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Abstract—The Extreme-scale Simulator (xSim) is a recently
developed performance investigation toolkit that permits run-
ning high-performance computing (HPC) applications in a
controlled environment with millions of concurrent execution
threads. It allows observing parallel application performance
properties in a simulated extreme-scale HPC system to further
assist in HPC hardware and application software co-design
on the road toward multi-petascale and exascale computing.
This paper presents a newly implemented network model for
the xSim performance investigation toolkit that is capable of
providing simulation support for a variety of HPC network
architectures with the appropriate trade-off between simulation
scalability and accuracy. The taken approach focuses on
a scalable distributed solution with latency and bandwidth
restrictions for the simulated network. Different network ar-
chitectures, such as star, ring, mesh, torus, twisted torus and
tree, as well as hierarchical combinations, such as to simulate
network-on-chip and network-on-node, are supported. Network
traffic congestion modeling is omitted to gain simulation
scalability by reducing simulation accuracy.

Keywords-high-performance computing; parallel discrete
event simulation; hardware/software co-design; performance
evaluation; Message Passing Interface;

I. INTRODUCTION

On the road toward multi-petascale and exascale high-
performance computing (HPC), the trend in system ar-
chitecture goes clearly in only one direction. HPC sys-
tems are expected to dramatically scale up in com-
pute node and processor core counts. According to the
roadmap of the International Exascale Software Project
(see http://www.exascale.org), an exascale computing sys-
tem may have up to 1,000,000 compute nodes with 1,000
cores per node by 2018. Investigating performance and fault
resilience of parallel applications at such an extreme scale
(up to 1 billion concurrent threads for exascale) is impossible
with today’s debugging, tracing and profiling tools.

The recently developed Extreme-scale Simulator
(xSim) [1], [2], is a new application performance
investigation toolkit that allows to run a parallel application
in a controlled environment at extreme scale. It permits
observing performance properties in a simulated HPC
system with millions of concurrent execution threads to
further assist in HPC hardware and scientific application
software co-design. While traditional debugging and
performance tools rely on instrumentation and monitoring,

xSim focuses on an alternative approach using a lightweight
parallel discrete event simulation (PDES) that provides an
HPC application execution environment with a virtual wall
clock time. A Message Passing Interface (MPI) application
can be executed in a highly oversubscribed mode at
extreme scale on today’s HPC systems and its performance
properties can be evaluated based on virtual wall clock
timing, instrumentation, monitoring, and a simple, efficient
architectural system model.

While simulation approaches have been used in the past
(see Section II), they did not scale to millions of concurrent
threads and they did not provide the needed amount of
simulation accuracy at scale. The xSim simulation toolkit is
designed to handle such high thread counts and to provide
enough accuracy to identify performance properties. xSim
itself is designed like a traditional performance investigation
tool, as an interposition library that sits between the MPI
application and the MPI layer, using the MPI performance
tool interface (PMPI). It intercepts MPI calls from the appli-
cation to hide all PDES-related mechanisms, such as virtual
time management, virtual process messaging, maintaining
causality, and virtual processes management. Each virtual
MPI process is encapsulated in a user-space thread that has
its own virtual time, while messages between virtual MPI
processes are sent and received via the PDES layer. xSim
supports a basic set of MPI functions and is able to run C
and Fortran MPI applications. An application is run in the
simulator using the following steps:

• Add “#include xsim-c.h” to the C source code, or add
“#include xsim-f.h” to the Fortran source code.

• Recompile the application and link it with the xsim
library, e.g., “-lxsim”, and the respective xsim program-
ming language interface library, e.g, “-lxsim-c” for C
or “-lxsim-f” for Fortran

• Run the application with “mpirun -np <real pro-
cess cout> <application> -xsim-np <virtual process
count>”

The current implementation [1], [2] is able to scale a basic
MPI hello world program to up to 1 million virtual
MPI processes on a small 4-node compute cluster with 2
processor cores per node and 8GB total RAM, using 4GB
RAM just for virtual process stack. This extremely high ratio



of virtual-to-native threads, 125,000 in this case, is due to
the light-weight implementation of virtual threads and of
the PDES layer. xSim is also capable of investigating the
performance of basic computational MPI applications to up
to 16,384 virtual processors on the same system, i.e., with
virtual-to-native threads ratio of 2,048. This paper focuses on
one of the deficiencies of this prototype, the network model.
The PDES-driven simulation accounts for the execution time
for each virtual MPI process using the actual execution
time on the real processor scaled by a processor model. It
also accounts for the wait time incurred by communication
for each virtual MPI process using a network model. The
current implementation of the network model accounts for
latency and bandwidth restrictions in a basic star network
architecture only. Most HPC systems, however, have more
complex network architectures, such as the 3-D twisted torus
network in the Cray XT series [3].

This paper presents a newly developed network model
for the xSim performance investigation toolkit that is ca-
pable of providing simulation support for a variety of
network architectures with the appropriate trade-off between
simulation scalability and accuracy. The solution extends
the existing scalable distributed solution for latency and
bandwidth restrictions in a star network to other simulated
network architectures, such as ring, mesh, torus, twisted
torus, and tree, as well as to hierarchical combinations,
e.g., to simulate network-on-chip and network-on-node. As
modeling traffic congestion with millions of virtual network
links is too extensive in practice, it is omitted to gain
simulation scalability by reducing simulation accuracy.

This paper is structured as follows. Section II summarizes
further related work and Section III presents the overall
technical approach. Section IV details the design of the pro-
totype implementation and Section V presents the obtained
experimental results. Section VI concludes this paper with a
short summary of the presented work and a brief discussion
about ongoing and future work.

II. RELATED WORK

Discrete event simulation (DES) has been used in the past,
such as in computer system design, molecular dynamics re-
search and military battle field analysis, for investigating the
behavior of a complex system consisting of many interacting
entities. The operation of a complex system is represented
as a chronological sequence of events and corresponding
system state changes, allowing to stop, compress and expand
the virtual time of the simulated state machine. A PDES [4],
[5] is a parallel implementation of a DES that additionally
maintains causality as state transitions are executed simul-
taneously in the parallel execution threads of the simulated
state machine.

In 2001, the Java Cellular Architecture Simulator
(JCAS) [6] was developed as part of a collaboration between

Oak Ridge National Laboratory (ORNL) and IBM to in-
vestigate scalable and fault-tolerant scientific algorithms for
large-scale HPC systems planned at that time, such as the
100,000-processor IBM Blue Gene/L. The final prototype
was able to run up to 500,000 virtual processes on a Linux
cluster with 5 native processors (1 for visualization and
4 for computation) solving basic mathematical problems,
like Laplace’s equation and global maximum search. While
it was able to run algorithms at scale, it lacked certain
important features, such as time-accurate simulation, high
performance, support for running the simulator on atop MPI,
and a fully functional virtual MPI. Nevertheless, the JCAS
project sparked a new area of research in scalable and
fault-tolerant algorithms [7], [8], [9]. xSim is the de-facto
successor of the JCAS project aiming at a better performing
and more accurate implementation.

Also in 2001, the BigSim [10] project (see
http://charm.cs.uiuc.edu/research/bigsim) was initiated
at the University of Illinois at Urbana-Champaign by the
IBM Blue Gene/C project to study programming issues in
large-scale HPC systems. The BigSim Emulator is meant
for application testing and debugging at scale and is build
atop Charm++ and Adaptive MPI [11]. It supports up to
100,000 virtual MPI processes distributed over 2,000 native
processors. Similar to JCAS, the BigSim Emulator does
not offer time-accurate simulation. While it provides more
functionality than JCAS, such and a fully functional virtual
MPI, it scales worse due to the Charm++/AMPI layer. The
BigSim Simulator is meant for identification of performance
bottlenecks, such as load imbalances, communication
contention and long critical paths. It is a trace-driven PDES
that models architectural parameters of a HPC system. For
time-accurate simulation, it supports a variable-resolution
processor model, ranging from simple scale factors to
interpolation based on performance counters, and a simple
or detailed model of the entire communication fabric.
While the BigSim Simulator uses a PDES to maintain
accuracy, it does not support running native applications.
The xSim project aims at providing a solution that offers the
advantages of both, the BigSim Emulator and Simulator,
with a time-accurate, scalable and light-weight PDES
solution.

Other trace-driven PDES solutions for investigating paral-
lel application performance include DIMEMAS [12], which
processes traces from MPIDTrace and generates trace files
that are suitable for the two performance analysis tools,
PARAVER and Vampir.

Recently developed at ORNL, µπ [13] is a PDES-based
system for predicting the performance of parallel programs.
It aims at different methods for interfacing native appli-
cations with the virtual system created by a PDES layer,
such as source code, library (currently implemented) and
virtual machine grafting. µπ is based on the µsik PDES
engine (see http://kalper.net/kp/software/musik), which sup-



ports conservative and optimistic execution. A prototype was
recently tested on 216,000 cores of the Jaguar Cray XT5 at
ORNL, providing over 27 million virtual MPI ranks, each
with its own thread context, and all ranks fully synchronized
by virtual time. µπ’s virtual process implementation relies
on an operating system (pthread) thread for each virtual
MPI rank, which inherently causes a significant performance
loss. µπ requires an extreme-scale system to simulate an
extreme-scale system. For example, the ratio of virtual-to-
native threads is only 125 in the 27 million run. In contrast,
the BigSim Emulator achieved a factor of 50 about 10 years
ago and JCAS offered 100,000, both without a PDES. xSim
is far more advanced in terms of scalability (virtual-to-native
ratio of up to 125,000) and usability (46 MPI calls). µπ
currently does not implement a processor or network model.

Also a recent development, the Structural Simulation
Toolkit (SST) from Sandia National Laboratories [14], [15]
offers cycle-accurate simulation of novel compute-node
architectures, including processor, memory, and network.
SST is a modular PDES framework on top of MPI and
scales only to a few nodes for cycle-accurate simulation
or to a few hundred nodes with more relaxed accuracy.
Its value is in the capability to investigate the performance
features of future architectures in detail and to generate
application models for larger-scale simulations, similar to
the BigSim Emulator/Simulator combination. The work in
this paper aims to facilitate this synergy between small-
scale cycle-accurate and large-scale communication-accurate
simulations. Ongoing efforts beyond this paper focus on
integrating SST and xSim, such that SST can take advantage
of the scalability of the xSim solution and xSim is able to
utilize different processor and network models via the SST
implementation.

SST and xSim were originally developed as
part of the U.S. Department of Energy’s Institute
for Advanced Architecture and Algorithms (IAA)
(see http://www.csm.ornl.gov/iaa). It was established in 2008
to facilitate the co-design of architectures and applications
in order to create synergy in their respective evolutions for
closing the application-architecture performance gap. The
IAA currently targets the development of architecture-aware
algorithms and the supporting runtime features needed by
these algorithms to solve general sparse linear systems
common in many scientific applications. It also focuses on
evaluating the algorithmic impact of future HPC system
architecture choices.

There are a variety of detailed network architecture sim-
ulators, such as ns2/ns3 [16] and [17] and NetSim [18], that
are able to provide network performance metrics at various
abstraction levels, such as network, sub-network, and packet
traces. These detailed network architecture simulators offer
high-accuracy/low-scalability results that are not compatible
with the low-accuracy/high-scalability approach taken in this
paper.

III. TECHNICAL APPROACH

As briefly described earlier, the general design of the xSim
simulation toolkit is as follows. xSim sits between the MPI
library and a parallel application as an interposition library. It
intercepts MPI calls coming from the application via its own
C/Fortran MPI application programming interface (API),
i.e., xSim provides an MPI layer to the application while the
native MPI layer is used by xSim via the PMPI API. The
interposition library essentially wraps an MPI application
into a virtual execution environment controlled by the xSim
PDES. The user-space thread management of the PDES
layer permits executing many virtual MPI processes within a
single native MPI process, while maintaining a virtual time
for each virtual MPI process. For example, the performance
of basic computational MPI applications to up to 16,384
virtual MPI processes could be investigated on a 4-node
cluster with 2 processor cores per node despite a 2,048-
times oversubscription in terms of real processor cores vs.
virtual MPI processes [1]. The PDES-driven simulation uses
a scaling processor model to account for the execution
time for each virtual MPI process and a latency/bandwidth
network model to account for the the wait time incurred by
communication between virtual MPI processes.

In order to create a meaningful concept of latency and
bandwidth within the simulated HPC system, every com-
munication between two virtual MPI processes has an asso-
ciated cost, which reflects the time to transmit the message
from the source to the destination. This message latency
is proportional to the network distance between source and
destination, i.e., proportional to the number of network links
en-route to the destination. This network route depends on
the network architecture and the routing protocol. The mes-
sage latency is additionally influenced by the the network
link bandwidth, i.e., the time to transmit a message of a
certain size. The message latency L for a message size s
and a network distance (hop count) h in a given network
architecture with a link latency l and a link bandwidth b
can be calculated as follows: L = (h ∗ l) + (s/b), where
(h ∗ l) is the latency of the first byte transmitted between
source and destination and (s/b) is the latency between the
first and the last byte sent/received by the source/destination.
The existing xSim prototype implements this network model
just for the star network. The approach taken in this work
is to implement additional network models for ring, mesh,
torus and twisted torus network architectures based on the
same concept for message latency.

In hierarchical combinations, e.g., a two-dimensional
torus network-on-chip with a two-dimensional mesh
network-on-node with a three-dimensional twisted torus
node network, message latency is calculated based on the
number and type of links en-route. This includes considering
the entry/exit points between the different networks, the
different link latencies, and the lowest link bandwidth. As



hierarchical combinations are not supported by the existing
xSim prototype, the approach taken in this work is to extend
the network model to support this capability by providing
the necessary functionality for specifying hierarchical net-
work architecture combinations and for calculating network
distance and minimum bandwidth for a message path across
different connected networks.

This simple, but powerful, approach for a network model
does not account for traffic congestion at the intermediary
links. As stated earlier, congestion modeling is currently not
considered for the xSim toolkit as this would require it to ac-
cumulate and evaluate statistics for each link in a simulated
system with millions of links. The network model could
easily consume a significant portion of the xSim runtime,
making it impossible to execute the simulation in the first
place. This scalability/accuracy trade-off is inevitable as it
takes a 10-100 exaflop system to accurately simulate a 1
exaflop supercomputer.

IV. IMPLEMENTATION

The prototype implementation containing the new net-
work models and support for hierarchical combinations
relies on a set of functions that provide the mathematical
message latency model for the star, ring, mesh, torus,
twisted torus and tree network architectures in a reentrant
fashion. Every message transmitted between two virtual MPI
processes is evaluated for its virtual network route and size.
In addition to the timestamp containing the virtual time of
the sending virtual MPI process, each message also has
a timestamp containing the virtual time of the receiving
virtual MPI process. The source timestamp is obtained from
the PDES virtual time management and marks the virtual
MPI process time the first byte is sent. The destination
timestamp is calculated by the network model based on
source timestamp, the architectural network parameters, and
the source/destination locations. It marks the virtual MPI
process time the last byte is received. A receiving virtual
MPI process may need to wait (in virtual time) for a sending
virtual MPI process to send the message. This virtual wait
time is added. Conversely, a receiving virtual MPI process
may not be ready yet to receive a message (in virtual time).
In this case the virtual receive time is equal to the virtual
MPI process time when the destination is ready. As the
MPI standard does not define a progress model, the source
is not hold up (in virtual time) by a destination that is
not ready, i.e., the implemented network model defines its
own asynchronous progress model. For causality, the PDES
layer ensures that each virtual process receives/processes
its messages in the receive time order as calculated by the
network model.

A. Network Models

In general, the simulated network architecture, including
its topology and performance characteristics, is configured

Figure 1. Message route in a star topology.

Figure 2. Message route in a unidirectional ring topology.

via a command line parameter, i.e., -xsim-mn <network
specification>, and setup upon starting the simulation. In
the following, the network model implementation for each
topology is described in more detail. In the examples, node
indices start with 0 and end with n− 1.

1) Star: The star topology (Figure 1) is modeled in a
straightforward way as the number of hops h is always 2.
The message latency L is simplified to (2 ∗ l) + (s/b), with
a link latency l, a message size s and a link bandwidth b.

2) Ring: The unidirectional ring topology (Figure 2) is
modeled in a similar way as the number of hops h is between
1 and n − 1 depending on source and destination location,
where n is the number of nodes/links. A bidirectional ring
topology cuts the maximum number of hops in half. The
message latency L is calculated using the general network
model L = (h ∗ l) + (s/b) described in Section III.

3) Mesh: A mesh topology (Figure 3) is a little more
complex as the number of dimensions d and the size of
each dimension m0,. . . ,md−1 needs to be specified upon
setup. For example, a 27-node network may have a [3,3,3]
configuration with 3 dimensions of size 3 each. For message
latency calculation, source and destination location (virtual
MPI ranks) are respectively translated into Euclidean coordi-
nates. The route is determined by considering the respective
coordinate for source and destination for each dimension in
turn and summing up the number of hops h. The message
latency L is calculated using the general network model
described earlier.

4) Torus: The torus topology extends the mesh by addi-
tional links that loop around the edges of a dimension. The
toroidal connectedness is an additional parameter for setting

Figure 3. Message route in a mesh topology.



Figure 4. A [3,3] torus with [0,1] (left) and [1,0] connectedness.

Figure 5. Message route in a torus topology.

up a virtual torus network that determines which, if any,
dimensions are toroidal. For example, a 27-node network in
a [3,3,3] configuration may have a [1,0,1] toroidal connect-
edness where dimension 0 and 2 loop around their edges.
Figure 4 shows an example for a [3,3] torus. The message
latency is calculated almost exactly in the same way as the
mesh using the general network model L = (h ∗ l) + (s/b)
by traversing each dimension using the source/destination
Euclidean coordinates (Figure 5), with the exception that
each toroidal dimension is treated like a ring (instead of a
chain) when calculating the number of hops h.

Figure 6. A [3,3,2] twisted torus with toroidal degree 1 (left) and 2.

Figure 7. A [4,4] twisted torus with toroidal jump [1,2] (left) and [2,1].

Figure 8. Message route in a twisted torus topology.

Figure 9. Message route in a tree topology.

5) Twisted Torus: The twisted torus is the most complex
of all implemented network topology models. In addition to
the torus parameters, a toroidal degree and a toroidal jump
need to be specified for the virtual network setup as well.
The toroidal degree is the dimension offset the looping link
is connected to. For example, in a 27-node network with a
[3,3,3] configuration, a toroidal connectedness [1,1,1] and a
toroidal degree 1, dimension 0 loops around to 1, dimension
1 to 2, and 3 back to 0. If the toroidal degree is 2, dimension
0 loops around to 2, 1 to 0 and 3 to 2. Figure 6 shows an
example for a [3,3,2] twisted torus. The toroidal jump is
a vector specifying for each dimension the node offset for
the looping link. For example, in a 27-node network with
a [3,3,3] configuration, a toroidal connectedness [1,1,1], a
toroidal degree 1 and a toroidal jump vector [1,2,3], looping
around dimension 0 connects to the next node in dimension
1, looping around dimension 1 connects to the 2nd next node
in dimension 2, and looping around dimension 3 connects
to the 3rd next in dimension 0. Figure 7 shows an example
for a [4,4] twisted torus.

The message latency L in a twisted torus (Figure 8) is
calculated using the general network model by traversing the
dimensions from the source location toward the destination
location to find the shortest path in a depth-first search
fashion starting with the direction of travel with the lowest
associated cost. A particular path is not searched further if a
shorter one has already been found. The shortest path search
is aborted and the path with the lowest hop count is chosen
if all dimensions have been traversed at most once. While
this is not an exhaustive search, it is accurate in the vast
majority of situations. This accuracy/scalability trade-off is
necessary to avoid a significant performance impact.

6) Tree: Lastly, the message latency L in a tree topology
(Figure 9) is calculated by traversing first from the source
up the tree branches to a common ancestor and then down



Figure 10. Partitioning with 3 processors/node and 8 cores/processor.

the tree branches to the destination. Note that in contrast
to all the previously described network topologies, not all
nodes in the topology represent an actual processing element
(compute node, processor or processor core). In fact, in HPC
systems with tree architectures, such as a fat tree, only the
leaf nodes are processing elements, while the other nodes are
pure routers. Therefore, calculating the message latency L is
relatively straightforward by considering source/destination
location in the tree and the tree degree for the hop count h
in the general network model L = (h ∗ l) + (s/b).

B. Hierarchical Combinations
To simulate a more accurate message latency between

virtual MPI processes, combinations of networks are sup-
ported by hierarchically partitioning the simulated system
(Figure 10). Each simulated network, such as the on-chip
or on-node network, is encapsulated and modeled using
its corresponding network model by abstracting each other
(internal or external) network as a logical node. The message
path is traversed for each network a message passes through
using corresponding entry/exit points between networks. For
example, a 1024 node system with a star topology may have
4 processors/node connected in a mesh topology, where each
processor may have a 64-core network-on-chip mesh. Since
the message latency L depends on network link latency l
and bandwidth b, the accumulated latency (h ∗ l) and the
minimum bandwidth bmin of all network links en-route is
used in the general network model L = (h ∗ l) + (s/bmin).

V. EXPERIMENTAL RESULTS

The modified xSim toolkit with the newly developed net-
work model was deployed on a 16-node Linux-based cluster.
Each node has two 2.4GHz AMD Opteron processors with
4-cores each, i.e., 8 cores per node, and 8GB RAM, i.e.,
1GB per core. The system with a total of 128 cores and
128 GB RAM is running Ubuntu 10.04.1 LTS. The network
interconnect is non-blocking Gigabit Ethernet with a central
switch, i.e, a star topology without switch congestion.

Figure 11. Simulator execution time running the random application with
native process scaling (top) and virtual process scaling (bottom).

A. Micro Benchmarks

The implementation was tested with two MPI programs.
The first (ring), simply sends n messages containing a
simple integer value around in a virtual MPI process ring,
i.e., rank 0 to 1, ..., n − 1 to 0, such that each virtual
MPI process receives the messages from all ranks. The
second MPI program (random), sends the same number
of messages, n2, except that each message travels from a
randomly selected source to a randomly selected destination,
as opposed to the pattern seen in the ring communication.
The ring MPI program is used to give an example of a
specific communication pattern type and how this can affect
the efficiency of various network types. The random MPI
program is useful for obtaining average latencies, which
suggest the general usefulness of a given network setup
when used for a wide variety of applications.

The first two series of experiments (Figure 11) tested the
scalability of the xSim toolkit with the newly developed
network model. In the first series, the simulator was scaled
up from 2 to 128 native MPI processes (NPs) with 1 NP
per native core on the test system and a fixed simulated
8× 16 2-D mesh network topology using the random MPI
application with 128 virtual MPI processes. In the second
series, the random MPI application was scaled up from
256 to 65,536 virtual MPI processes (VPs) with a fixed
128 native MPI process count (again one per core) by
respectively extending the 2-D mesh network topology. Each
run was executed 10 times and the total execution time of the
xSim toolkit was averaged over these 10 runs. From 2 to 128
NPs (with 128 VPs) the total execution time of the simulator
shows the expected strong scaling as the same amount of
work gets divided by more native MPI processes. From 256



Figure 12. Average MPI message latency L for virtual process scaling
using the random application (top) and the ring application (bottom).

to 65,536 VPs (with 128 NPs) the total execution time of
xSim experiences the expected impact of oversubscription.
This performance impact is caused by the n2 number of
messages that the random MPI application generates and
that the PDES layer and the network model needs to handle.

In both series of experiments, there is no observable per-
formance difference between disabling the network model,
using the old network model, or utilizing the new network
model. This is expected as the old and the new network mod-
els are designed to have a very low computational impact.
They do not require global synchronization or information
exchange as modeling network congestion is omitted.

The next two series of experiments (Figure 12) analyze the
average MPI message latency L for all implemented network
models using a generic version of every topology. These
experiments provide a rough evaluation of the correctness of
the implemented network model for each topology. The first,
executes the random MPI application, varying the number
of virtual MPI processes from 2 to 2,048. A corresponding
2-D topology is used for the mesh, torus and twisted torus
networks, while the tree is configured as a corresponding

binary tree. The torus and twisted torus are completely
toroidal in every dimension, i.e., their toroidal connectedness
is [1. . . 1]). The twisted torus has a toroidal degree of 1,
and a toroidal jump vector of [1. . . 1]. The virtual link
latency l is set to 1 µs. The virtual link bandwidth b is
set to 1 Gbps, which is an insignificant parameter value for
these experiments as each message contains only one integer
value. Each run was executed 10 times and the average MPI
message latency L for each run was averaged over these 10
runs. In the second experiment, the ring MPI application
is executed with the same parameters.

Looking at the results for the random MPI application
(Figure 12, top diagram), the star topology clearly outper-
forms all others as network contention at the central switch
is not modeled. The next-best performing topology is the
binary tree as its maximum network distance is 2log2(n).
The mesh, torus and twisted torus all show very similar
results, with one particular point of interest. In squared
setups, i.e., for

√
n×
√
n, the torus and twisted torus provide

better performance than the mesh. The reason is that in
a network of unequal dimensions, source and destination
picked at random are statistically more likely to be further
from the edges, meaning the advantage of having the edges
loop around into one another becomes less significant. In a
network of equal dimensions, this effect is reversed.

The results for the ring MPI application (Figure 12,
bottom diagram) show a different picture. The ring topol-
ogy directly maps the application communication pattern,
while the torus and twisted torus approximate the ring
close enough to have similar performance. The constant
performance of the star network can be observed again
as congestion is not modeled. The mesh suffers from the
missing loops around the edges of the torus and twisted
torus. The binary tree performs worse due to the application
communication pattern that simply forwards a message to
the next MPI rank in-line, requiring traversing up and down
the tree in a log2-based fashion.

The next experiment (Figure 13) involved varying the
virtual link bandwidth b in a simulated 8 × 16 2-D mesh
using the random MPI application. While each message
only contains a single integer, significantly lowering the
virtual link bandwidth b from 1Mbps to 0.1 bps should still
have an impact on the average MPI message latency L. The
performance tests executed and averaged with 10 runs per
configuration confirm this behavior.

The last experiment provides an example for examining
hybrid topologies, such as multi-core processor systems.
The investigation involves a 2-level hierarchical combination
with one core-to-core communication network on each simu-
lated processor and another processor-to-processor network.
For simplicity, the same topology is used for both networks
with different link latencies lprocessor and lcore, 1 and 0.1
µs respectively, and link bandwidths bprocessor and bcore, 1
and 10 Gbps respectively. The random MPI application is



Figure 13. Average MPI message latency L for different virtual link
bandwidth b using the random application in a mesh.

Figure 14. Average MPI message latency L for virtual process scaling
using the random application and nested network topologies.

executed with a fixed 128 virtual MPI process count, while
the number of simulated cores per simulated processor is
varied. Figure 14 shows the results with the x axis listing the
number of cores per processor with two sets of parentheses,
indicating the configuration of the processor and core topol-
ogy. The mesh, torus and twisted torus have almost identical
sets of results. As the the number of cores per processor is
increased, communication takes place predominantly within
each processor, reducing the average MPI message latency
to the core latency lcore.

B. NAS Parallel Benchmarks

The implementation was also tested with the NAS Parallel
Benchmark (NPB) [19] suite. Table I details the different
virtual network configurations used in the experiments. They
are close to measured MPI performance on Gigabit Ethernet
Linux clusters and Cray XT5 series supercomputers.

Table I
PARAMETERS OF THE SIMULATED NETWORKS

Network Name Network Parameters
None No network model
Ethernet Star, 1Gbps, 25µs
x-core Ethernet On processor: star, 12Gbps, 0.32µs
(multi-core) Off processor: star, 1Gbps, 25µs
Y x... Mesh 2D mesh, 8.8Gbps, 7µs
Y xX ... Mesh On processor: star, 9.6Gbps, 0.32µs
(dual-core) Off processor: 3D mesh, 8.8Gbps, 7µs
Y xX ... Torus On processor: star, 9.6Gbps, 0.32µs
(dual-core) Off processor: 3D torus, 8.8Gbps, 7µs
Y xX ... Twisted Torus On processor: star, 9.6Gbps, 0.32µs
(dual-core) Off processor: 3D twisted torus, 8.8Gbps, 7µs

Figure 15. Simulator performance with the NAS EP benchmark.

The first series of experiments (Figure 15) evaluated
the scalability of the xSim toolkit with the newly de-
veloped network model using the embarrassingly parallel
(EP) benchmark. The experiments reveal that the simulator
performance is actually better using the computationally
intensive dual-core twisted torus network model than no
network model at all. In both configurations, the number
of virtual MPI messages is exactly the same (720,885 for
65,536 processes) and the number of virtual MPI process
context switches is roughly the same (458,751 and 458,906
for 65,536 processes). However, the order these messages
are being processed by the simulator is different due to the
different virtual network configurations and xSim’s message
processing based on receive time. Therefore, the overhead
introduced by inserting messages into xSim’s ordered mes-
sage queue, a red-black tree implementation, is different.

In the second series of experiments using the NPB suite,
the performance of the three-dimensional discrete Poisson
V-cycle multigrid solver (MG) is evaluated in xSim with a
standard Gigabit Ethernet configuration and different multi-
core configurations. Figure 16 shows that while the MG
benchmark scales to some extend, the impact of the Gigabit
Ethernet network becomes visible at 4096 virtual MPI
processes. There is noticeably not much difference between
the various multi-core configurations as the Gigabit Ethernet
network is the main scalability limit.



Figure 16. Simulated performance of the NAS MG benchmark with a
Gigabit Ethernet network and 1-16 cores per processor.

Figure 17. Simulated performance of the NAS MG benchmark with a 2D
mesh network and a mesh width of 32, 64 and 128 processors.

The next series of experiments investigate the impact of
network geometry on the MG benchmark. Figure 17 shows
that there is practically no difference in using a 32-, 64- or
128-process wide 2D mesh network for this particular 3D
multigrid solver. The comparison to the execution without
a network model and to Figure 16 also reveals that the
impact of increased latency in a 2D mesh is preventing any
performance improvements by adding more processes. MG
simply does not scale in this network setup.

The last series of experiments targets a comparison of
mesh, torus and twisted torus virtual network configurations.
The MG benchmark is executed in a 3D network setup,
where one dimension is increased and the other two remain
at size 8. In addition each simulated processor has 2 cores.
The twisted torus network jumps by 1 dimension in each di-
mension and wraps by 1 dimension. In Figure 18, the results
clearly show that MG does not scale in a mesh network, but
does scale in a torus or twisted torus network setup until
4096 virtual MPI processes. There is no difference between
the torus and the twisted torus as the network diameter
difference between both is not large enough.

Figure 18. Simulated performance of the NAS MG benchmark with a
dual-core 3D mesh, torus and twisted torus network.

VI. CONCLUSIONS AND FUTURE WORK

We presented the implementation and performance results
of a new virtual network model for the parallel applica-
tion performance investigation toolkit xSim. The offered
simulated HPC network architectures are star, ring, mesh,
torus, twisted torus and tree. An additional capability is
provided to combine different networks in a hierarchical
manner to simulate network-on-chip and network-on-node.
The implementation does trade off simulation accuracy by
omitting network traffic congestion modeling to gain simula-
tion scalability. The presented micro benchmark results show
that the implementation performs as expected. The NPB
results demonstrate the usability of the presented prototype.
Further implementation details and more extensive results
are available in a Master’s thesis [20].

The developed prototype has its limitations, such as the
omitted traffic congestion modeling. The results show that
the simulated network may have a lower than expected per-
formance impact on the MPI application executed inside the
simulator, as exemplified by the star network experiments.
However, as it takes a 10-100 exaflop system to accurately
simulate a 1 exaflop supercomputer, this scalability vs.
accuracy tradeoff is inevitable. Performance investigations
using this toolkit need to keep in mind this limitation.

Future work in this area mostly focuses on validation
of the implemented network model against existing net-
works using two strategies, model comparison, e.g., against
more complex vendor-supplied models, and experimental
comparison, e.g., using micro benchmarks and applications
on production HPC systems. Further planned work looks
at enhancing the network model capabilities with more
advanced network topologies, such as Cray’s Dragonfly.
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