
Message Driven Programming with S-Net:
Methodology and Performance

Frank Penczek, Stephan Herhut
Sven-Bodo Scholz, Alex Shafarenko

University of Hertfordshire, UK
{f.penczek,s.a.herhut,

s.scholz,a.shafarenko}@herts.ac.uk

JungSook Yang
Chun-Yi Chen

Nader Bagherzadeh
University of California, Irvine
{jyang12,cchen29,nader}@uci.edu

Clemens Grelck
University of Amsterdam, Netherlands

c.grelck@uva.nl

Abstract—Development and implementation of the coordina-
tion language S-NET has been reported previously. In this paper
we apply the S-NET design methodology to a computer graphics
problem. We demonstrate (i) how a complete separation of
concerns can be achieved between algorithm engineering and
concurrency engineering and (ii) that the S-NET implementation
is quite capable of achieving performance that matches what
can be achieved using low-level tools such as MPI. We find this
remarkable as under S-NET communication, concurrency and
synchronization are completely separated from algorithmic code.
We argue that our approach delivers a flexible component tech-
nology which liberates application developers from the logistics
of task and data management while at the same time making it
unnecessary for a distributed computing professional to acquire
detailed knowledge of the application area.

I. INTRODUCTION

The idea of representing an application as a set of compo-
nents coordinated by a program written in a separate language
goes as far back as the language Linda [1], but it has never
achieved prominence. We argue that one reason for this may
have been that with previous approaches the separation be-
tween algorithmic and coordination code has always remained
incomplete. Indeed, coordinating sequential programs involves
splitting, synchronizing and rejoining sequences, at which
moments data is exchanged and the meaning of any part of a
program potentially ceases to be self-contained. To understand
the context of a unit of computation, one needs to see the
coordination plan for the whole application. However, if so
what is the point of writing that plan in a different language?
One might as well stay with the language of choice and
use, for instance, a message-passing library, such as MPI, for
parallelization.

Coordination is often loosely referred to as “orchestration”
thus invoking a musical analogy. If one were to follow it,
one might also remark that the orchestral score is often
impenetrable to a player, who has to rely on the conductor
for the general musical intent. By contrast, software crucially
relies on hierarchical abstraction for its maintainability; there
is no conductor in the picture, instead every part has to be clear
to its “player”, i.e. the interpreting eye of a programmer, all by
itself, without detailed knowledge of the application’s “grand
design”. The coordination language S-NET, which we discuss
in this article, wields this crucial power of encapsulation.

How is this achieved? First of all, the root cause of the
mutual penetration of coordination and computation codes
under any existing paradigm of coordination is the fact that
the computational code even at the unit level contains a
sequence of state transitions with at least part of the state
being (potentially) exposed to coordination. As the experience
accumulated in the S-NET project shows [2], this is completely
avoidable. All that is required is a set of properly encapsulated
units, each being a self-contained function of value parameters
received only via the explicit parameter-passing mechanism,
and each producing output value parameter-list messages for
others. The state-transition behaviour of the functions should
be hidden so that no further input into the function is possible
until its termination. Such functions (called “boxes” in S-NET
terminology) can be written in any language as long as it is
guaranteed that they do not use any mutable static data: a new
invocation of a box on the same parameter tuple must always
produce the same results. Boxes can thus be relocated from
processor to processor between invocations, and since they do
not hold state, they can also be replicated at will.

The state-machine behaviour required for a distributed algo-
rithm can now be achieved completely outside the boxes by a
coordination language. The interface between the coordination
layer and the box language involves neither concurrency
aspects nor the data concept of the box language. Boxes
appear in the coordination program in fully abstract form:
as box names and box type signatures that list parameters
without defining value sets. The extreme, total separation is not
desirable since boxes may signal application-specific decisions
that affect coordination. For this purpose S-NET allows them
to communicate integer scalars (integers are the universal
language of all abstract machines) to and from the coordination
language, but that is all that can ever be communicated “in the
clear” across the box interface.

Box execution can always be concurrent since boxes cannot
interact with one another in the course of execution. In this
sense, the execution is 100% data-driven. Data movement
between boxes remains the only concern of the coordination
language. It now encompasses all aspects of concurrency,
including synchronization, throttling, threading, etc. We shall
dwell a little on two peculiar aspects of data movement under
coordination: topology and flow inheritance.

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.61

410

2010 39th International Conference on Parallel Processing Workshops

1530-2016/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPPW.2010.61

405

A. Topology

is the static part of the information about message desti-
nations. A coordination language based on boxes does not
have to enforce static routing of messages, but in many cases
dynamic routing would break the box abstraction. Indeed,
a box function producing messages for another box would
need to know where that box may be found. Unless the
boxes participating in the exchange are replicas of the same
box, this destroys the locality of interpretation (i.e. requires
the knowledge of the aforementioned grand design for un-
derstanding a single component). On the other hand, static
routing, while obviating destination information in messages,
introduces unwelcome variety at the unit level of coordination:
boxes may have several (different for different boxes) output
routes, which have to be associated with the destination boxes
by coordination languagefacilities. General network descrip-
tion mechanisms are quite unwieldy (see, for example, the
algebra of flownomials [3]). To avoid this, S-NET limits all
boxes to a single-input-single-output (SISO) configuration.
The coordination layer can easily split a single stream of
messages into several substreams, based on the data type
and type constraints of the recipients. The converse problem,
namely, merging independent data streams into one for the
purposes of single input can change the concurrent behaviour
of the application. The S-NET solution is to allow for
nondeterministic mergers that effectively merge messages in
the order of arrival thus weakening the negative effects of
confluence. This way instead of offering a variety of many-
to-many connectors to the coordination programmer, S-NET
can limit itself to only four generic SISO-to-SISO (optionally)
nondeterministic network combinators. As a result, network
construction can be hierarchically described in S-NET by an
algebraic formula, which looks somewhat similar to regular
expressions in a Kleene algebra.

B. Inheritance

is the ability to expand units of application code without
breaking their abstraction. The form of inheritance utilized in
OOP is not very useful for coordination since OOP inheritance
is object-centric. In the proposed scheme objects are stateless
and transient, so the emphasis shifts back towards the pro-
cessing components. Since a flat-list message assembled from
opaque parameter values is the basic communication quantum,
S-NET provides a subtyping solution for such messages. They
are treated as opaque records, i.e. sets of label-value pairs,
with the subtyping relation being the inverse set inclusion
relation on label sets. For example, a component expecting
a record {a, b} can also accept {a, c, b} (by ignoring the
value of c) as a subtype of the input type. The coercion
to the supertype and the formation of the argument tuple
by sorting the label-value pairs in the parameter list order
with a subsequent stripping of the labels happens in the
coordination layer; a box function is always fed the correct
value lists for box execution. One of the most potent features
of S-NET is the peculiar form of binary inheritance that takes
into account the pipelined nature of distributed computation.

Since any record can safely be expanded with extra items,
S-NET transfers the items unmatched at the box inputs to
each of the output records of the box (unless an identically
labeled item is included in it already, a form of override).
As a result, a chain of boxes operating on a message can
process a certain subset of it each, while being oblivious of
(but not thus destroying) the rest of the message. This is
the S-NET concept of flow inheritance. It is our experience
that flow inheritance dramatically simplifies coordination of
complex applications as it improves the abstraction and self-
containment of components.

The rest of the paper is organized as follows. Section II
introduces an example application, which is a ray tracing
algorithm. Section III provides an outline of the S-NET
language. Section IV discusses the programming of ray tracing
in S-NETṪhe subsequent section contains some performance
figures obtained by direct measurement. Section VI presents an
account of related work and finally there are some conclusions.

II. RAYTRACING

Ray tracing is a well-known technique of rendering a 2D
pixel images of a 3D scene model by tracing paths of light
back from the eye of an imaginary observer through pixels
in an image plane and by simulating the effects of their
encounters with the objects of the scene illuminated by a
source of light [4].As illustrated in Fig. 1, the primary ray
is shot through each pixel in the image plane and tested for
intersection against the objects in the scene. When the closest
intersection is found, the pixel value is computed based on
the characteristic of the object material. Rays are continually
generated until either the end of the scene or the maximum
ray depth level is reached.

As each ray is cast to every object, the majority of the
rendering time is spent calculating intersections. In order to
enable efficient ray tracing, we use the Bounding-Volume
Hierarchy (BVH) algorithm [5]. It builds a hierarchical repre-
sentation of 3D objects that makes the traversal of the nodes in
search for intersections more efficient. More precisely, when
adding an object to the BVH, it inserts the bounding volume
that contains the object at the optimal place in the hierarchy
using a branch-and-bound algorithm, which minimizes the cost
estimation based on the surface area [6].

Algorithm 1 Ray Tracing Algorithm : it loops over the entire
image, casting a single ray per pixel.

1: /* Input : Scene Information */
2: /* Output: 2D Rendered Image */
3: scene ← construct a Bounding Volume Hierarchy (BVH)

based on the input scene
4: for each pixel in the image plane do
5: ray ← construct the primary ray from the center of

projection through pixel
6: color ← Trace(ray, scene) /* See Algorithm 2 */
7: end for

411406

Fig. 1. Image rendering via ray tracing. A primary ray is cast and tested for
intersection with objects. At the closest hit point, reflective ray R1, shadow
ray S1, and transmitted ray T1 are generated, each of which is also tested for
intersection with the objects in the scene.

Algorithm 2 Trace Algorithm : it follows the ray, and if it finds
a closet hit, it decides the pixel color based on ray interactions
with the objects. It selects the background color by default.

1: /* Input : ray, scene */
2: /* Output: a shade of a pixel */
3: if ray depth < MAX RAY DEPTH then
4: hitinfo ← Cast(ray, scene)
5: if hitinfo is not null then
6: color ← Shader(hitinfo)
7: end if
8: end if

Algorithm 1 provides the pseudo code of ray tracing process
that we used in this paper, and Algorithm 2 describes the
procedure of tracing rays and deciding the shade of a pixel.
The Cast function in Algorithm 2 traverses the BVH data
structure, which contains the objects of the scene, to find the
closest intersection between the ray and the objects. When it
finds a hit, it calculates the shade of the pixel considering the
reflective, refractive, shadow ray interactions.

The highly computation intensive nature of ray tracing
and the fact that each pixel of an image can be rendered
independently of all others make ray tracing amenable to
aggressive parallelization. Indeed, many attempts have been
made at implementing ray tracing on distributed systems and
multicore architectures [7], [8]. The implementation we use in
this paper distrubutes an image evenly across all cluster nodes
and processes these indepentently. The root process collects
all sub-results and assembles the completed scene.

III. DISTRIBUTED S-NET

S-NET turns functions written in a standard programming
language (C, for example) into asynchronously executed, state-
less stream-processing components, termed boxes. Each box is
connected to the rest of the network by two typed streams: one
for input and one for output. Messages on these typed streams
are organized as non-recursive records, i.e. sets of label-value
pairs. The labels are subdivided into fields and tags. The fields
are associated with values from the box language domain; they
are entirely opaque to S-NET. Tags are associated with integer
numbers that are accessible both on the coordination and on

the box level. Tag labels are distinguished from field labels by
angular brackets. Operationally, a box is triggered by receiving
a record on its input stream. It applies the box function to
the record. In the course of function execution the box may
communicate records on its output stream. Once the execution
of the box function has ended, the S-NET box is ready to
receive and process the next record on the input stream.

On the S-NET level a box is characterized by a box
signature: a mapping from an input type to a disjunction of
output types. For example,

box foo ((a,) -> (c) | (c,d,<e>));

declares a box that expects records with a field labeled a and
a tag labeled b. The box responds with an unspecified number
of records that either have just field c or fields c and d as
well as tag e. The associated box function foo is supposed to
be of arity two: the first argument is of type void* to qualify
any opaque data; the second argument is of type int.

The box signature naturally induces a type signature.
Whereas a concrete sequence of fields and tags is essential
for the proper specification of the box interface, we drop the
ordering when reasoning about boxes in the S-NET domain
and turn tuples of labels into sets of labels. Hence, the type
signature of box foo is {a,} -> {c} | {c,d,<e>}. We
call the left hand side of this type mapping the input type and
the right hand side the output type.

To be precise, this type signature makes foo accept any
input record that has at least field a and tag , but may well
contain further fields and tags. The formal foundation of this
behaviour is structural subtyping on records: Any record type
t1 is a subtype of t2 iff t2 ⊆ t1. This subtyping relationship
extends to multivariant types, e.g. the output type of box foo:
A multivariant type x is a subtype of y if every variant v ∈ x
is a subtype of some variant w ∈ y. Again, the variant v is
a subtype of w if and only if every label λ ∈ v also appears
in w. Subtyping on input types of boxes raises the question
what happens to the excess fields and tags. As mentioned
previously, S-NET supports the concept of flow inheritance
whereby excess fields and tags from incoming records are
not just ignored in the input record of a network entity, but
are also attached to any outgoing record produced by it in
response to that record. Subtyping and flow inheritance prove
to be indispensable when it comes to getting boxes that were
designed separately to work together in a streaming network.

It is a distinguishing feature of S-NET that it neither intro-
duces streams as explicit objects nor that it defines network
connectivity through explicit wiring. Instead, it uses algebraic
formulae to describe streaming networks. The restriction of
boxes to a single input and a single output stream (SISO) is
essential for this. S-NET provides four network combinators:
static serial and parallel composition of two networks and
dynamic serial and parallel replication of a single network.
These combinators preserve the SISO property: any network,
regardless of its complexity, is an SISO entity in its own right.

Let A and B denote two S-NET networks or boxes. Serial
combination (A..B) constructs a new network where the

412407

output stream of A becomes the input stream of B, and the
input stream of A and the output stream of B become the input
and output streams of the combined network, respectively. As a
consequence, A and B operate in pipeline mode. Parallel com-
bination (A|B) constructs a network where incoming records
are either sent to A or to B and the resulting record streams
are merged to form the overall output stream of the com-
bined network. The type system controls the flow of records.
Each network is associated with a type signature inferred by
the compiler. Any incoming record is directed towards the
subnetwork whose input type better matches the type of the
record. If both branches match equally well, one is selected
non-deterministically. The parallel and serial combinators have
their infinite counterparts: serial and parallel replicators for a
single subnetwork. The serial replicator A*type constructs an
infinite chain of replicas of A connected by serial combinators.
The chain is tapped before every replica to extract records that
match the type specified as the second operand. The parallel
replicator A!<tag> also replicates network A infinitely, but
the replicas are connected in parallel. All incoming records
must carry the tag; its value determines the replica to which
a record is sent.

There is one “stateful” entity in S-NET, called synchrocell.
It provides the only means in S-NET to combine two or
more existing records. Remember that the opposite direction,
splitting a record into two or more records, can easily be
achieved by any box. Syntactically, a synchrocell consists of
comma-separated list of type patterns enclosed in [| and
|] brackets, for example [| {a,b,<t>}, {c,d,<u>} |]. The
synchrocell holds incoming records which match one of the
patterns until all patterns have been matched. Only then are
the records merged into a single one, which is released to the
output stream. A match happens when the type of the record is
a subtype of the type pattern. The pattern also acts as an input
type specification of the synchrocell: it only accepts records
that match at least one of the patterns.

As described so far, S-NET is an abstract notation for
streaming networks of asynchronous components. In partic-
ular, there is no notion of computing resources in S-NET, nor
does S-NET make any specific assumptions about the exe-
cution environment. Distributed S-NET [9] is a conservative
extension of S-NET that introduces the concept of abstract
compute nodes as an organizational layer on top of the logic
network of boxes defined by standard S-NET. Again, let A
denote an S-NET network or box. we introduce two additional
placement combinators as follows. Static placement A@num
places the box or network A onto compute node num for
execution. Indexed dynamic placement A!@<tag> places the
execution of network or box A onto the node identified by
the value of tag on a per-record basis. More precisely, every
incoming record is routed through a replica of A instantiated
on the compute node determined by the value of tag.

We deliberately restrict ourselves to plain integer values
for identifying compute nodes to retain the advantages of
an abstract model as far as possible. The concrete mapping
of numbers to machines is implementation-dependent. Our

solver	

solver	

@node 1	

@node 2	

@node 3	

splitter	

 solver	

 merger	

 genImg	

sect,
<node>,
...

pic,
...

chunk,
... scenes,

<nodes>
<tasks>

net raytracing_stat
{
box splitter((scene, <nodes>, <tasks>)

-> (scene, sect, <node>, <tasks>, <fst>)
| (scene, sect, <node>, <tasks>));

box solver ((scene, sect) -> (chunk));
net merger ((chunk, <fst>) -> (pic),

(chunk) -> (pic));
box genImg ((pic) -> ());

} connect

splitter .. solver!@<node> .. merger .. genImg

Fig. 2. Overall design for a simple fork-join model.

prototype implementation of Distributed S-Net is based on
MPI where numbers correspond to MPI task identifiers.

Readers are referred to [10], [11], [12] for a more thorough
presentation of the general language design and to [9] for more
information on the design and implementation of Distributed
S-NET.

IV. RAY TRACING IN S-NET

Raytracing lends itself nicely to concurrent execution. All
rays can be traced individually allowing for top-level coarse
grain parallelism. To start with, we want to capture this
concurrency by a simple fork-join approach.

A. A simple fork-join model in S-NET

We create three major components, a splitter, a solver, and
a merger and we combine these in a pipeline-like fashion as
shown in Figure 2. The splitter divides the overall task into
sections, which are subsequently computed by instances of
the solver, each of which is executed on an individual MPI
node. After the solvers have dealt with the individual sections,
the merger collects all the resulting image chunks into an
overall result picture which is written to a file by means of
a box genImg. Note that the entire distribution of data and
re-collection of results on the master node is being triggered
by the use of the @-symbol in the index splitter. It ensures
that the value of the tag <node> is interpreted as the MPI-
rank (processing node) that executes the corresponding solver
instance. Therefore, the scheduling is controlled by the splitter
component, which identifies the individual sections of work
and attaches <node> tags to the records. Also note that the
signatures of the individual boxes only define the parts of the
data to be manipulated; the actual records may contain extra
fields which are preserved by flow inheritance. The tag <fst>
is an example of this.

413408

init	

 [{}->{cnt=1}]

[]

{pic}	

{chunk}	

merge	

 [{cnt}
 ->{cnt+=1}]

[]

<tasks> == <cnt>	

chunk,
<fst>,
...

pic,
<cnt>,
...

chunk,
...

chunk,
...

pic,
chunk,
<cnt>, ...

pic,
<cnt>,
...

net merger
{

box init ((chunk, <fst>) -> (pic));
box merge ((chunk, pic) -> (pic));

} connect
((init .. [{} -> {<cnt=1>}])
| []

)
.. ([| {pic}, {chunk} |]

.. ((merge
.. [{<cnt>} -> {<cnt+=1>}]

)
| []

)
)*{<tasks> == <cnt>} ;

Fig. 3. Merger network for re-combining subimages into a complete picture.

Most of the components could easily be derived from
the existing C-code. Using the C interface for S-NET (see
[10] for details), only small wrapper functions needed to be
created. The only component that could not be mapped directly
to a C-implemented box was the merger. This was due to
the fact that the merger needs to combine several chunks
arriving asynchronously within separate records while boxes
can only ever see one record at a time. Therefore, we created
a sub-net named merger in which we specified the step-wise
synchronisation of chunks in terms of two further components:
an init box and a merge box. The init box creates an initial
version of the resulting picture from the first chunk of work
(tagged by a flag <fst> by the splitter component), which
serves as an accumulator throughout the merging process. An
n-fold application of the box merge is achieved by placing
it under a serial replication combinator. Figure 3 shows the
details of the merger net. The init box is followed by a filter
which adds a flag <cnt> initialised by the value 1. This flag
is used to count the number of subimages that have been
incorporated into the result image already. Since only the first
chunk needs to be processed by the init box, we also provide
a bypass to the initialisation path for all the other records
containing further chunks. This is done by means of an empty
filter box which is parallel to the initialisation path.

After the initialisation, we have a star which implements
the merging with the remaining chunks. In each unfolding
(iteration) of the star, we first have a synchrocell, which
synchronises the accumulator held in {pic} with yet another

chunk. The resulting joint record, containing the accumulated
picture and a chunk to be inserted, is presented to the merge
box which outputs the combined picture. The insertion of a
new chunk is reflected in an increment of the flag <cnt>
as defined by the subsequent filter. Once the counter equals
the overall number of tasks, which is kept in another, flow-
inherited flag <tasks>, the accumulated picture is output
from the merger network. The reader may wonder why we
have a bypass parallel to the merge branch within the star.
This is due to the fact that the star combinator does not feed
any records back, but instead unrolls into copies of its operand.
As a consequence, all but the first chunks not yet processed
need to be bypassed to the next instance of the star.

While the network presented so far serves its purpose per-
fectly well, imbalances in the distribution of objects within any
given scene quickly lead to limited scalability on clusters with
more than 2 processing nodes. To improve on this situation, a
dynamic workload balancing scheme had to be put into place.

B. Fork-Join with dynamic scheduling

Here, the strict separation of application and concurrency
engineering as it is enforced in S-NET pays off. Only very
little modification to the basic solution described so far was
required in order to achieve dynamic scheduling. The basic
idea is to get the <node> flag to represent the availability of
the processor identified by the value of that flag for computing
an arbitrary section on it. We can enable the splitter box to
output sections which, initially, do not contain a node flag. As
a result, we now have two kinds of computing task streaming
towards the solver component: those that do have a node flag
attached to them, and those that do not. We can process the
former straight-away by using the solve box while we need to
queue the others to wait for node tokens. These node tokens
can then be taken from tasks that arrive back from solvers.
This modification of the S-NET solution presented so far
can be achieved by simply replacing the solver@<node>
component from Figure 2 by the network segment shown in
Figure 4.

Here, we see that the solve box directly links into a filter
which separates the resulting image chunk from the node
token. Both these activities happen now on the individual
nodes for all those sections that actually do come with a node
token. All other sections just bypass the distributed solver.
The reunited streams of computed chunks, node tokens, and
remaining sections are then fed into either a synchrocell,
which combines the remaining section with a just released
node token, or a bypass, which enables the computed chunks
to leave the solver segment. Those sections that have been
combined with a new node flag are brought to a new instance
of the distributed solver by means of a surrounding star. This
unfolding of the start takes place until all sections have been
transformed into chunks of the resulting picture.

Since the remaining part of the S-NET presented in Sec-
tion IV-A is oblivious of the node tag, it can be utilised in the
dynamic setting without modification.

414409

{chunk}	

solve	

[{chunk,<node>}
 ->{chunk};
 {<node>}]

@node <node>	

sect,
...

[]

sect;
<node>

sect,
<node>,
...

chunk,
<node>,
...

chunk;
<node>

{sect}	

<node>	

[]

chunk

sect,
<node>

(((solve .. [{chunk, <node>}
-> {chunk}; {<node>}]

)!@<node>
| []

)
.. ([] | [| {sect}, {<node>} |])

) * {chunk}

Fig. 4. Solver segment for dynamically scheduled work load distribution.

V. PERFORMANCE

We have conducted several experiments using the original
C/MPI implementation and S-NET solutions with and without
dynamic load balancing, and recorded the runtime of each
using a scene of 3000× 3000 pixels.

The experiments were run on an 8-node cluster where each
node contains two Intel PIII 1.4GHz CPUs and 1024MB
of RAM. The nodes are connected by a standard 100Mbit
ethernet network and all nodes have access to a shared file
system.

For the dynamic load balancing solution we have exper-
imented with several scheduling algorithms and found that
block scheduling and a simple variant of factoring [13] pro-
duces the best results. In the latter case, the scheduler divides
the problem into several batches of sections, where in each
batch the sections are of the same size. The section size
decreases from batch to batch by a certain factor. For example,
suppose a scene of 3000×3000 pixels is split along the y axis
by dividing it into 48 section. One possible scheduling is to
split the scene into two batches with the first batch containing
24 sections of size 93 and the second batch the remaining 24
section of size 32.

The results for several task sizes with varying token num-
bers are shown in Fig. 5(left) for factoring scheduling and
in Fig. 5(right) for block scheduling. As can be seen in the
diagrams, performance was generally best when 16 tokens
were made available to the system. With this number of tokens
each node holds two tokens on average which maps one solver
instance to each CPU of the node. In the block scheduling
case 32 tokens could be beneficial, but a further investigation
is required to establish this. Performance is generally at its
worst when the number of tasks equals the number of tokens.
In this case all sections are immediately mapped to the nodes
and the benefits of dynamic scheduling are lost.

To test the scalability of our approach, we compared the
runtimes of all variants on one to eight nodes. Fig. 6 shows the
results of these experiments. The runtimes on one single node
clearly show the overhead the S-NET runtime system adds to
the application when compared to the original MPI implemen-
tation (labelled MPI in the figure). However, from only two
nodes onwards the overheads are amortised. For better utili-
sation of the computing resources we added two more static
variants that spawn two instances of the solver per node (one
per CPU). These experiments came at almost no additional
development cost: by adding one more index split combinator
to the solver of Fig. 2 ((solver!<cpu>)!@<node>) and
marking input data with a <cpu> tag of values 0 and 1, the
desired effect was achieved for the S-Net implementation. The
MPI implementation did not require any code changes but
the experiments were re-run with two processes per node by
starting 2n MPI jobs on n nodes. The runtimes of this exper-
iment are labelled “S-NET Static 2CPU” and “MPI 2 Proc/N-
ode” in Fig. 6. As the S-Net runtime system automatically
utilises multiple cores if available, the limited performance
gain was to be expected. The MPI implementation however
could benefit substantially from utilising the second CPU of
each node. We also include runtimes for dynamic scheduling
using number of nodes ·8 tasks and tasks/2 tokens with block
scheduling (labelled S-NET best dynamic) to present the
compelling improvements on runtimes this technique offers.
For comparison between these implementations, Fig. 6(right)
shows the speed-up of the 2 CPU MPI version versus the
2 CPU static S-Net implementation and the best dynamic
scheduling run.

VI. RELATED WORK

The coordination aspect of the proposed stream processing
language is related to a large body of work in data-driven coor-
dination; see [14] for a survey of this area. An early approach
that similar to S-NET treats coordination and computation as
orthogonal concerns is Linda [1]. Like S-NET, Linda is not a
“complete” programming language; it exclusively administers
process creation and the coordination of computation, which
is implemented in a separate language. Implementations of the
Linda model can be found for many programming languages;
for example [15], [16], [17] to cite a few. Unlike S-NET with
its stream based communication model, Linda uses a shared
tuple space for communication, which allows processes to
interact with each other by adding, reading and removing data
tuples from the shared space.

The earliest proposal that is related more closely to our work
is, to the best of our knowledge, the coordination language
HOPLa from the Utrecht University’s Ariadne project [18]. It
is again a Linda-like coordination language, which uses record
subtyping (called the “flexible records” concept) in a manner
similar to S-NET, but it does not handle variants as we do,
and it has no concept of flow inheritance. Also, HOPLa has
no static “wiring” and does not use types to establish a stream
configuration.

415410

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

8	
 16	
 32	
 48	
 64	
 72	

Ru
n$

m
e	

in
	
 S
ec
on

ds
	

Number	
 of	
 Tokens	

8	
 Nodes,	
 Simple	
 Factoring	
 Scheduling	

8	
 Tasks	

16	
 Tasks	

32	
 Tasks	

48	
 Tasks	

64	
 Tasks	

72	
 Tasks	

0	

20	

40	

60	

80	

100	

120	

140	

8	
 16	
 32	
 48	
 64	
 72	

Ru
n$

m
e	

in
	
 S
ec
on

ds
	

Number	
 of	
 Tokens	

8	
 Nodes,	
 Block	
 Scheduling	

8	
 Tasks	

16	
 Tasks	

32	
 Tasks	

48	
 Tasks	

64	
 Tasks	

72	
 Tasks	

Fig. 5. Runtimes on 8 nodes using simple factoring scheduling (left) and block scheduling (right) on a 3000 by 3000 pixels scene

1	
 Node	
 2	
 Nodes	
 4	
 Nodes	
 6	
 Nodes	
 8	
 Nodes	

S-­‐Net	
 Sta0c	
 941.87	
 402.75	
 217.97	
 158.58	
 132.66	

S-­‐Net	
 Sta0c	
 2	
 CPU	
 829.74	
 329.14	
 204.23	
 143.33	
 121.99	

MPI	
 650.99	
 405.95	
 213.43	
 163.83	
 136.23	

MPI	
 2	
 Proc/Node	
 401.8	
 211.77	
 139	
 105.61	
 87.01	

S-­‐Net	
 Best	
 Dynamic	
 953.18	
 228.52	
 119.77	
 76.39	
 61.84	

0	

200	

400	

600	

800	

1000	

1200	

Ru
n$

m
e	

in
	
 S
ec
on

ds
	

Absolute	
 Run$mes	
 on	
 1	
 -­‐	
 8	
 Nodes	

S-­‐Net	
 Sta0c	
 S-­‐Net	
 Sta0c	
 2	
 CPU	
 MPI	
 MPI	
 2	
 Proc/Node	
 S-­‐Net	
 Best	
 Dynamic	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	
 1.4	
 1.6	

1	

2	

4	

6	

8	

Speed-­‐Up	

N
um

be
r	

of
	
 N
od

es
	

Speed-­‐Up	
 vs.	
 MPI	
 2	
 Processes/Node	

S-­‐Net	
 Best	
 Dynamic	
 S-­‐Net	
 Sta7c	
 2CPU	

Fig. 6. Runtimes on 1 - 8 nodes, comparing the original MPI implementation against S-NET variants (left) and speed-up of each implementation measured
against the original MPI implementation with 2 processes per node (right)

Another early source to mention is the language SISAL [19],
which pioneered high-performance functional array processing
with stream communication. SISAL was not intended as a
coordination language, though. Consequently, it makes no
attempt to separate communication from computation. Still,
it is important to acknowledge the stream variables of SISAL
as an early example of task decomposition using streams.

Likewise functionally based is the language Hume [20].
Hume’s conceptual design is not that of a pure coordina-
tion language, but a fully-featured programming language,
primarily intended for embedded and real-time systems. Pro-
gramming in Hume follows a layered approach. Values and
functions are defined in a fully-functional expression language;
interaction between functions is defined in a coordination lan-
guage. The finite-state machine based coordination language
connects any desired amount of inbound and outbound “wires”
to a function to allow for interaction between the components
(functions) of a program. Originating from Hume’s primary
domain and the related necessity for space and time bound
analysis [21], the expression language is an inherent part of
the system and cannot be freely chosen as in S-NET. For the
same reason, dynamically evolving network structures, which
are possible in S-NET using serial and parallel replication, are
not expressible in Hume.

We shall also cite the work on the language Eden [22]. It is,
like S-NET, based on the concept of stream communication.
In Eden streams are lazy lists produced by processes defined

in Haskell using a process abstraction. They are explicitly
instantiated and coordinated using a functional-style coordi-
nation language. Also, like S-NET, Eden defines a connection
topology for the processing entities; it however deploys the
processes completely dynamically and even allows completely
dynamic channels. Eden has no provision for subtyping and
does not integrate topology with types.

Another recent advancement in coordination technology is
Reo [23]. The focus of the language Reo is on streams, but it
concerns itself primarily with issues of channel and component
mobility, and it does not exploit static connectivity and type-
theoretical tools for network analysis.

Thematically closely related to the presented distributed
runtime system of S-NET are many systems that aim to
orchestrate computation in a distributed memory setting. We
cite here FASAN [24], a coordination language primarily de-
signed for recursive numerical algorithms. A FASAN program
describes the data-flow graph of an application whose nodes
are sequential modules written in an external computation
language like C or Fortran. Distributed execution of a FASAN
program is implemented using PVM.

The ongoing trend towards to parallel chip architectures and
the need for parallel software outside the classical application
domains have stimulated research into programming languages
with explicit concurrency constructs. They are: Charm++ [25],
X10 [26], Chapel [27] and Cilk++ [28], to name a few. In one
way or another, they all extend a sequential base language

416411

to express general computations by explicit concurrency man-
agement constructs. In contrast to our work on S-NET, they
neither aim at a separation of concurrency and application
engineering nor are they based on the concept of stream
processing.

Outside the domain of high-level programming languages
we acknowledge integrated problem solving environments for
scientific computing, e.g. SciRun [29]. These are graphical
environments that allow the construction of simple data flow
style applications based on standard component models for
distributed computing. They show a surprising similarity with
graphical representations of S-NET, the difference being that
we use graphical notation merely for illustrative purposes,
whereas integrated problem solving environments take graph-
ics first and generally lack the foundations of a programming-
language based solution.

VII. CONCLUSION

A design methodology based on an extreme separation of
concerns has been presented using ray tracing as an example.
It has been shown that an application can be split into subject-
specific, fully encapsulated modules and coordination code
that connects them into a streaming network. A coordina-
tion language specifically designed for this approach, called
S-NET, has been outlined and the programming style it pro-
motes briefly exposed. Experimental evidence has been pre-
sented to confirm the viability of coordination using S-NET:
not only the example application does not lose performance
after recoding it as a coordinated network, in fact due to
the asynchronous, message-driven nature of the coordination
program its performance exceeds that of the explicit message-
passing code in some cases.

The European authors acknowledge EU financial support
under grants IST-02761“Æther”, IST-215216 “Apple-CORE”
and IST-248828 “ADVANCE”.

REFERENCES

[1] D. Gelernter, “Generative communication in linda,” ACM Trans. Pro-
gram. Lang. Syst., vol. 7, no. 1, pp. 80–112, 1985.

[2] F. Penczek, S. Herhut, C. Grelck, S.-B. Scholz, E. Lenormand, R. Bar-
rere, and A. Shafarenko, “Parallel Signal Processing with S-Net,” in
10th International Conference on Computational Science (ICCS’10),
Amsterdam, Netherlands, G. van Albada, Ed. Elsevier Procedia
Computer Science, 2010, to appear.

[3] G. Stefanescu, Network Algebra. Springer-Verlag, 2000.
[4] T. Whitted, “An improved illumination model for shaded display,”

Communications of the ACM, vol. 23, no. 6, pp. 343–349, 1980.
[5] D. Kirk and J. Arvo, “The Ray Tracing Kernel,” in Ausgraph’88,

Melbourne, Australia, 1988, pp. 75–82.
[6] J. Goldsmith and J. Salmon, “Automatic Creation of Object Hierarchies

for Ray Tracing,” IEEE Comput. Graph. Appl., vol. 7, no. 5, pp. 14–20,
1987.

[7] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen, “Dis-
tributed interactive ray tracing for large volume visualization,” in IEEE
PVG’03, Seattle, USA. IEEE Computer Society, 2003.

[8] C. Benthin, I. Wald, M. Scheerbaum, and H. Friedrich, “Ray tracing
on the cell processor,” in IEEE RT’06, Salt Lake City, USA. IEEE
Computer Society, 2006, pp. 15–23.

[9] C. Grelck, J. Julku, and F. Penczek, “Distributed S-Net,” in IFL’09, South
Orange, NJ, USA, M. Morazan, Ed. Seton Hall University, 2009.

[10] C. Grelck, Shafarenko, A. (eds):, F. Penczek, C. Grelck, H. Cai, J. Julku,
P. Hölzenspies, Scholz, S.B., and A. Shafarenko, “S-Net Language
Report 2.0,” University of Hertfordshire, School of Computer Science,
Hatfield, England, United Kingdom, Technical Report 499, 2010.

[11] C. Grelck, S.-B. Scholz, and A. Shafarenko, “Asynchronous Stream
Processing with S-Net,” International Journal of Parallel Programming,
vol. 38, no. 1, pp. 38–67, 2010.

[12] A. Shafarenko, “Nondeterministic coordination using s-net,” in High
Speed and Large Scale Scientific Computing, ser. Advances in Parallel
Computing, W. Gentzsch, L. Grandinetti, and G. Joubert, Eds. IOS
Press, 2009, vol. 18, pp. 74–96.

[13] S. F. Hummel, E. Schonberg, and L. E. Flynn, “Factoring: a method for
scheduling parallel loops,” Commun. ACM, vol. 35, no. 8, pp. 90–101,
1992.

[14] G. A. Papadopoulos and F. Arbab., “Coordination models and lan-
guages,” in Advances in Computers. Academic Press, 1998, vol. 46,
pp. 329–400.

[15] E. H. Siegel and E. C. Cooper, “Implementing distributed linda in
standard ml,” School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, USA, Tech. Rep., 1991.

[16] G. Sutcliffe and J. Pinakis, “Prolog-linda : An embedding of linda in
muprolog,” Department of Computer Science, The University of Western
Australia, Nedlands, 6009, Western Australia, Tech. Rep., 1989.

[17] G. C. Wells, A. G. Chalmers, and P. G. Clayton, “Linda implementations
in java for concurrent systems: Research articles,” Concurr. Comput. :
Pract. Exper., vol. 16, no. 10, pp. 1005–1022, 2004.

[18] G. Florijn, T. Bessamusca, and D. Greefhorst, “Ariadne and HOPLa:
flexible coordination of collaborative processes,” in Coordination’96,
Cesena, Italy, 15-17 April, 1996. LNCS 1061, P. Ciancarini and C. Han-
kin, Eds., 1996, pp. 197–214.

[19] J. T. Feo, D. C. Cann, and R. R. Oldehoeft, “A report on the sisal
language project,” J. Parallel Distrib. Comput., vol. 10, no. 4, pp. 349–
366, 1990.

[20] G. Michaelson and K. Hammond, “Hume: a functionally-inspired lan-
guage for safety-critical systems,” in SFP00, University of St Andrews,
Scotland, July 26th to 28th, 2000, ser. Trends in Functional Program-
ming, vol. 2, 2000.

[21] K. Hammond, “Exploiting purely functional programming to obtain
bounded resource behaviour: the Hume approach,” in CEFP 2005, Bu-
dapest, Hungary, July 4-15, 2005, Revised Selected Lectures, ser. Lecture
Notes in Computer Science, Z. Horváth, Ed., vol. 4164. Springer-
Verlag, 2006, pp. 100–134.

[22] R. Loogen, Y. Ortega-Mallén, and R. Peña-Marı́, “Parallel functional
programming in Eden,” Journal of Functional Programming, vol. 15,
no. 3, pp. 431–475, 2005.

[23] F. Arbab, “Reo: a channel-based coordination model for component
composition,” Mathematical. Structures in Comp. Sci., vol. 14, no. 3,
pp. 329–366, 2004.

[24] R. Ebner and A. Pfaffinger, “Transformation of Functional Programs into
Data Flow Graphs Implemented with PVM,” in EuroPVM ’96. London,
UK: Springer-Verlag, 1996, pp. 251–258.

[25] L. V. Kale and G. Zheng, “Charm++ and AMPI: Adaptive Runtime
Strategies via Migratable Objects,” in Advanced Computational Infras-
tructures for Parallel and Distributed Applications, M. Parashar, Ed.
Wiley-Interscience, 2009, pp. 265–282.

[26] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in OOPSLA’05, San Diego,
USA, R. E. Johnson and R. P. Gabriel, Eds., 2005, pp. 519–538.

[27] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programma-
bility and the chapel language,” International Journal of High Perfor-
mance Computing Applications, vol. 21, pp. 291–312, 2007.

[28] C. E. Leiserson, “The cilk++ concurrency platform,” in 46th Design
Automation Conference (DAC’09), San Francisco, USA, 2009, pp. 522–
527.

[29] K. Zhang, K. Damevski, and S. Parker, “SCIRun2: A CCA framework
for high performance computing,” in HIPS’04, Santa Fé, NM, USA.
IEEE Computer Society, 2004, pp. 72–79.

417412

