
Effectively Presenting Call Path Profiles of
Application Performance

Laksono Adhianto, John Mellor-Crummey and Nathan R. Tallent
Department of Computer Science

Rice University
Houston, TX

Email: {laksono,johnmc,tallent}@rice.edu

Abstract—Call path profiling is a scalable measurement tech-
nique that has been shown to provide insight into the perfor-
mance characteristics of complex modular programs. However,
poor presentation of accurate and precise call path profiles
obscures insight.

To enable rapid analysis of an execution’s performance bot-
tlenecks, we make the following contributions for effectively
presenting call path profiles. First, we combine a relatively small
set of complementary presentation techniques to form a coherent
synthesis that is greater than the constituent parts. Second, we ex-
tend existing presentation techniques to rapidly focus an analyst’s
attention on performance bottlenecks. In particular, we (1) show
how to scalably present three complementary views of calling-
context-sensitive metrics; (2) treat a procedure’s static structure
as first-class information with respect to both performance
metrics and constructing views; (3) enable construction of a large
variety of user-defined metrics to assess performance inefficiency;
and (4) automatically expand hot paths based on arbitrary
performance metrics — through calling contexts and static
structure — to rapidly highlight important program contexts.
Our work is implemented within HPCTOOLKIT, which collects
call path profiles using low-overhead asynchronous sampling.

I. INTRODUCTION

Analyzing program performance to find performance bot-
tlenecks is still challenging work, especially for parallel ap-
plications. Although performance analysis tools have been
around for decades, the complexity of microprocessors con-
tinues to increase. Some new challenges include the impact of
shared-memory hierarchy such as false sharing, the growing
importance of thread-level parallelism, and the widespread use
of multi-level parallelism (short vectors, multiple functional
units, pipelining, multicore, hardware accelerators, multi-
socket and multi-node).

To identify performance bottlenecks effectively, perfor-
mance tools must gather both accurate and precise measure-
ments and attribute those measurements to source code. Tools
may also perform appropriate on-line and off-line analyses
to highlight areas of computational inefficiency at the source
code level. Finally, tools must present the results in a way that
engages the analyst, focuses attention on what is important,
and automates common analysis subtasks to reduce the mental
effort and frustration of sifting through a sea of measurement
details.

In this paper, we focus on techniques for effective presenta-
tion of call path profiles. While detailed traces are very useful

for identifying some kinds of bottlenecks, they are difficult to
collect accurately for long-running or large-scale executions.
As a consequence, we focus on call path profiles for three
reasons. First, for modern modular software, calling context
is essential for understanding many performance problems.
Second, using asynchronous statistical sampling, it is possible
to collect accurate and precise call path profiles for only a
few percent overhead [1]. Third, call path profiling can be
effectively applied to long-running and large-scale applica-
tions [15].

To enable rapid analysis of an execution’s performance
bottlenecks, we make the following contributions. First, we
combine a relatively small set of complementary presentation
techniques to form a coherent synthesis that is greater than
the constituent parts. When united within a single presentation
tool, these techniques uniquely and rapidly focus an analyst’s
attention on performance bottlenecks rather than on unim-
portant information. Second, we extend existing presentation
techniques to facilitate the goal of rapidly focusing an analyst’s
attention on performance bottlenecks. In particular, we (1)
synthesize and present three complementary views of calling-
context-sensitive metrics; (2) treat a procedure’s static struc-
ture as first-class information with respect to both performance
metrics and constructing views; (3) enable a large variety
of user-defined metrics to describe performance inefficiency;
and (4) automatically expand hot paths based on arbitrary
performance metrics — through calling contexts and static
structure — to rapidly highlight important performance data.

Our work is part of HPCTOOLKIT, an integrated suite of
open-source tools for measurement and analysis of program
performance on computers ranging from multicore desktop
systems to large supercomputers [1], [15]. HPCTOOLKIT
consists of four primary tools: hpcrun for collecting low-
overhead high-accuracy profiles using asynchronous statistical
sampling, hpcstruct for recovering static source code
structure, hpcprof for correlating dynamic profiles with
static source code structure, and hpcviewer for interac-
tively presenting the resulting experiment databases. This
paper discusses the principles that undergird hpcviewer.
To demonstrate hpcviewer’s capability, we analyze profile
data from a mesh generation benchmark and from real-world
applications for turbulent combustion and reactive flow.

II. PRINCIPLES OF EFFECTIVE PRESENTATION

Our presentation techniques are all derived from the basic
principle that the job of a presentation tool is to enable an ana-
lyst to rapidly pinpoint and quantify performance bottlenecks.
Based on this, we make the following observations.

a) Presentations should be flexible, showing data from
different perspectives: Calling-context sensitive measurements
can be viewed in different ways. For example, the user can
emphasize either the caller-callee (top-down) or the callee-
caller (bottom-up) relationship. Depending on the nature of
the performance problem, one view may be more informative
than another. A presentation tool that only supports one view
will not be as effective as one that supports multiple views. In
Section III, we introduce three different views supported by
hpcviewer that complement each other.

b) Presentations should avoid visual clutter that distracts
analysts from focusing on real problems: A set of performance
data often includes measurements for procedures that consume
very few resources and are therefore unimportant from the
perspective of diagnosing performance bottlenecks. A presen-
tation tool should deemphasize this data unless it somehow
becomes relevant. As described in Section V, hpcviewer
forces the user to approach performance data in a top-down
fashion. It is designed to keep attention focused on program
scopes where performance is of interest, where a program
scope is a program component like a procedure, loop and call
site.

c) Presentations should emphasize potential performance
bottlenecks: Tools should present performance data so as to
emphasize potential bottlenecks. For instance, an effective
presentation should guide users to rapidly drill down into a
context that represents a potential bottleneck. As shown in
Section VI, an handful of techniques can effectively locate
potential bottleneck.

d) Presentations should be scalable: An effective pre-
sentation should be able to handle any size of data, from small
to very large data, with modest memory requirements and
acceptable speed and responsiveness. To handle large amounts
of data, we need to process and store some data only when they
are needed. The discussion of scalability features implemented
in hpcviewer is presented in Section VII.

III. THREE COMPLEMENTARY CONTEXT-SENSITIVE
VIEWS

This section introduces three perspectives (known as views)
implemented in hpcviewer: Calling Context View, Callers
View and Flat View, as well as the integration of static and
dynamic program scopes in the three views. hpcviewer’s
input data consists of static program structure (such as files
and loops), dynamic calling context represented by a sequence
of <call site, callee> pairs (also called calling context tree or
CCT) and ”raw” metrics which are sample metrics generated
by the profiler. hpcviewer needs then to generate callers
tree and flat tree, followed by metrics attribution (Section IV).
Due to space constraints, the construction of callers tree and

1 f () {
2 g () ;
3 }

5 / / main r o u t i n e
6 m() {
7 f () ;
8 g () ;
9 }

(a) file1.c

1 / / r e c u r s i v e f u n c t i o n
2 g () {
3 i f (. .) g () ;
4 i f (. .) h () ;
5 }

7 h () {
8 f o r (. .) / / l 1
9 f o r (. .) / / l 2

10 }
(b) file2.c

Fig. 1: Example of a program that consists of two files:
file1.c and file2.c.

flat tree is not described in this paper, but interested reader
can find the details elsewhere [13].

A. Calling Context View

The Calling Context View is a top-down view that represents
an execution’s dynamic calling contexts or call paths. Using
this view, we can explore performance measurements of an
application in a top-down fashion to understand the costs
incurred by calls to a procedure in a particular calling context.

Figure 1 shows an example program that contains some pro-
cedures including a recursive procedure. From the execution
of this program, we can construct a calling context tree as
shown in Figure 2a. In this example, procedure g is called
from multiple routines, namely f , g and m, where each call
represents a distinct calling context, namely g1, g2 and g3
respectively. Using this view, we can explore performance
measurements of an application in a top-down fashion to
understand the full contexts in which costs1 were incurred
both across and within procedures.

Our toolkit distinguishes calling context precisely by in-
dividual call sites. Figure 3 shows the hpcviewer’s Call-
ing Context View. This top-down view attributes the costs
incurred within a scope to the scope’s full calling context.
Scopes represented in the Calling Context View include not
only procedures, but also loops and inlined code, as well as
individual statements. Each time a scope is sampled, its costs
are attributed to a calling context that represents a fusion of
the dynamic calling context gathered by our toolkit’s profiler,
represented by a sequence of <call site, callee> pairs, with
information about static program structure.

B. Callers View

The Callers View is a bottom-up view that enables the user
to look upward along call paths. This view is particularly use-
ful for understanding the performance of software components
or procedures that are called in more than one context. For
instance, a message-passing program may call MPI_Wait in
many different calling contexts. The cost of any particular call

1We use the term cost to include a multiplicity of metrics that are measures
of work (e.g., instructions), resource consumption (e.g., bus transactions), or
inefficiency (e.g., stall cycles).

g3 3 3

g2 5 1

g1 6 1

f 7 1

h 4 4

m 10 0

l2 4 4

l1 4 0

(a) Calling context tree
(top-down view)

gd 4 4

gc 4 4

fc 5 1

fd 4 4

gb 5 1

ga 9 4 fa 7 1h 4 4

fb 6 1

me 4 4

md 5 1

m 10 0

ma 3 3

mc 6 1

mb 7 1

(b) Callers tree (bottom-up view)

file2 9 8 file1 10 1

gx 9 4 fx 7 1hx 4 4 m 10 0

hy 4 0gz 5 1 gy 6 1

l2 4 4

l1 4 0 gv 3 3 fy 7 1

(c) Flat tree (static view)

Fig. 2: Three different views representing execution costs for
the code in Figure 1. Each node in the tree represents a
program scope. Each scope has three columns: the left column
is the name of the scope, the middle column is the inclusive
cost and the right column is the exclusive cost.
Note: alphanumerical subscripts are used to distinguish between
different instances of the same procedure. We use different labels
because there is no natural one-to-one correspondence between the
instances in the different views.

will depend upon its context. Serialization or load imbalance
may cause long waits in some calling contexts but not others.

Figure 2b shows the callers tree constructed from the calling
context tree (CCT) in Figure 2a. Note that with the Callers
View, procedure g in file2 (Figure 1b), which is represented
by node ga, can be clearly shown to have procedure g, m and f
as the callers (represented with nodes gb, ma, fb respectively).
By using the callers tree, it is easy to identify that the call of
g from f contributes the highest cost in procedure g.

Fig. 3: A Calling Context View of performance metrics for a
turbulent combustion application. The highlighted line shows
a potential performance bottleneck indicated by “hot path”
analysis.

Fig. 4: A Callers View for a sequential mesh generation
benchmark.

Figure 4 shows hpcviewer presenting a Callers View for
the MOAB mesh package, a component for representing and
evaluating structured and unstructured mesh data, developed
at Argonne National Laboratory. This view shows that the Intel
x86-64 compiler replaced calls to memset with its own opti-
mized implementation. From the Callers View, we see that the
routine _intel_fast_memset.A is called from two dif-
ferent callers. Overall, calls to _intel_fast_memset.A
account for 9.7% of the total L1 data cache misses in the
application. Of those, almost all (9.6%) come from the call to
memset by Sequence_data::create.

Fig. 5: A Flat View showing the attribution of cache misses
and cycles through routines, loops, and inlined code.

Fig. 6: Using a derived metric of floating-point waste to ana-
lyze the performance of loop nests of a turbulent combustion
code.

C. Flat View

The Flat View correlates performance data to an applica-
tion’s static structure such as load module, file, procedure,
loop and statement. All costs incurred in any calling context
by a procedure are aggregated together in the Flat View. This
complements the Calling Context View, in which the costs
incurred by a particular procedure are represented separately
for each call to the procedure from a different calling context.

Figure 2c shows a flat view tree constructed from the calling
context of Figure 2a. With this flat view, we can easily identify

that file2 has the highest exclusive cost over all files in
the view; similarly, procedures g and h have the highest
exclusive cost among all procedures in the view. Figure 5
shows a real example of using Flat View in a benchmark
used to study the performance of the MOAB mesh package.
This view shows how the costs associated with the procedure
MBCore::get_coords are attributed to a loop containing
inlined code.
hpcviewer also supports a feature that we call flattening.

Flattening elides a scope and shows its children instead.
However, applying flattening to a childless scope (a leaf) has
no effect. Since scopes are displayed in a hierarchical fashion,
flattening eliminates layers of hierarchical structure (e.g., files
and procedures) that prevent making direct comparisons be-
tween loops in different routines. Figure 6 shows a Flat View
where flattening is used to facilitate comparing costs for loops
in different routines.

D. Presenting Calling and Static Contexts

1) Fine-grain hierarchical attribution of costs to static pro-
gram structure in the flat view: Figure 5 uses hpcviewer’s
Flat View to focus on the performance of a single rou-
tine MBCore::get_coords of the mbperf_IMesh mesh
benchmark. The rightmost column of metrics shows the exclu-
sive total cycles attributed to each scope. We can see that all of
the cycles spent in the routine (18.9% of the total cycles in the
execution) is spent in the highlighted loop nested within the
routine. Within the loop, we can track attribution of this cost
throughout a hierarchy of inlined code that represents the ap-
plication of the find operation on the sequence_manager
that is called on line 686. The fourth line of the navigation
pane shows an inlined loop to search sequences implemented
using the red-black tree implementation from the C++ stan-
dard template library. The next line represents calls to the
SequenceCompare operator that are inlined into this loop.
Looking at the second metric column, we can see that applying
the comparison operator accounts for 19.8% of the L1 data
cache misses in the execution. Selecting any of the other lines
in the lower left navigation pane navigates the source pane to
show the corresponding source code associated with the file
and line numbers. While this example showcases the ability
of our performance analysis toolkit to collect and attribute
data with astonishing precision in the presence of inlining,
that is not the purpose of including it here. For the purpose
of this paper, the example highlights the viewer’s presentation
capabilities in the Flat View to attribute performance metrics
throughout a hierarchy of program structure within a routine
that includes nested loops, multiple levels of inlining, as well
as individual source lines.

2) Integration of static and dynamic program structure in
the Calling Context View: Figure 3 shows a Calling Context
View of the S3D turbulent combustion code developed at
Sandia National Laboratory. The sequence of lines shown
in the navigation pane represents a call path through the
application. At the top of the call chain is main shown in plain
black (as opposed to a blue hyperlink) because it corresponds

to routines that have no associated source code. Their imple-
mentations are provided in binary-only form in the language
run-time library for the compiler. On subsequent lines, this
view shows a long call chain from the main routine down into
the chemkin_m_reaction_rate_ routine, where 41.4%
of the inclusive cycles is spent computing reaction rates for the
chemical species involved in the simulation. It is notable that
in this top-down Calling Context View of the metric data for
the execution, we see that the call chain presented includes
both dynamic context (procedure calls) and the loop nests
surrounding these procedure calls. Our toolkit uses information
gleaned from the line map of an executable to determine when
a call site is nested within a loop. The viewer then presents an
integrated view that includes both static and dynamic context.

IV. COMPUTING CONTEXT-SENSITIVE METRICS

Once the Callers View and Flat View are constructed based
on the Calling Context View, the next step is to attribute
metrics to each scope in the views. We use the term metric to
represent measurements such as resource consumption (e.g.,
bus transactions) as inefficiency (e.g., stall cycles). This sec-
tion begins with a simple method for computing metric values
for each view and then introduces a technique to correctly
handle recursive programs.

A. Metrics

The Calling Context View shown by hpcviewer repre-
sents a data structure that we call a canonical calling context
tree (canonical CCT). This data structure is synthesized by
hpcprof by integrating information about static program
structure into dynamic call chains. Consequently, a scope in
the CCT is classified as either a dynamic or static scope.
A dynamic scope represents caller-callee relationship, while
a static scope represents static program structure such as
load module, file, procedure, loop, line statement or inlined
procedure.

We define two types of calling context metrics: inclusive
and exclusive. Inclusive metrics for a particular scope reflect
costs for the entire subtree rooted at that scope while exclusive
metrics, to some extent, do not. We have found it useful
to distinguish between two types of exclusive metric values
because although one often thinks of procedure frames in the
context of call chains, it is natural to think of loops in the
context of a procedure. Therefore, we adopt a hybrid definition
of exclusive metrics based on whether metric values for a
scope x should be computed with respect to dynamic call
chains or a procedure’s static hierarchy:

1) Dynamic: sum every descendant statement of x that is
not across a call site.

2) Static: sum every child statement of x.
The first rule indicates that the exclusive cost of a dynamic
scope is the total of all its descendant statements within
procedure frame, while the second rule specifies that the
exclusive cost of a static scope is the sum of the exclusive cost
of its children statements. For instance, the CCT in Figure 2a
shows that procedure h has a direct child loop l1, which is a

parent of loop l2; and the exclusive cost of l1 does not include
the cost of l2 (rule 2) since l2 is not a statement. Furthermore,
the flat tree in Figure 2c shows that procedure h can be both
a static procedure as represented by node hx, and a dynamic
call site as represented by node hy . As a static procedure,
h includes the cost of all statements in l2 (rule 2), but as a
dynamic call site scope, its exclusive cost only includes the
cost of its invocation as shown in node hy (rule 1).

The computation of metrics in the viewer consists of three
different steps:

1) initialization : initialize the exclusive and inclusive costs.
2) multiple view creation: create Callers View and Flat

View and compute the metrics attribution.
3) finalization : refine the metrics for all views. This step

is needed to compute metrics of parallel programs [14].
In the initialization step, the viewer computes exclusive

values and inclusive values. Here we describe how these are
computed. Initially, a CCT contains metric values only at
sample points, which are typically leaf scopes. We define
these values to be exclusive metrics for scopes. For a scope
x, the exclusive value mE(x) for metric m is defined to be
the number of samples at x multiplied by the sample period.
For any dynamic scope x, we initialize mE(x) = 0. We then
compute exclusive values for each node x using the formula:

mE(x) =



∑
s∈desc(x)

mE(xs) x: procedure frame∑
s∈child(x)

mE(xs) x: other static

mE(x) x: dynamic

(1)

When x is a dynamic scope, case three simply returns the
cost’s initial value. When x is a static scope that is not a
procedure frame, the second case uses the Static definition.
Here, the function child(x) returns every scope that is a child
of x. When x is a procedure frame, the first case applies the
Dynamic definition. The function desc(x) returns every scope
s that is a descendant of x and for which the path between x
and s contains no call site.

Using exclusive metric values from Equation 1, we define
inclusive values for metric m at node x as:

mI(x) =


nC(x)∑
c=1

mI(xc) +mE(x) x: interior

mE(x) x: leaf

(2)

This simple inductive definition computes an interior scope’s
inclusive metric value from its children’s inclusive values and
its own exclusive value. The function nC(x) refers to the
number of children for scope x.

Figure 3 clearly shows the importance of presenting in-
clusive and exclusive costs of a metric. In this figure, the
leftmost column in the table of performance metrics displays
the total number of cycles (PAPI TOT CYC) consumed by
each program scope in the Calling Context View. Seven lines
from the bottom of the figure, we see that the data for the

loop at line 82 of file integrate_erk.f90. We see that
this scope accounts for a significant inclusive number of cycles
(97.9%), but the exclusive cost of the loop is negligible, only
0.0%. Most of its work is in rhsf_ procedure it calls (8.7%)
and its descendants, instead of the loop itself.

Call path profile measurements collected by HPCTOOLKIT
correspond directly to the Calling Context View. From exclu-
sive metric costs in the Calling Context View, hpcviewer
derives other views in a step we refer to as multiple view
creation. For the Callers View, we collect the cost of all
samples in each function and attribute that to a top-level
entry in the Callers View. Under each top-level function, we
can look up the call chain at all of the contexts in which
the function is called. For each function, we apportion its
costs among each of the calling contexts in which they were
incurred. We compute the Flat View by traversing the calling
context tree and attributing all costs for a scope to the scope
within its static source code structure. The Flat View presents a
hierarchy of nested scopes from the load module, file, routine,
loops, inlined code and statements.

The finalization step is used to scalably compute metrics for
large-scale parallel executions; details are described in [14].
In large parallel executions, it is not scalable to store all
information for all processes/threads in memory. Instead,
HPCTOOLKIT summarizes the profile data using statistical
metrics such as arithmetic mean, min, max and standard
deviation. The finalization step in hpcviewer then assembles
intermediate summary metric values into final values.

B. Computing Metrics for Recursive Programs

A subtle issue arises when computing inclusive metrics for
the Callers View and the Flat View for recursive programs.
If one naı̈vely aggregates the inclusive costs of a recursive
procedure when building either the Callers View or the Flat
View, then one will count the inclusive time spent along a
chain of recursive calls multiple times.

To avoid this problem, it is necessary to conditionally
attribute the inclusive cost of a scope in the Callers View.
The following is a sketch our solution; for the full solution,
we refer the reader elsewhere [13]. Assume the CCT contains
multiple instances of scope x. We define an instance of scope
x be exposed if it contains no ancestor instance of x. To form
the inclusive cost for x within the Callers View, we sum all
inclusive costs of x’s exposed instances within the Calling
Context View.

Figure 1 shows an example of a recursive program separated
into two files: file1.c (Figure 1a) and file2.c (Figure
1b). Routine g (Figure 1b) can behave as a recursive function
depending on the value of the condition branch (Line 3-4).
Figure 2a shows an example of the call chain execution of the
program annotated with both inclusive and exclusive costs.
Computation of inclusive costs from exclusive costs in the
Calling Context View involves simply summing up all of the
costs in the subtree below. In this figure, we can see that on
the right path of the routine m, routine g (instantiated in the
diagram as g1) performed a recursive call (g2) before calling

routine h. Here we can see that g1 and g3 are exposed, while
g2 is not since it has g1 as its ancestor. Although g1, g2 and g3
are all instances from the same routine (i.e., g), we attribute a
different cost for each instance. This separation of cost can be
critical to identify which instance has a performance problem.

Figure 2b shows the corresponding scope structure for the
Callers View and the costs we compute for this recursive
program. The procedure g noted as ga (which is a root node
in the diagram), attributes a different cost to g than to other
instances as noted as gb, gc and gd. For instance, on the first
tree of this figure, the inclusive cost of ga is 9, which is the
sum of exposed g in CCT (Figure 2a): the inclusive cost of
g3 (which is 3) and g1 (which is 6). We do not attribute the
cost of g2 here since it is not exposed (in other term, the cost
of g2 is already included in g1).

Inclusive costs need to be computed similarly in the Flat
View, where the inclusive cost is the sum of exposed scopes in
Calling Context View. For instance, in Figure 2c, The inclusive
cost of gx, defined as the total cost of all instances of g, is 9
and this is consistently the same as the cost in Callers View.
The advantage of attributing different cost to each calling
context for g is that it enables user to identify which instance
is the responsible for performance losses.

V. FOCUSING AN ANALYST’S ATTENTION

It is not sufficient for a tool to indiscriminately present
all performance data. Instead, a tool should guide the user
to focus on what is important. In this section, we describe
how hpcviewer facilitates rapid analysis by (1) encourag-
ing top-down analysis, (2) streamlining repetitive tasks, (3)
automatically expanding hot paths, and (4) supporting a rich
set of derived metrics.

A. Top-Down Analysis

hpcviewer was carefully designed to focus user attention
on program scopes that are costly according to a metric of
interest. The following design aspects help preserve that focus.
• hpcviewer forces the user to approach performance

data in a top-down fashion. All access to the program
source code is through the navigation pane. For each
of the three views of performance data (calling context,
callers, and flat), the navigation pane presents a tree or
a forest of trees. Scopes at each level of the nesting in
the navigation pane are sorted according to the selected
metric column.2

• There is no direct access to metric data from the source
pane. An earlier design enabled the user to select a
scope (e.g., loop nests) in the source pane to call up
its associated metrics. We found this to be distracting:
it encouraged users to inspect performance data that was
often of little or no importance (i.e., its metric values
were small). If a scope is important, its metric data will

2While the user typically sorts scopes in the navigation pane by a selected
metric column, the user can sort according to the source scopes in the
navigation pane itself, but this capability arose from design orthogonality
rather than a particular need.

cause it to rank highly in the navigation pane and invite
inspection. Our new design forces users to analyze in a
top-down fashion.3

• Providing inclusive metrics in the calling context tree
view enables casual users of a library to avoid looking
deeper than a library’s application programming interface
(API) since all of the cost of using API functions is
accumulated at the interface functions.

• Performance data is sparse; there is no representation
for a scope in hpcviewer unless there is a non-zero
performance metric or it is a parent of another scope that
meets this criteria. This keeps attention focused on scopes
where performance is of interest.

• Any metric table cell where data is zero is left blank.
Blank cells can be understood at a glance; explicitly
representing zeros invites the user to gaze upon cells only
to find that they contain no useful information.

• To help the user observe metrics, instead of displaying
naively long and painful numbers, hpcviewer only
displays the metrics with scientific notation with simple
and intuitively readable format.

B. Fine Tuning: Removing Distractions / Human Factors

To improve the usability of hpcviewer, we fine-tuned its
design in two ways to reduce repetitive operations for users
that arose when expanding chains of static or dynamic context
in the navigation pane.

An earlier design of hpcviewer displayed information
about a call site on a separate line from that about its callee.
While being able to navigate to the source code for the call site
in addition to the source code for the callee in hpcviewer
is valuable, representing callee and call site information on
separate lines doubled the length of call chains. In practice,
we found opening these long call chains to be tedious. Our
current design for hpcviewer presents both call site and
callee information on a single line in the navigation pane,
which shortens the length of the call chains in hpcviewer
by half and halves the effort to open them a link at a time
(Figure 3 for Calling Context View and Figure 4 for Callers
View).

The icon of a box with a right-facing arrow () represents
a call site; the box represents the call site, and the arrow
points at the name of the routine called. Clicking on the call
site icon navigates the source pane to the call site. Clicking
on the routine name navigates the source pane to the callee.
The inclusive cost of a metric for a line representing a call
site/callee pair represents the inclusive cost attributed to the
callee in that context, namely the cost of the callee and any
routine it calls; the exclusive cost on that line represents just
the cost attributed to the callee alone in that context (without
the routines it calls) plus any cost associated with the call site
line itself.

3A side benefit of this omission is that we avoid needing to address the
many-to-one mapping problem that arises when the user selects a routine that
is called in many places.

C. Hot path analysis.

In programs with layered software abstractions, it can be
tedious to individually open each link along a deep chain
of calling contexts. Hot path analysis enables the user to
instantaneously drill down into a nested context to pinpoint
where costs were incurred. To apply hot path analysis, the user
selects a column in the metric pane, a program scope in the
navigation pane, and then presses the hot path button denoted
by the flame. hpcviewer will automatically expand scopes
along the hot path for the selected metric in the subtree rooted
at the selected scope according to the following procedure.
Given a program scope x, let Cmax(x) return the child of x
with the maximum value of metric mI . Then, let the hotpath
H(x) for a scope x be the scopes identified by the following
formula:

H(x) =

{
H(Cmax(x)) mI(Cmax(x)) ≥ t×mI(x)

x otherwise
(3)

That is, a hot path H(x) extends from a scope x to include
one of its children when the inclusive cost attributed of the
child scope accounts for t or more of mI(x) (the inclusive
cost attributed to x). In practice, we found a threshold of t =
50% to be most useful; the hot path ends at a scope when its
inclusive cost is t or less of the parent’s inclusive cost.

Hot path analysis can be quickly applied in different sub-
trees (to identify the principal consumer of a cost within a
subsystem) using different cost metrics; it is not just something
that one applies to the root of the calling context tree.
In hpcviewer, the threshold t can be adjusted through
the hpcviewer preference dialog box. In Figure 3, hot
path analysis detects a potential performance bottleneck in
chemkin_m_reaction_rate_ routine, where 41.4% of
the inclusive cycles are spent computing reaction rates for the
chemical species involved in the simulation.

D. Derived Metrics

Computer systems today typically provide access to a rich
set of hardware performance counters that can directly mea-
sure aspects of program performance. Most common are coun-
ters in the processor core and memory hierarchy that enable
the user to collect measures of work, resource consumption,
and inefficiency. Some systems, e.g., Blue Gene P, also contain
counters that enable the user to measure other events related
to communication traffic. Despite the rich set of counters
typically available, values of individual counters are of limited
use by themselves. For instance, knowing the count of cache
misses for a scope is useless. Only when combined with other
information such as the number of instructions executed or
the total number of cache accesses does the data become
useful. While users do not mind a bit of mental arithmetic
and frequently compare values in different columns to see
how they relate for a scope, doing this for many scopes is
exhausting. To address this problem, hpcviewer provides a
mechanism for defining derived metrics. A derived metric is
defined by specifying a spreadsheet-like mathematical formula

that refers to data in other columns in the metric table by using
$n to refer to the value in the nth column.

Combined with the other capabilities of hpcviewer, de-
rived metrics are much more useful than they first appear.
First, a column filled with a derived metric value can be used
to sort scopes in the navigation pane. Being able to sort by
a derived metric is much more useful than simply sorting by
one of the terms upon which it was based and computing
the derived values with mental arithmetic; sorting on derived
metrics improves user productivity. Second, derived metrics
can focus user attention on tuning opportunities rather than
just the raw costs that measured metrics typically represent.
For instance, rather than sorting scopes in a scientific program
to find out where the most cost was incurred, for tuning it is
often more useful to understand where the most important
inefficiencies are. A good way to focus on inefficiency is with
a derived waste metric. Depending upon what the user expects
as the rate-limiting resource (e.g., floating-point computation,
memory bandwidth, etc.), the user can define an appropriate
waste metric (e.g., FLOP opportunities missed, bandwidth not
consumed) and sort by that. Specifically, we have used a
metric of floating-point waste, which we define as (the total
number of cycles spent in a scope) × (the peak number of
floating-point operations per cycle that the processor supports)
− (the actual number of floating-point operations executed
in the scope) [3]. This metric tells us how many additional
FLOPS could have been executed in a scope if we were
always computing at peak rate. Sorting by this metric will rank
order scopes to show that contain the greatest opportunities
for improving overall program performance. This metric may
highlight loops where
• a lot of time is spent computing efficiently, but the

aggregate inefficiencies accumulate,
• less time is spent computing, but the computation is rather

inefficient, and
• scopes such as copy loops that contain no computation

at all, which represent a total waste of time according to
the metric.

Beyond identifying opportunities for tuning with a waste
metric, the user can compute a companion derived metric
relative efficiency metric to help understand how easy it might
be to improve performance. A scope running at very high
efficiency will typically be much harder to tune than running
at low efficiency. For our floating-point waste metric, we
computed relative efficiency by dividing measured FLOPS by
potential peak FLOPS. For scopes that rank high according
to a waste metric, a relative efficiency metric can indicate the
ease of improving the code.

VI. EFFECTIVE ANALYSIS

A. Effective Analysis with Derived Metrics

Here we show how derived metrics help to pinpoint and
quantify scalability bottlenecks in context. We compute a
derived metric that quantifies scaling loss by scaling and
differencing call path profiles from a pair of executions [3].

Figure 6 shows an application of the aforementioned
floating-point waste metric to a turbulent combustion code.
By computing and sorting by the floating point waste metric,
we discovered that the most floating-point waste (13.5%) was
attributed to a flux diffusion loop that was streaming data
through the memory hierarchy; code for this loop is shown
in the source pane. The relative efficiency metric shows that
this loop is running at 6% efficiency and represents a fat target
for optimization. By using a tool to transform the loop nest
to exploit data reuse in cache (by applying loop scalarization,
fusion, unswitching, and unroll and jam), we were able to
improve its running time by a factor of 2.9. The second scope
shown in the figure represents a loop within the math library’s
exponential routine.

The relative waste metric indicated that this was running
at about 39% efficiency, which means that it is fairly tightly
tuned. Using the Callers View view (not shown) to identify
some of the contexts in which the exponential routine was used
showed that there are opportunities for improving performance
by using a vectorized version of the primitive, which makes
better use of the instruction pipeline by filling it with multiple
independent recurrences for separate computations.

B. Effective Analysis with Multiple Views

Often analysis begins with the Calling Context View to
see if there is any calling context in the computation that
particularly dominates in terms of cost. This can be done
by using hot path analysis on a selected metric which then
shows the call path of a potential performance bottleneck (if
found). If not, the user typically moves to the Callers View to
understand how much cost is incurred by each procedures at
the top of the rank ordered list. In this case, the user typically
investigates a few of the important contexts. Once the user
knows what procedures and contexts are costly, the user can
move to the Flat View to understand the costs associated with
a procedure along with its loops and inlined code.

The three views play different roles. The Calling Context
View provides a context-centric presentation from the callers’
perspectives. The Callers View provides a view of calling
context from the perspective of each callee. The Flat View
support detailed analysis of all costs incurred by a static
context.

C. Load Imbalance Identification

Load imbalance is one of the most common scaling prob-
lems in single-program multiple-data (SPMD) scientific appli-
cations. It is caused by uneven distribution of work that forces
some processes to idle between synchronization points. We
have developed a scalable technique to visualize and identify
load imbalance of parallel programs by using call path profiles
and scalable post-mortem analyses [14].

As a case study, we choose PFLOTRAN, a scientific pro-
gram for modeling multi-phase, multi-component subsurface
flow and reactive transport using massively parallel comput-
ers [7]. We ran PFLOTRAN on the Cray XT5 partition of
Jaguar, located at Oak Ridge National Laboratory’s National

Fig. 7: A Calling Context View of PFLOTRAN’s load imbal-
ance.

Center for the Computational Sciences. The PFLOTRAN test
problem was a steady-state groundwater flow problem in
heterogeneous porous media on an 850× 1000× 80 element
discretization with 15 chemical species per cell.

We can identify a load imbalance by sorting by total
inclusive idleness summed over all MPI processes and per-
forming hot path analysis to drill down into the potential load
imbalance context, which is the main iteration loop at line
384 in timestepper.F90. As shown in Figure 7, the first
graph from the top shows scattered inclusive total cycles. The
second and the third graph shows the sorted metric and the
histogram respectively, confirming that there is uneven work
partition among processes.

Although this case study of an execution of PFLOTRAN is
not an exhaustive analysis, this case study does illustrate how
having aggregate idleness metrics attributed to each node of
an execution’s canonical CCT can help pinpoint, quantify, and
understand sources of performance load imbalance.

VII. SCALABLE PRESENTATION

Scalability is highly critical in any aspects of performance
analysis tools, especially when the profile data is taken from
a large scale parallel program that may run for days or even
weeks on hundred thousands of cores. HPCTOOLKIT was de-
signed with scalability in mind. Its performance measurement
has significantly low overhead [15] and its data analysis is
able to process thousands of MPI processes [14].

We have designed hpcviewer to support scalability as
well. Data presentation in hpcviewer is based on tree-
tabular presentation, which is generally more scalable than
a graph-oriented presentation, both in rendering speed and
visibility. Using a tree to represent calling contexts is much
clearer than a graph for complex applications. Using table
to represent metrics allows a user to select which metric to
observe and to automatically search for a possible performance
bottleneck.
hpcviewer is based on Eclipse and configured with lazy-

startup, which means all components (such as text editors,
graph and HTML viewer) are loaded when needed. Further-
more, in order to analyze large-scale application that runs
with thousands of processors, we summarize metrics of all
processors into mean, covariance, min and max [14], instead
of displaying thousands of metrics. Finally, the Callers View is
constructed dynamically, ensures scalability for both execution
time and memory consumption since we store and process data
only when needed.

VIII. RELATED WORK

Presentation of program performance can be either graphi-
cal or tabular. Tools that can be included in the first categories
are CrayPat [9], VTune [6], LoopProf [8] and TAU [10].
Tabular-based data presentation tools include gprof [16], Intel
PTU [5], parallel performance wizard [11], Apple’s Shark [2],
Sun Studio [12] and hpcviewer. While graphical presenta-
tion style can be more appealing, we have found that tabular
style is clearly more scalable and informative.

To the best of our knowledge, there is no other tool
that support all three views. gprof [16], Parallel performance
wizard [11], Sun Studio [12] and Apple’s Shark [2] all
support the Calling Context View with inclusive and exclusive
metrics. These tools, however, do not support Callers View.
Intel PTU [5] supports Callers View and Flat View (without
hierarchical structure), but no inclusive metric is supported.

Some tools support (semi) automatic performance analysis.
CrayPat [9] provides a feature to automatically pinpoint and
quantify load imbalance in parallel applications. It is also
possible to automatically detect scalability problems in TAU
by using PerfExplorer [4].

The importance of derived metrics is widely acknowledged.
Intel PTU supports a kind of derived metrics to compare
data between different experiments. TAU/PerfExplorer allows
a much higher flexibility by using a script to define derived
metrics and even to automatize repetitive tasks [4].

Some tools only support specific programming models or
platform. Parallel performance wizard only supports some

PGAS languages [11]. Intel PTU [5], Intel VTune [6], Apple’s
Shark [2], Sun Studio [12] and CrayPat [9] supports only
for specific platforms. In contrast, our toolkit is designed for
language independent, application independent and problem
independent.

In summary, while none of the key features of hpcviewer
is strikingly novel when taken in isolation, our focus has been
on what results from their combination. In hpcviewer, we
have selected and married a relatively small set of comple-
mentary presentation techniques to form a coherent synthesis
that is greater than the constituent parts.

IX. CONCLUSIONS AND FUTURE WORK

We developed hpcviewer as part of HPCTOOLKIT for
performance analysis of serial and parallel codes. The features
that it supports today grew out of our own experiences of
trying to analyze and tune scientific applications. hpcviewer
was designed based on four principles: (a) support of multi-
ple perspectives which complement each other for observing
profile data, (b) avoidance of visual clutter, (c) emphasis on
potential performance bottleneck, and (d) scalability. These
four principles are critical for guiding the user to perform
analysis in a sea of performance data.

To our knowledge, hpcviewer is the only tool available
that supports all three views of context-sensitive performance
data: Calling Context View, Callers View, and Flat View. We
have shown that each view complements each other and can
discover different performance problems. hpcviewer’s top-
down approach guides a user to focus on what is important,
and its profile data is displayed in such a way as to reduce
distractions. Our tool is also unique that it combines both
static structure and dynamic call paths as shown in the Calling
Context View and Flat View.
hpcviewer’s features effectively increase user productiv-

ity. Derived metrics quickly highlight tuning opportunities.
The hot path analysis streamlines a repetitive task and rapidly
highlights important program contexts.
hpcviewer is designed to be scalable. Its components

are loaded on-demand, it supports dynamic creation of the
Callers View, tabular-based data presentation and metrics
summarization for parallel applications with large number of
processors.

Overall, we believe that we have converged on a useful
corpus of features that serves the intended purpose. Using
our tools, often the user can pinpoint performance bottlenecks
effectively, that need attention in a matter of minutes.

Ongoing work includes additional focus on scalability. As
we apply hpcviewer to programs with large-scale paral-
lelism, other issues that may be important are replacing our
XML format for profiles with a more compact binary format,
and enhancing hpcviewer so that it need not have data for
all processes resident in memory at once.

Other ongoing work includes identifying data reuse patterns
and suggesting program transformations to improve program
performance. Another item of interest is effectively presenting
metrics correlated with object code. Although HPCTOOLKIT

supports a simple text-based presentation of such information,
it is cumbersome to use.

X. ACKNOWLEDGMENTS

HPCTOOLKIT would not exist without the contributions of
the other project members: Mike Fagan and Mark Krentel.

This research used resources at both Argonne’s Leadership
Computing Facility at Argonne National Laboratory, which is
supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357; and the
National Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for performance
analysis of optimized parallel programs. Concurrency and Computation:
Practice and Experience, 22(6):685–701, December 2009.

[2] Apple Computer. Shark. http://developer.apple.com/performance/.
[3] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dot-

senko. Scalability analysis of spmd codes using expectations. In
ICS ’07: Proceedings of the 21st annual international conference on
Supercomputing, pages 13–22, New York, NY, USA, 2007. ACM.

[4] Kevin A. Huck, Oscar Hernandez, Van Bui, Sunita Chandrasekaran, Bar-
bara Chapman, Allen D. Malony, Lois Curfman McInnes, and Boyana
Norris. Capturing performance knowledge for automated analysis. In SC
’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
pages 1–10, Piscataway, NJ, USA, 2008. IEEE Press.

[5] Intel Corporation. Intel PTU. http://software.intel.com/en-us/articles/
intel-performance-tuning-utility/.

[6] Intel Corporation. Intel VTune performance analyzers. http://www.intel.
com/software/products/vtune/.

[7] Richard Tran Mills, Chuan Lu, Peter C Lichtner, and Glenn E. Ham-
mond. Simulating subsurface flow and transport on ultrascale computers
using PFLOTRAN. Journal of Physics Conference Series, 78(012051),
2007.

[8] Tipp Moseley, Daniel A. Connors, Dirk Grunwald, and Ramesh Peri.
Identifying potential parallelism via loop-centric profiling. In CF ’07:
Proceedings of the 4th international conference on Computing frontiers,
pages 143–152, New York, NY, USA, 2007. ACM.

[9] Luiz De Rose, Bill Homer, and Dean Johnson. Detecting application
load imbalance on high end massively parallel systems. In Anne-Marie
Kermarrec, Luc Bougé, and Thierry Priol, editors, Euro-Par, volume
4641 of Lecture Notes in Computer Science, pages 150–159. Springer,
2007.

[10] Sameer S. Shende and Allen D. Malony. The Tau parallel performance
system. Int. J. High Perform. Comput. Appl., 20(2):287–311, 2006.

[11] Hung-Hsun Su, M. Billingsley, and A.D. George. Parallel performance
wizard: A performance analysis tool for partitioned global-address-space
programming. Parallel and Distributed Processing, 2008. IPDPS 2008.
IEEE International Symposium on, pages 1–8, April 2008.

[12] Sun Studio. Sun Studio Performance Analyzers. http://www.sunstudio.
com.

[13] Nathan R. Tallent. Performance Analysis for Parallel Programs: From
Multicore to Petascale. Ph.D. dissertation, Department of Computer
Science, Rice University, March 2010.

[14] Nathan R. Tallent, Laksono Adhianto, and John M. Mellor-Crummey.
Scalable identification of load imbalance in parallel executions using call
path proles. In The 2010 ACM/IEEE Conference on Supercomputing (to
appear), New York, NY, USA, 2010.

[15] Nathan R. Tallent, John M. Mellor-Crummey, Laksono Adhianto,
Michael W. Fagan, and Mark Krentel. Diagnosing performance bot-
tlenecks in emerging petascale applications. In Proc. of the 2009
ACM/IEEE Conference on Supercomputing, pages 1–11, New York, NY,
USA, 2009. ACM.

[16] Dominic A. Varley. Practical experience of the limitations of gprof.
Software: Practice and Experience, 23(4):461–463, 1993.

