A Platform for Parallel R-based Analytics
on Cloud Infrastructure

Ishan Patel, Andrew Rau-Chaplin and Blesson Varghese'
Risk Analytics Lab, Faculty of Computer Science, Dalhousie University, Halifax, Canada
Email: {patel, arc, varghese} @cs.dal.ca

Abstract—Analytical workloads abound in application do-
mains ranging from computational finance and risk analytics
to engineering and manufacturing settings. In this paper we
describe a Platform for Parallel R-based Analytics on the Cloud
(P2RAC). The goal of this platform is to allow an Analyst
to take a simulation or optimization job (both the code and
associated data) that runs on their personal workstations and
with minimum effort have them run on large-scale parallel cloud
infrastructure. If this can be facilitated gracefully, an Analyst
with strong quantitative but perhaps more limited development
skills can harness the computational power of the cloud to solve
larger analytically problems in less time. P2ZRAC is currently
designed for executing parallel R scripts on the Amazon Elastic
Computing Cloud infrastructure. Preliminary results obtained
from an experiment confirm the feasibility of the platform.

Index Terms—Cloud computing; Amazon Cloud Services;
Parallel Analytics; R and Snow

I. INTRODUCTION

Cloud based infrastructure has proven to be very effec-
tive in providing on-demand computational resources to both
commercial applications and a wide range of large-scale
scientific applications (e.g. climate simulation and analysis
[1], biomedical image processing [2], fMRI brain imaging [3],
satellite ground systems [4] and data processing [5], astronomy
applications [6], Geographic Information Systems (GIS) [7]
and disaster response systems [8]). In both the commercial
and scientific settings the talents of computer scientists and
expert developers are brought to bear in order to efficiently
exploit cloud-based infrastructure.

In this paper, we explore how a different class of users with
a different kind of workload might be able to take advantage
of the cloud. In particular, we study how Analysts, who
are domain experts with quantitative/mathematical skills, but
often with software skills limited to high-level programming
environments like R [9], Matlab [10] or Octave [10], might
be supported in harnessing the cloud for ad hoc analytical
workloads.

Analytical workloads abound in application domains rang-
ing from computational finance and risk analytics to engi-
neering and manufacturing settings. In our experience, these
workloads which involve typically involve simulation [12] and
optimization [11] tasks share some common features, namely

(a) The associated codes are developed by Analysts (not
professional developers) in high-level programming
environments such as R or Matlab.

ICorresponding Author

(b) These codes and the related input data are generally
created by Analysts for either one time use or are
heavily modified each time they are used to adapt
them to the analytical question at hand.

(c) The codes are often computationally intensive or
require a large number of independent runs with
varying input parameters making some form of par-
allelism attractive.

Our goal has been to develop a platform that allows an
Analyst to take an analytical job (both the code and associ-
ated data) that runs on their personal workstations and with
minimum effort have them run on large-scale parallel cloud
infrastructure. If this can be facilitated gracefully, the Analyst
can solve larger problems or perform more experiments in less
time. Our approach is somewhat different from other ‘cluster
on cloud’ projects such as [13][14][15][16] in that our focus
is to simplify an Analyst’s use of cloud infrastructure, rather
than provide a fully-configurable high-performance computing
cluster on clouds for developers. In particular, we have ex-
plored a platform for facilitating R-based risk analytics on the
Amazon cloud. However, we believe that the basic platform
and the experienced gained can be generalized to a wider class
of analytics and cloud-based infrastructure.

The remainder of this paper is organized as follows. Sec-
tion II presents the design of the Platform for Parallel R-
based Analytics on Cloud Infrastructure (P2RAC). Section III
considers the implementation of P2RAC and highlights the
key tools offered by the P2RAC platform. A sample workflow
presenting the sequence of commands to run an Analyst
project and preliminary experimental results obtained from
PR2RAC are considered in Section IV. The paper concludes
and future work is discussed in Section VI.

II. THE PLATFORM

In this section, the Platform for Parallel R-based Analytics
on the Cloud, referred to as P2RAC, is presented. Two
considerations are taken into account, firstly, the conceptual
design of the platform, and secondly, how the platform fits in
coherently between an Analyst and the cloud infrastructure.
See Figure 1.

In this paper, an Analyst is considered as the typical user
who can make use of the cloud infrastructure. The Analyst
needs to perform a large-scale analysis of data, for exam-
ple, analytics for optimization problems in the (re)insurance
industry using the R programming language. Owing to the

RScripts | SNOW Data

\:

P2RAC : Platform for Parallel R-based Analytics on the Cloud

Core commands ‘ Diagnostic commands H Configuration files

EC2 EBS | s3 |
| Amazon Web Services ‘
‘ Infrastructure

1L

Workstation

Analyst
Site

AMI

The Cloud

Fig. 1: Conceptual design of P2RAC

large-scale nature of the size of data and its analysis, parallel
computing [17] is therefore a paradigm that is employed. The
Simple Network Of Workstations (SNOW) package facilitates
parallel computations in R [18]. An Analyst may use a project
comprising a number of R scripts (using SNOW for parallel
computations) and large data files.

The cloud infrastructure that is intended to be exploited is
a pool of computational and storage resources geographically
dispersed. The access to the resources provided by a cloud is
facilitated by a service, namely the Infrastructure as a Service
(IaaS) [19]. Amazon is a leading provider of IaaS and their
web services, including the Elastic Compute Cloud (EC2) [20]
and the Elastic Block Storage (EBS) [21] are employed by the
platform developed in the research reported in this paper.

The P2RAC platform mediates between an Analysts project
and the web services offered by Amazon. The platform is built
with the Python programming language and draws heavily on
two libraries. Firstly, the Boto library, which provides P2RAC
a Python interface to the Amazon web services. Secondly,
the Fabric library, which facilitates remote administration of
the cloud nodes for P2RAC. The platform comprises three
components, (a) the core tools, (b) the diagnostic tools and
(c) the configuration files. The core tools provide functionali-
ties for cluster management, data management and execution
management. The diagnostic tools provide functionalities for
checking the computational environment. The configuration
files provide support for the functionalities of the core and
diagnostic tools.

The workflow of how an Analyst could potentially harness
the cloud computing services offered by Amazon is shown
in Figure 1. The Analyst who has a project comprising R
scripts using SNOW or other parallel libraries and large data
files provides the project as a task for execution on the cloud
to the P2RAC platform. Then the platform both gathers and
initializes a pool of computational and storage resources on
the cloud for executing the task. The platform subsequently
transfers the task onto the pool of resources and manages task
execution. After the task is executed, the platform facilitates
the gathering of results which may be spread across the pool
of resources in the cloud. Finally, the pool of resources is

released.

The next section considers the working of the core tools,
the diagnostic tools and the configuration files and how they
are implemented in the P2RAC platform.

III. IMPLEMENTATION

As considered in the above section, the P2RAC platform
comprises three components, namely the core tools, the diag-
nostic tools and the configuration files. The core tools and the
diagnostic tools are implemented as commands which can be
executed from the command-line.

A. Core Tools

The core tools of P2RAC provide the functionalities for
cluster management, data management and execution man-
agement of a task on the Amazon cloud. The core tools
provide the Analyst with an interface to the cloud which allows
significant computational resources to be brought to bear while
greatly reducing the complexities associated with directly
working with the cloud infrastructure. This is necessary since
an Analyst is less likely to have knowledge and experience of
working with computational clouds.

1) Cluster Management: Cluster management in the core
tools are a set of functionalities that range from gathering a
pool of resources on the cloud, followed by configuring the
pool of resources as a cluster, offering the cluster for task
execution and finally terminating the cluster when the task
executing on the cluster has completed. P2RAC offers two
core tools for cluster management, namely ec2createcluster
and ec2terminatecluster.

The ec2createcluster tool is responsible for gathering and
configuring the pool of resources as a cluster on the cloud.
The computational resources on Amazon are referred to as
Elastic Compute Cloud (EC2) and are available as instances.
These resources are available on-demand and are paid for on
the basis of their usage. The instances are initialized using
Amazon Machine Images (AMI) [22]. For example, an AMI
referred to as the Bioconductor Cloud AMI [23], is used in
the research reported in this paper.

Similarly, storage resources on Amazon, such as the Elastic
Block Storage (EBS) are available on-demand and are paid for
on the basis of data transfer and volume of storage. One note
worthy feature of EBS includes its ability to provide persistent
data storage. This feature can be exploited when large volumes
of data need to be used in an Analysts project and thereby
eliminates the need for frequent transfer of data that may not
be changed over time. Another feature of EBS is that it can
be attached (mounted) as a local storage onto an EC2 instance
in addition to its storage. This feature eliminates the need for
additionally making data locally available to the instance.

The syntax of the ec2createcluster command is

ec2createcluster -cname <CLUSTER_NAME> -csize
<CLUSTER_SIZE> -ebsvol <EBS_VOLUME> -type
<INSTANCE_TYPE> -desc <CLUSTER_DESCRIPTION>

The optional arguments of the ec2createcluster command
are cname, csize, ebsvol, type and desc. cname speciﬁesthe

name of the cluster that is created. csize specifies the size
of the cluster. ebsvol specifies the EBS volume ID which is
provided by Amazon when an EBS volume is created. type
defines the Amazon EC2 instance type which is specified
based on the computational requirements of the task. For
example, a High-memory Quadruple Extra Large Instance,
offers 68.4 GB of memory, 26 EC2 compute units, 1690 GB
of instance storage, with high input/output performance, with
instance type as m2.4xlarge, and was employed in the work
reported in this paper. The desc argument can be used to
provide a description of the cluster.
For example, if a command such as
1107

—desc

ec2createcluster -cname ’"hpc_cluster’ -csize

—ebsvol ’'vol-xxxxxxxx’' -type 'm2.4xlarge’ "For

Trial Simulation Run’

is executed, then a sequence of activities follow. Ten EC2
instances of m2.4xlarge type are initialized using the Bio-
conductor Cloud AMI (The AMI ID is provided in the
configuration file). The cluster of the ten EC2 instances is
referred to as hpc_cluster. One instance in the hpc_cluster
is denoted as the master and tagged as hpc_cluster_Master,
while the remaining nine instances are denoted as workers
and are tagged as hpc_cluster_Workers. The EBS volume,
vol-xxxxxxxx (volume ID is masked in this paper) is attached
on to the master instance. Network File System (NFS) is
employed to share the attached EBS volume among the nine
worker instances. A configuration file at the Analyst site is
updated with cluster information such as the public DNS
names of the master and worker instances, size of the cluster,
EBS volume ID and description of the cluster. Libraries which
an Analyst needs to include can additionally be installed by
specifying library packages in another configuration file. In
the research reported in this paper, the SNOW package and
the R version of GENetic Optimization Using Derivatives
(rgenoud) package [24] are additionally installed since the
Bioconductor Cloud AMI does not provide these packages.
Should the optional arguments be not provided then the default
values which are defined in a configuration file is chosen.

The multiple execution of the ec2createcluster command
facilitates the creation of multiple clusters. Since an EBS
volume can only be attached to the master instance of one
cluster the need for multiple EBS volumes arises when multi-
ple clusters are created. Should multiple EBS volumes require
the same data then they need to snapshot from the same source
located on Simple Storage Service (S3) offered by Amazon
[25]. Multiple clusters cannot have the same name when the
ec2createcluster command is executed more than once.

When a task has completed execution it is essential to safely
release the resources which are utilized by the cluster. To
this end, the ec2terminate cluster command is provided. The
syntax of the ec2terminatecluster command is

ec2terminatecluster —-cname <CLUSTER_NAME> -deletevol

The optional arguments of the ec2terminatecluster com-
mand are cname and deletevol. cname specifies the name
of the cluster that needs to be terminated. The deletevol

switch deletes an EBS volume attached to the cluster being
terminated.
For example, if a command such as

ec2terminatecluster cname ’'hpc_cluster’

is executed, and then a sequence of activities follows.
Firstly, the EBS volume that has been shared with the worker
instances through NFS is no more shared. Further to this,
the worker instances are terminated such that they do not
exist. The EBS volume vol-xxxxxxxx is detached from the
master node and the master instance is terminated. The section
containing the cluster information of hpc_cluster in the
configuration file is removed. Should the deletevol switch be
included in the command then the EBS volume, vol-xxxxxxxx
is deleted.

2) Data management: Data management is required to
transfer the task (both the scripts and data) from the Analyst
site to the cluster on the cloud, and thereafter receive results
to the Analyst site. The transfer of task may be to the entire
pool of resources in the cluster or to a specific instance on the
cluster. Two feasible routes are to use the Secure Copy (SCP)
protocol or the rsync protocol. The rsync protocol is employed
owing to the quicker synchronisation of data between a source
and a destination site. Therefore, two commands, namely
the ec2rsyncme and ec2rsyncmetomaster based onthelsync
protocol are provided. In order to receive the results to the
Analyst site the ec2getresults command is developed.

The ec2rsyncme command enables an Analyst’s project to
be synchronised with all instances of a cluster. This stands
different to the data that is stored in an EBS volume mounted
on the master instance and shared with the worker instances.
In this research, large volumes of data which are less likely to
change in a short course of time are stored on the EBS volume.
On the other hand smaller chunks of data that frequently
change are synchronised from an Analyst’s site on to the local
storage of the cluster instances.

The structure of a project at the Analyst’s site is worthwhile
to be noted. A directory comprising a set of R scripts which
need to be executed, a set of data files required by the scripts
and a sub-directory that will contain results after the execution
of the script. The ec2rsyncme command synchronises the
directory from the Analyst’s site to all the instances of the
cluster. In other words, every instance contains a project
directory.

The syntax of the ec2rsyncme command is

ec2rsyncme —cname <CLUSTER_NAME> -projectdir
<PROJECT_DIRECTORY>

The optional arguments of the ec2rsyncme command are
cname and projectdir. The cname argument specifies the
name of the cluster whose instances will be synchronised
with the project directory. The source project directory is
specified as the argument projectdir. If the cluster name is
not provided by the Analyst then the cluster name from the
configuration file is employed. Should the project directory
not be specified then the current working directory at the
Analyst site is used as the source project directory. The

destination directory is not specified since the project directory
is synchronised at the home directory of the root user.

Owing to the nature of the task to be executed, it may not
be necessary that the project directory be provided to all the
instances of a cluster. For example, consider a task in which
the master instance receives data from the Analyst site and
distributes it to the worker instances in the cluster. In such a
case it would be inefficient to synchronise the source project
directory with all the instances of the cluster, but would be
sufficient for the master instance alone to have the project
directory. To facilitate this, ec2rsyncmetomaster command is
provided.

The syntax of the ec2rsyncmetomaster is

ec2rsyncmetomaster cname <CLUSTER_NAME> -projectdir
<PROJECT_DIRECTORY>

The optional arguments of ec2rsyncmetomaster are similar
to that of ec2rsyncme.

Based on the nature of the R scripts that are executed
there are three possible scenarios for generating results. It
is assumed that the R scripts generate results in a sub-
directory within the project directory. In the first scenario,
the master instance aggregates the results from the worker
instances and stores them at the master instance. In the second
scenario, however, the results are only generated on the worker
instances. In the third scenario, the results are generated on
both the master and worker instances. In both the scenarios,
the results need to be obtained at the Analyst site. There-
fore, the ec2getresults command is provided. To address
the first scenario, ec2getresults gathers results from the
master instance and provides it at the Analyst site. To address
the second scenario, ec2getresults gathers results from the
worker instances. In the third scenario, ec2getresults gathers
results from both the master and all the worker instances.
The aggregated results are stored in a directory at the same
hierarchical level of the project directory at the Analyst site.

The syntax of the ec2getresults is

ec2getresults cname <CLUSTER_NAME> -projectdir
<PROJECT_DIRECTORY> -runname <RUN_NAME> -frommaster

| —fromworkers | —-fromall

The optional arguments are cname, projectdir and a
switch. The cname argument specifies the name of the cluster
from where the results have to be fetched. The projectdir
specifies the location of the source project directory at the
Analyst site. The command utilises the name of the project
from the path of the source project directory to fetch data from
the corresponding project directory on the cluster. If no project
directory is specified then the path of the current working
directory at the Analyst site is used. The switch specifies
the instances from where the results need to be gathered. If
frommaster is specified, then results are gathered as in the first
scenario. If fromworkers is specified, then results are gathered
as in the second scenario. If fromal1 is specified, then results
are gathered as in the third scenario. If no switch is specified
then the results are gathered as in the first scenario.

The mandatory argument for the ec2getresults command

is runname which indicates the name of a run that was specified
during execution and whose results need to be gathered. This
argument is used if the same R script has been executed a
number of times and each execution had to be differentiated.

3) Execution Management: Execution management assigns
the Analyst task onto a cluster and further runs task on the
cluster. For this, the ec2runrscript command is provided.
The syntax of ec2runscript is

ec2runscript -cname <CLUSTER_NAME> -projectdir
<PROJECT_DIRECTORY> -rscript <R_SCRIPT> -runname
<RUN_NAME>

The optional arguments of ec2runrscript are cname,
projectdir and rscript. The cname argument specifies the
name of the cluster where the R script needs to be executed.
The projectdir specifies the location of the source project
directory at the Analyst site. The command utilises the name
of the project from the path of the source project directory to
execute an R script from the corresponding project directory
on the cluster. rscript specifies the name of the R script to
be executed from projectdir. If rscript is not provided then
the user is prompted to select from a list of R scripts that may
be available in the project directory.

The mandatory argument for ec2runrscript iS runname
which indicates the name of a run.

B. Diagnostic Tools

P2RAC currently offers two tools, namely the
ec2listclusters and ec2logintomaster, which are used for
listing the clusters created by the Analyst on the Amazon
cloud and for accessing the master instance of a cluster
respectively.

The syntax of ec2listclusters is

ec2listclusters —-nameonly

The optional switch nameonly provides the names of the
clusters on the cloud. If the switch is not provided then the
list of the clusters along with the size of the cluster, public
DNS name of all instances, volume ID of the EBS volume
shared with the instances of the cluster and the description of
the cluster.

The syntax of ec2logintomaster is

ec2logintomaster -cname <CLUSTER_NAME>

The optional argument cname specifies the name of the
cluster whose master instance needs to be accessed. The
connection to the master instance is facilitated through Secure
Shell (SSH). If the name of the cluster is not provided then the
master instance of the default cluster listed in the configuration
file is used.

C. Configuration Files

There are three files that support the core and diagnostic
tools which reside on the Analyst site. Firstly, a file that con-
tains a list of variables that are required by the command line
tools along with a number of directory paths and references
to access keys for Amazon resources. Secondly, a file that
contains information, such as the names of the clusters created,

N Worker2
? o
workerl o
ec2createcluster

Workstation

master results

-cname ‘hpc_cluster’
-rscript ‘RunExperiment.R’
-runname ‘cloud_run’

=%

worker3

-cname ‘hpc_cluster’ -csize 4 R

worker3

RESNOW/ Worker2
scripts X n
ec2rsyncmetomaster vt i JEL S

> [master

> -cname ‘hpc_cluster’ 'S O
2 Risnow S]

> scripts worker3
= O

< resnow | Worker2
> o e &
—] ec2runrscript e e a » O

wn

2 <<
<

ReSNOW | Worker2
scripts ’
= 04

workerl

ec2getresults

- master
-cname ‘hpc_cluster’

-runname ‘cloud_run’ .
worker3

results

results

ec2terminatecluster 3
Cluster Terminated

-
-cname ‘hpc_cluster’ -deletevol

Fig. 2: Workflow of commands using P2RAC

their size, the public DNS names of all their instances, volume
ID of the EBS volume shared by the master with the workers
and the description of the clusters. Thirdly, a file that contains
a list of R libraries which are required by an Analysts project.
These libraries are installed on the instances of the cluster
when it is created. This is required in addition to the pre-
installed libraries of the base AMI.

All the commands considered above can also utilise two
switches, one of which is —h that provides a description of
the use and arguments of the command, and another which is
—v that provides the version of P2RAC.

The P2RAC platform therefore offers support for managing
clusters on the Amazon cloud, which includes the creation
and termination of single and multiple clusters. Management
of data is facilitated by making large and small chunks of
data available to the executing task by sharing persistent data
volumes and by synchronising data from the Analyst site to
the instances of the cluster.

The platform is designed for both batch mode execution
and interactive mode execution. Batch-mode execution in
P2RAC supports time consuming production tasks. The core
commands are listed in a script and the script is executed
without the intervention of an Analyst. The interactive mode
execution on the other hand allows an Analyst to experiment
with his scripts and supports execution of ad hoc tasks. The
core commands are executed from the command line by the
Analyst.

TABLE I: Preliminary experimental results from P2RAC

Name of cluster Cluster A | Cluster B | Cluster C | Cluster D
No. of instances 2 4 8 16
No. of virtual cores 8 16 32 64
Avg. time for an 120 61 40 29
optimization cycle

(minutes)

Total time for the 3012 1514 1004 728
optimization problem

(minutes)

IV. WORKFLOW & PRELIMINARY EXPERIMENT

A workflow of how to use the P2RAC commands is
considered in this section. Figure 2 shows the sequence of
the commands and the order in which they are executed at
the Analyst site for executing a task on the Amazon cloud.
An Analyst in possession of R scripts utilizing SNOW library
firstly creates a cluster with 4 instances (1 master and 3 worker
instances). In this workflow it is assumed that the cluster has
the necessary data required by the R scripts (EBS volume).
The Analyst secondly sends the R scripts to the cluster that
was created. The R script is then executed and the result
of execution is generated on the master instance. When the
execution of the R scripts are completed then the Analyst
gathers the results to his site. The cluster is finally terminated
by the Analyst if he does not require to run any more scripts.

In order to validate the feasibility of P2RAC a large-scale
sample script, CATopt, that was provided by our industrial
partner was employed. CATopt performs a basis risk mini-
mization task using a multi-objective optimization in a high
(2000-4000) dimensional space. This optimization, which is
useful for the analysis of catastrophe bonds, is performed using
the rgenoud package which combines evolutionary search
algorithms with derivative-based (Newton or quasi-Newton)
methods.

The experiment used the above workflow for executing
the CATopt script. Four clusters, namely Cluster A, Cluster
B, Cluster C and Cluster D, each with 2, 4, 8 and 16
instances respectively were deployed. The instance are of
m?2.2xlarge Amazon instance type and therefore 4 virtual cores
are available on each instance. The data for the script was
already made available on the clusters. The parameters of the
optimization algorithm, firstly the population size was set to
200, secondly the maximum number of generations was set to
50 and thirdly the number of optimization cycles was set to
25. The average time taken for each optimization cycle and
the total time taken to complete 25 optimization cycles are
presented in Table L.

Figure 3 (left) shows total time in hours as the number
of virtual cores is increased and Figure 3 (right) shows
the corresponding relative speed-up. We observe near perfect
parallel efficiency on up to 16 virtual processors, which then
falls to 78% efficiency at 32 cores and 50% efficiency at 64
cores. Basically, as we increase to core count we increase the
communication overhead and consequentially see a reduction
in parallel efficiency. While we might expect to see better

=—=Time

6000 - \ 15

===Linear Speedup

—=Relative Speedup

Time in minutes
&
[=]
o
o

0 20 40 60 0 20 40 60

Cores Cores

Fig. 3: left: Graph plotted for the number of cores vs total
time for the optimization problem; right: Graph plotted for
the number of cores vs relative speed-up for the optimization
problem

efficiency running on a dedicated high-performance cluster,
the achieved performance is quite satisfactory given (a) the
low cost of the infrastructure and (b) no special work went
into tuning the code and which went straight from an Analysts
workstation to running on the cloud.

V. CONCLUSION & FUTURE WORK

A Platform for Parallel R-based Analytics on the Cloud
Infrastructure (P2RAC) has been presented in this paper. The
platform is developed to support an Analyst who needs to
exploit the computing and storage potential of the cloud in-
frastructure. However, in most cases an Analyst is less likely to
know the technicalities of the cloud computing infrastructure.
To this end, the P2RAC platform plays the essential role of
bridging the gap between the Analyst project and the cloud
computing infrastructure. P2RAC offers a set of core and
diagnostic tools in the form of commands which enable an
Analyst to manage clusters on the cloud, to manage both large
and small chunks of data and execute R-based scripts on the
cloud. The experimental studies have confirmed the feasibility
of employing P2RAC for R-based analytics.

Future work will include the extension of the platform
onto private clusters built on cloud using Eucalyptus [26] and
OpenNebula [27]. Efforts will be made to offer commands that
will enable an Analyst to scale the cluster size by allowing
him to add worker instances. Immediate efforts will be made
to study how Simple Storage Service (S3) can be incorporated
for data management. Spot instances for cost effectiveness
offered by Amazon which are an alternative to conventional
compute and storage instances will be explored. An evaluation
of the performance of P2RAC compared against other high-
performance computing infrastructures will be pursued and
reported elsewhere.

ACKNOWLEDGMENT

The authors would like to thank Dr. Georg Hoffman and
Dr. Oliver Baltzer of Flagstone RE, Halifax, Canada for their
support and participation in this research. We would also
like to thank Amazon AWS in Education Grant Program for
providing access to computational resources for this research.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
(23]

[24]

[25]

[26]

[27]

REFERENCES

C. Evangelinos, P. F. J. Lermusiax, J. Xu, P. J. Haley, Jr, and C. N.
Hill, “Many Task Computing for Real-Time Uncertainty Prediction and
Data Assimilation in the Ocean”, IEEE Transactions on Parallel and
Distributed Systems, Volume 22, Issue 6, 2011, pp. 1012-1024.

C. Zhang, H. De Sterck, A. Aboulnaga, H. Djambazian and R. Sladek,
“Case Study of Scientific Data Processing on a Cloud Using Hadoop”,
Proceedings of the 23rd International Conference on High Performance
Computing Systems and Applications, 2010, pp. 400-415.

C. Vecchiola, S. Pandey and R. Buyya, “High-Peformance Cloud
Computing: A View of Scientific Applications”, Proceedings of the
10th International Symposium on Pervasive Systems, Algorithms and
Networks, 2009, pp. 4-16.

R. Anthony, J. Fritz and D. Barnhart, “Cloud Computing Applications
for Large-Scale Satellite Ground Systems”, Proceedings of the Military
Communications Conference, 2011, pp. 1894-1898.

J. Li, M. Humphrey, Y. -W. Cheah, Y. Ryu, D. Agarwal, K. Jackson
and C. van Ingen, “Fault Tolerance and Scaling in e-Science Cloud
Applications: Observations from the Continuing Development of MOD-
ISAzure”, Proceedings of the 24th IEEE International Parallel and
Distributed Processing Symposium, Atlanta, USA, 2010, pp. 246-253.
C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berri-
man and J. Good, “On the Use of Cloud Computing for Scientific
Workflows”, Proceedings of the 4th IEEE International Conference on
eScience, USA, 2008, pp. 640-645.

Y. Xiaogiang and D. Yuejin, “Exploration of Cloud Computing Tech-
nologies for Geographic Information Services”, Proceedings of the 18th
International Conference on Geoinformatics, 2010, pp. 1-5.

S. Kelly, C. Mazyck, K. Pfeiffer and M. -T. Shing, “A Cloud Computing
Application for Synchronized Disaster Response Operations” Proceed-
ings of the IEEE World Congress on Services, 2011, pp. 612-616.

W. N. Venables, D. M. Smith and the R Development Core Team, “An
Introduction to R”, Notes on R: A Programming Environment for Data
Analysis and Graphics, Version 2.14.2, 2012.

A. Quarteroni and F. Saleri, “Scientific Computing with MATLAB and
Octave”, Springer, 2nd Edition, 2006.

M. J. Perez, “Multi-Objective Optimization Evolutionary Algorithms in
Insurance-Linked Derivatives”, in ‘Handbook of Research on Nature
Inspired Computing for Economics and Management’, Edited by J. -P.
Rennard, IGI Global, 2007, pp. 885-908.

P. Grossi and H. Kunreuther, “Catastrophe Modeling: A New Approach
to Managing Risk”, Springer, 1st Edition, 2005.

K. Chine, “Scientific Computing Environments in the Age of Virtual-
ization, Toward a Universal Platform for the Cloud” , Proceedings of
the IEEE International Workshop on Opensource Software for Scientific
Computation, 2009, pp. 44-48.

CycleCloud Website: http://cyclecomputing.com/cyclecloud/overview
Cloud Foundry Website: http://www.cloudfoundry.com/

StarCluster Website: http://web.mit.edu/star/cluster/

P. Pacheco, “An Introduction to Parallel Programming”, Morgan Kauf-
mann, 1st Edition, 2011.

Simple Network of Workstations
http://www.sfu.ca/ sblay/R/snow.html

N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?”, IEEE
Computer, Volume 42, Issue 1, January 2009, pp. 15-20.
Amazon Elastic Compute Cloud (EC2)
http://aws.amazon.com/ec2/

Amazon Elastic Block Store (EBS) website: http://aws.amazon.com/ebs/
Amazon Machine Images (AMI) website: http://aws.amazon.com/amis
Bioconductor AMI website: http://bioconductor.org/help/bioconductor-
cloud-ami/

W. R. Mebane, Jr. and J. S. Sekhon, “Genetic Optimization Using
Derivatives: The rgenoud Package for R”, Journal of Statistical Software,
Volume 42, Issue 1, May 2011.
Amazon Simple Storage
http://aws.amazon.com/s3/

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff and D. Zagorodnov, “The Eucalyptus Open-Source Cloud-
Computing System”, Proceedings of the 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, Washington, USA,
2009, pp. 124-131.

C12G Labs, “Private Cloud Computing with OpenNebula 1.4, 2010.

(SNOW) website:

website:

Service (S3) website:

