datasets that can be split and where the
analysis results can be logically merged. Examples of
applications that require this capability include analysis
of particle collider events in high energy physics, DNA
sequencing combinations in cellular biology, and stock
trading records in business.

January 2007

Contributed to 2006 International Conference on Paralle Processing Workshops (ICPPW 06), 14-18 August 2006, Columbus, Ohio

SLAC-PUB-12289

 2

This type of parallel analysis on the Grid can still
provide much needed computation power for large
dataset analysis. With a greater number of processors
available on the Grid, the process of repeatedly running
the analysis over the same dataset and fine tuning the
analysis code consumes much less time than when it is
analyzed locally on a single processor machine. The
question is: how easy it can be to take advantage of
such Grid power if the proper services are offered?

We present here a framework that performs
interactive parallel dataset analysis on the Grid. The
framework contains a set of Web Services that allows
users to export analysis code that they have tested on
their local data to run on a Grid site associated with
their VO. The framework provides capability to create
an interactive analysis session, choose a dataset from a
catalog service to be staged onto the worker nodes for
parallel analysis, upload their custom analysis code to
the Grid, and get back intermediate results as they are
produced. The key additional requirements to the
standard Grid are a dedicated timely scheduler queue
and a mechanism for communication from workers to
the client.

2 Interactive Parallel Analysis Framework

What we describe in this section is a framework
and the general requirements for that framework that
we have determined are necessary to provide
interactive parallel analysis. We call this the Interactive
Parallel Analysis (IPA) framework. Figure 1 shows the
diagram of the IPA framework parts for interactive
parallel dataset analysis on the Grid.

We envision the framework as three layers: The
client layer, the service layer, and the Grid layer. The
user interacts with the client layer and follows four
steps to analyze a dataset. Within the service and Grid
layers we have introduced a concept of an analysis
engine. Analysis engines are processes that accept a
dataset and an analysis script and analyze the dataset
using the script to produce a result.

In the following sections, we describe the
requirements for the Grid, capable of analyzing large
datasets.

2.1 Need for a Dataset Catalog

To start with, the user will need some way of
choosing the dataset that is to be analyzed. An abstract
metadata catalog of datasets would be an ideal solution
for this. The metadata contains all the information
about the datasets, but does not contain the actual data
itself. The metadata should be organized in a
hierarchical fashion where the user can browse the
catalog and choose the dataset of interest. An added
advantage would be if a dataset or set of datasets could
be searched based on a query pattern.

2.2 Need for High-Level Dataset Handlers

As mentioned in section 2.1, what is chosen by the
user from the catalog is a pointer to the actual dataset.
Some mechanism is needed to resolve the chosen
metadata to the actual dataset, as well as a mechanism
to stage the dataset for analysis. In effect, we need a
Locator and a Splitter. The Locator will take the
dataset identifier and resolve it to the actual location of
the dataset. The Splitter will split the selected dataset
and disperse it over the machines in the Grid. The
maximum number of analysis engine nodes that could
be started on the Grid is determined by the Grid-VO
policy.

2.3 Need for a Mechanism That Quickly Starts
the Analysis Engines on the Grid

Analysis of the dataset on the Grid is performed by
the analysis engines that are started dynamically on the
worker machines on the Grid. The worker machines
are the nodes on the Grid where the analysis would
happen. This analysis engine should be started
relatively quickly - within the limits of human
tolerance. The analysis engines should not be statically
running at all times, but instead should be started for
each session and be shutdown at the end of a session.
This saves computational resources on the Grid and
allows the analysis engines to dynamically pickup new
data format readers.

Figure 1. Framework for Interactive Parallel
Analysis (IPA) on Grid

IPA Client

Grid
Compute Element / Storage Element

Merge
Results

Analysis Engines
started during

session creation

Collect &
Display Result

Select Dataset
and submit for

analysis

Securely
connect to

Grid, Create
Session

Initiate Analysis
Run with

Custom Code

1 3 42

Registry of
References
to Analysis
Engines

Code
Loader

Submit
Analysis

Engine Jobs
Collect
Result

Load
Code

Ready
Signal

Split and
transfer

dataset parts

Locate and
Transfer large

Dataset file

IPA Service

 3

2.4 Need for a Mechanism to Stage Code for
Analysis

Once the analysis engines are ready for performing
analysis on the dataset, we need a way to ship the
analysis code that does this analysis from the client
machine to the Grid machines. The analysis code will
be written by the physicists, which should take the
records of the dataset as input and run the analysis.

2.5 Need for a Mechanism to Merge and
Display the Results

As the analysis is performed, intermediate results
should be collected from the analysis engines on the
Grid and should be presented to the client in an
appealing way. Getting the intermediate results
quickly and presenting them in the format desired by
the user is a very important requirement of this
framework.

The component that performs the merging and
displaying of analysis results will become a bottleneck
if there are a large number of users. The system should
be adaptable in such situations by being able to
accommodate a sub-level of components that performs
the merging and displaying of the result. This way, the
workload could be distributed to the lower level of
components.

3 Reference Implementation of IPA

To demonstrate the feasibility of the framework,
we have built an implementation for one use case. Our
implementation was fully tested with physics data from
simulations of the future Linear Collider Experiment
and services hosted at Stanford Linear Accelerator
Center (SLAC).

Figure 2 shows the architecture of our reference
implementation from the client at one end to the Grid
submission site at the other end.

The Grid resources are accessed by the client
through a set of Web Services that are running on a
broker node on the Grid that we call a ‘Manager
Node’. All of the manager services are Web Services
written in Java and hosted in a Globus Toolkit 4.0 [7]
container, but they can also be hosted in any other
container that implements the SOAP protocol [8].

We show how the client interacts with the control
services, chooses the dataset, stages the dataset, loads
and runs the analysis code, and finally merges and
presents the result to the user in the following sections.
There are two types of communication shown in the
architecture diagram; the thick green arrows represent
Grid calls and the thin black arrows represent Java
Remote Method Invocation (RMI) calls. Architecture

that we present here is ideal for custom data analysis

on the Grid.

3.1 Client

We have built a client by modifying the Java
Analysis Studio (JAS) version 3.0 [9]. JAS provides a
rich graphical client interface that is used to develop
analysis code, navigate through datasets and graphic
objects, and to graphically display the results of the
analysis. The JAS client application was enhanced
with three plug-in modules that communicate with the
Web Services by making calls to them.

In order for the client to contact the IPA service
and make Web Service calls, it first needs to mutually
authenticate with the Web Service using a Grid
credential. For this purpose, a Grid proxy plug-in is
available on the JAS Grid client that creates a proxy
certificate that can be used to authenticate the client
with the service; the service could then authorize the
client to use certain resources, depending on the policy
of the Grid site. Once the authentication and
authorization has succeeded a session is created on the
session service; all calls made from the client to the
Grid happen in the context of this session.

3.2 Interacting with the Control Services

 At the heart of the system design is the Interactive
Parallel Dataset Analysis Session Manager Service (or

Figure 2. Architecture of IPA reference
implementation.

IPA
Plug-in

Shared Disk
Space

GRAM Server

worker

worker

worker

. . .
start jobs

Grid Compute Element

Scheduler

Session
Service

Remote
Data

Interface
(AIDA

Manager)

Worker
Registry
Server

Dataset
Location

Splitter
Service

Locator
Service

GridFTP
large file

GridFTP
split files

Control
Service

Dataset
Catalog
Service

Managing
Class

Loader

GRAM
Client

Submit
Jobs when
session is

started

Ready
Signal with
Reference

Class
Request

Get
Data

Create
Session

Remote
Data
Plug-in

Dataset
Catalog
Plug-in

IPA Service Element

Start
Polling

for Data

Activate
Session

Select
Dataset

2

3

5 4 Start Polling
for Messages

7

1 Obtain Proxy 6 Initiate
Analysis Run

Grid Storage Element

JAS Grid Client

 4

simply the session service). The session service
creates a session for each dataset analysis. A dataset
can only be analyzed in the context of this session. In
addition to the session service, there are other services
at the manager layer that are partly Grid-based (IPA
manager service) and partly RMI based (RMI
Manager). We will examine the list of components
that forms this manager service in detail in the
following sections.

The client is authorized and authenticated by the
control service using the proxy that was created by the
client. Similarly, the client authenticates the service
for its validity using the mutual authentication
mechanism that happens when the client initially
contacts the Web Service. The control service creates
an instance of session service and returns the ‘pointer’
to this instance to the client. Since Web Services are
stateless, creating an instance of a Web Service means
creation of an instance of Web Service ‘resources’ that
can be accessed and operated by this Web Service.
Globus Toolkit™ (version 4.0) implements Web
Service Resource Framework (WSRF) [10] that
provides the details on how to record the intermediate
states of an instance of a Web Service in the Web
Service resources.

When a session is started by the session service a
set of analysis engines is started on the machines in the
Grid where the analysis will be performed. The
analysis engines are started using the GRAM server
[11] that is provided as part of a standard Globus
software base installation for a Grid site. The GRAM
server places the request to start a pre-configured
number of analysis engines on the job scheduler. The
number of nodes is determined by the Grid site policy
that is pre-configured on the manager service. Once the
analysis engines are started on the Grid, the number of
analysis engines started for this session is remembered
in the session service in the session service resource.

3.3 Choosing the dataset

The dataset is chosen from the Dataset Catalog
Service (DCS). The dataset catalog service is a Web
Service that allows us either to browse for an
interesting dataset, or to search for interesting data
using a query language that operates on the metadata.

The Catalog makes no assumptions about the type
of metadata stored in the catalog except that the
metadata consists of key-value pairs stored in a
hierarchical tree. Figure 3 shows a screen capture of
the dataset chooser dialog window that appears to the
user when they choose to add a dataset to a session.

3.4 Staging the Dataset

The dataset reference that is selected from the
dataset catalog service contains an ‘identifier’ that
uniquely identifies the dataset in the catalog. This
dataset must be submitted to the locator service that
will resolve the location of the dataset from the dataset
identifier. The location could be a URL to an FTP
server or a set of contiguous records in a database
server.

Figure 3. Dataset Catalog

In addition to the location of the dataset, the

locator service returns the location of the splitter
service, which is used to split the dataset. The splitter
service will import the dataset from the actual location
and split it into a pre-configured number of
approximately equal parts. The number of parts that the
dataset is split into depends on the number of analysis
engines started by the session service on the Grid
where analysis of dataset will take place. Once the
dataset is split through the splitter service, the
individual parts of dataset will be transferred using
Grid FTP protocol to the analysis worker nodes.

3.5 Staging the Analysis Code

The analysis of the dataset is performed by user
who provided analysis code. Our implementation
currently supports Java classes and PNUTS [12]
scripts. However, the framework could easily be used

 5

Notification messages
from Grid Service

Histograms objects
created from Dataset
Analysis File Logic

Information about the
hosts that has Analysis
Engines running.

Interactive Controls
for the Dataset
Analysis. Ability to
rewind, run, run
specific no of events
and stop analysis.

Java Analysis file
that contains logic
for analyzing the
dataset.

Histograms filling
up dynamically
from merged data
collected from web
service

Selected Dataset for
Analysis.

Figure 4. Screenshot of JAS with updated histograms

to support other languages. For example, C/C++ could
be supported with a macro-type interpreter such as the
ROOT framework [13]. The analysis engine is capable
of reading the dataset that was previously staged and
supplying the records from the dataset to the analysis
code. The analysis code accepts the records from the
dataset and processes the data to produce results.

3.6 Running the Analysis

Once the dataset and the analysis code are staged,
the analysis is ready to be started. Controls are
provided for users that allow them to run, pause or stop
the analysis at any instant, as well as rewind to start the
analysis from the beginning. After every iteration of
the analysis, changes can be made in the analysis code
and the new analysis code can be dynamically reloaded
and used to reprocess the same dataset.

3.7 Merging and presenting the results

The sample analysis code that we used for
processing our dataset in our implementation generates
histograms as output. Figure 4 shows a screen capture
of the client with these resulting histograms in the
upper right panel.

For our implementation we used the already
available Abstract Interfaces for Data Analysis
(AIDA) [14] – a language independent analysis toolkit
that has implementations in C++, Java and Python.
The analysis code makes use of the Java AIDA APIs

and generates histograms from the datasets.

As soon as the analysis begins, the intermediate

results from each individual analysis engines are
collected and merged at the Manager node by a special
manager service called the AIDA manager service. A
separate plug-in on the JAS client constantly polls the
AIDA manager with RMI calls to check for any
updated histograms. All of the RMI connections are
insecure, but we have implemented the system in such
a way that none of the RMI objects could be
instantiated without first creating a secure session with
the Web Service.

4 Discussion

In order to show the effectiveness of analyzing
datasets through our Grid system as compared to using
a local system, we collected some anecdotal
performance data. We took a sample analysis, a Java
algorithm that looks for Higgs Bosons in simulated
Linear Collider data and ran this on a dedicated 16-
node Open Science Grid (OSG) queue at SLAC. The
results are presented in Tables 1 and 2 below.

This simple examination of the times of various
steps in the process shows a good comparison of where
the bulk of the time is spent. For the local case, most
of the time is spent to download large datasets and to
execute the analysis on one processor. For the Grid
case, most of the time is spent in splitting and moving
the dataset. Moving the dataset is faster for the Grid

 6

case because the movement is over a local area
network instead of a wide area network. Without
looking at the scaling issues, there is a clear advantage
on the Grid case when the dataset is large.

Interesting results were observed by varying the
number of Grid machines available which is presented
in Table 2.

Table 2. Comparison of time to stage and
analyze a dataset by varying the nodes

available on the Grid.

Dataset (471MB) Stage
Time Number

of Nodes Move
Whole Split Move

Parts

Analysis
Time

1 node 63 s 120 s 105 s 330 s

2 nodes 63 s 120 s 77 s 287 s

4 nodes 63 s 115 s 70 s 190 s

8 nodes 63 s 117 s 65 s 148 s
16 nodes 63 s 124 s 50 s 78 s

The staging scaling is complicated and somewhat

counter-intuitive. The splitting varies little with the
number of nodes, because the splitter must iterate
through the entire dataset in all cases and only has a
very small input/output overhead for the number of
split files. Moving the split files has overhead that will
increase with the number of target files, but the
transfers are done in parallel. The result is that the
time taken slightly decreases as the number of nodes
increases.

The analysis scaling is fairly straightforward and
decreases with the number of processors. The
processing time as compared to the local case is not

1/16th because the local processor was 1.7 GHz and the
Grid processors were 866 MHz.

The following equations are fitted from the above
measurements where T is the time in seconds, X is the
dataset size in MB, N is the number of compute nodes,
and where we have used 5.3 seconds as a standard time
to run our sample Higgs Boson calculation on a 1 MB
dataset. The final equations are given in terms of X
and N. For the local case, we have

XT
XXT

TTT

Local

Local

analyzemoveLocal

5.11
3.52.6

=
+=

+=

and for the Grid case we have

NXXT
NXNXXT

TTTTTT
TTTT

Grid

Grid

analyzecodestagepartsmovesplitmoveGrid

analyzecodestagedatasetstageGrid

/)3.562(5338.0
/3.57)/6246(25.013.0

+++=
+++++=

++++=

++=

−−

−−

From these dependencies, we see two main
conclusions. First, for large dataset (> ~10 MB), the
time to transfer over the WAN dominates the process
(6.2X vs. 0.34X) and it is much better to use the Grid.
Secondly, for long analysis times, using the Grid gives
you a 1/N decrease in the analysis time. Figure 5
shows the surfaces of time dependencies on dataset
size and number of compute nodes for a sample case of
Higgs Boson analysis on Linear Collider data. The
Grid analysis (shown in blue), is clearly beneficial over
the local equivalent (shown in gold), for large datasets
and large number of compute nodes.

Figure 5. Analysis times (gold = local analysis, blue = Grid) as a

function of dataset size and number of compute nodes.

5 Related Works

In an effort similar to this work, the Condor [15]
project constructed the Distributed Batch Controller
(DBC) framework [16] that processes scientific data

Table 1. Comparison of time taken for
sample dataset analysis for local case vs. on

the Grid.

 Local Grid (16 nodes)
Get dataset

(dataset size: 471
MB)

32 mins
(over WAN)

-

Stage Dataset
(download whole

dataset + splitting +
dataset parts transfer)

- 174 s
(over LAN)

Stage Code
(bytecode size: 15

kb)
- 7 sec

Analysis 13 min 258 s

Total time 45 mins 4 min 19 sec

Local Analysis

Grid Analysis

 7

over the Internet. The DBC system differs from our
system at a fundamental level. The DBC stages data
and distributes executables while IPA provides a
development environment for scientists to dynamically
and interactively construct code to analyze the data. In
IPA, only a small amount of code needs to be re-
distributed as the user customizes and rapidly develops
the analysis code. In this sense, the IPA client is a full
service integrated development environment for
interactive Grid computing rather than batch
computing.

There are as many attempts of comprehensive
solutions for data analysis systems as there are batch
job submission systems including all those associated
with the Grid. Many work well within the design
parameters meant for batch systems. However, what
we are addressing in this paper is the more complicated
case of interactive analysis where the user needs an
agile and responsive environment.

6 Conclusion

We have described a framework and a reference
implementation that allows users to do interactive
analysis on Grids such as the Open Science Grid. The
framework is not specific to any particular science
application, although it does require record-based data.
Our reference implementation is particularly suited for
high-energy physics data analysis, but the framework
can easily be adopted for applications in other fields,
such as chemistry and biology, with a very high degree
of reusability.

We have shown that our reference implementation
has a performance that is suitable for interactive dataset
analysis. We have also shown that the framework
allows for a generically defined dataset that goes
beyond sets of physical files and even logical file
descriptions. The system is particularly advantageous
over a local analysis on a single processor for large
datasets and for complicated analysis algorithms.

Finally, we have shown that the main additional
requirements of the Grid submission site for interactive
analysis as we have defined it are the need for a fast
processing queue and a path unblocked by a firewall
from the computational nodes back to the client that is
to receive the merged results. With these requirements
satisfied, authors can use our framework to build
interactive dataset analysis services for their Grids.

7 Acknowledgements

This project was supported by the D.O.E. under
the SBIR Grant DE-FG03-02ER83556 and Tech-X
Corporation. We are also grateful to Dr. David Smithe
for helping with Figure 5.

8 References

[1] F. Berman, G.C. Fox, A.J.G. Hey, Grid Computing:
Making the Global Infrastructure a Reality, John Wiley &
Sons Ltd., New Jersey, 2005. The Global Grid Forum:
http://www.ggf.org. The Globus Alliance:
http://www.globus.org.

[2] I. Foster, C. Kesselman, S. Tuecke. “The Anatomy of the
Grid: Enabling Scalable Virtual Organizations,”
International J. Supercomputer Applications, 15(3), 2001.

[3] The Open Science Grid Project
http://www.opensciencegrid.org/

[4] Enabling Grids for E-sciencE (EGEE) project
http://public.eu-egee.org/

[5] The Large Hadron Collider Accelerator at CERN
http://lhc.web.cern.ch/lhc/

[6] The International Linear Collider at SLAC
http://home.slac.stanford.edu/aboutilc.html

[7] Globus Toolkit homepage: www.globus.org

[8] The W3C SOAP Specification.
http://www.w3.org/TR/soap/

[9] The Java Analysis Studio http://jas.freehep.org/jas3/

[10] The WS-Resource Framework. K. Czajkowski, D. F.
Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D.
Snelling, S. Tuecke, W. Vambenepe. March 5, 2004.

[11] Globus Resource Allocation Manager (GRAM), Globus
Project, 2006, http://www-fp.globus.org/gram/overview.html

[12] The PNUTS project -- http://pnuts.org/

[13] ROOT - An Object Oriented Data Analysis Framework
http://root.cern.ch/

[14] AIDA - Abstract Interfaces for Data Analysis
http://aida.freehep.org/

[15] Condor – High Throughput Computing
http://www.cs.wisc.edu/condor/

[16] C. Chen, K. Salem, and M. Livny, "The DBC:
Processing Scientific Data Over the Internet", 16th
International Conference on Distributed Computing Systems,
May 1996.

