
Profiling of OpenMP tasks with Score-P
Daniel Lorenz∗, Peter Philippen∗, Dirk Schmidl† and Felix Wolf‡∗†

∗Jülich Supercomputing Centre, 52425 Jülich, Germany
†RWTH Aachen University, 52056 Aachen, Germany

‡German Research School for Simulation Sciences, 52062 Aachen, Germany

Abstract—With the task construct, the OpenMP 3.0 specifica-
tion introduces an additional level of parallelism that challenges
established schemes of performance profiling. First, a thread may
execute a sequence of interleaved task fragments the profiling
system must properly distinguish to enable correct performance
analyses. Furthermore, the additional parallelization dimension
requires new visualization methods for presenting analysis re-
sults. Finally, as a new programming paradigm, tasking implicitly
introduces paradigm-specific performance issues and creates
a need for corresponding optimization strategies. This paper
presents solutions to overcome the challenges of profiling ap-
plications based on OpenMP tasks. Second, the paper describes
metrics that may help uncover performance problems related
to tasking. We present an implementation of our solution within
the Score-P performance measurement system, which we evaluate
using the Barcelona OpenMP Task Suite.

I. INTRODUCTION

The efficient use of today’s multi-core processors by multi-
threaded applications requires evenly balancing the load across
the available cores, a non-trivial task—especially since the
influencing parameters may vary with scale as well as system
and network characteristics.

OpenMP is a programming interface for multithreaded
shared-memory programs. It provides constructs for sharing
work among threads, e.g., to assign the iterations of a loop to
individual threads. In OpenMP 2.5, automated load-balancing
possibilities were limited to loops with fixed bounds. To
provide support in more dynamic cases, like recursions or if
loop bounds are not known a priori, OpenMP 3.0 [1] added the
task construct. It allows to specify independent work packages
that can be executed in parallel, providing an automated
dynamic load-balancing mechanism. However, balancing the
load in this way introduces management overhead. Thus,
for efficient use of the tasking paradigm, the appropriate
granularity of tasks is essential. If they are too large, the load-
balancing quality may suffer, if the tasks are too small, the
task management overhead may become larger than the gain
from any positive balancing effects.

Performance analysis tools such as HPCToolkit [2],
ompP [3], Paraver [4], Scalasca [5], TAU [6], and Vampir [7],
provide insight into the performance behavior of applications
and have proven their usefulness for performance optimization.
Call-path profiles are an established way of providing an
overview of performance properties and are used by many
tools [2], [3], [5], [6]. In the context of OpenMP programs,
they can help detect idle times of threads and measure the
amount of work each thread performs. When adapted for tasks,

they can give the necessary information to determine and
optimize the task throughput of an application. However, the
difficulties implied by the additional parallelization dimension
prevented the emergence of task analysis and profiling tools
for tasking so far. A detailed overview on related work is given
in Section II.

We provide the first profiling tool that provides call-path-
level statistics about applications with OpenMP 3.0 tasks.
However, our approach is limited to tied tasks. Untied tasks
are not yet supported because the OpenMP runtime does not
provide any standardized hooks to notify the measurement
system of task switches. Section IV presents the detailed
algorithm we developed—based on the results of the problem
analysis in Section III.

We show that for reasonably-sized tasks the measurement
overhead is limited (see Section V) and demonstrate the
usefulness of the measured data with an example from the
Barcelona OpenMP Tasks Suite [8] in Section VI. Finally, we
present our conclusions in Section VII.

II. RELATED WORK

Profiling is an established performance analysis technique
for both sequential and parallel programs that collects per-
formance metrics such as time and attributes them to static
or dynamic program entities such as functions or call paths.
This data acquisition method distinguishes two underlying
approaches. The first approach is sampling, where metrics
are derived from measurements taken in regular intervals, as
done in HPCToolkit [2]. This tool can measure the amount
of idle time and overhead of threads [9] if the run-time
system provides information on the number of idle or working
threads. However, the OpenMP runtime does not provide this
information. Furthermore, it does not provide information
that helps identify those tasks that may cause overhead or
imbalance.

The second approach to obtain execution profiles is di-
rect source-code instrumentation. Tools such as ompP [3],
Scalasca [5], or TAU [6] insert calls to their measurement
system into the application. They provide OpenMP support but
without tasking. If single task instances can not be identified,
task suspension and interruption violates the requirement for
correct nesting of enter and exit events, which is necessary for
call-path profiling based on direct instrumentation [10]. The
first extension for tasking support was published by Fürlinger
and Skinner [11]. However, their approach lacks task instance
identification and, thus, supports only uninterrupted tasks.

For direct instrumentation of OpenMP constructs, many
tools [3], [5], [6] utilize the source-to-source instrumenter
OPARI [12]. However, the original version of OPARI was de-
veloped before the OpenMP board specified tasks, thus, tools
relying on this version cannot support OpenMP tasks. For tied
tasks, we introduced an extension to OPARI to track individual
instances of tasks [10]. Its successor OPARI2 [13] includes
this feature and provides automatic instrumentation of task
constructs including support for task instance identification.

For tools using the sampling approach, Lin and
Mazurov [14] proposed an interface to query the OpenMP
runtime about tasks, extending an earlier interface from
SUN [15], and provided an example implementation
with the SUN Studio Analyzer. However, they focus on
data acquisition, while our work builds upon existing
instrumentation and focuses on the collection of profile data
and its analysis. Furthermore, the analyses of sampling data
and direct instrumentation data are very different.

Schmidl et al. [16] described possible performance problems
with OpenMP tasks and visualized trace data of tasks with
Vampir [7]. However, manually searching a time-line visual-
ization for certain performance patterns is tedious and time
consuming. Although it allows an in-depth analysis, a method
to locate issues automatically on a full application scale is
necessary.

Another trace-based time-line visualization and analysis tool
is Paraver [4], developed at the Barcelona Supercomputing
Center. It can capture and display task data of the OmpSs [17]
programming model, which is also developed in Barcelona.
In OmpSs, tasks are not restricted to parallel regions, but
the whole program is decomposed into tasks. Dependencies
between tasks are defined through data dependencies and
implicitly specified by the input and output data of the
tasks. Furthermore, OmpSs provides statements to wait for the
completion of specific tasks. The manyfold ways of specifying
task dependencies in OmpSs is likely to create performance
issues different from those encountered with OpenMP tasks.
In the latter case, dependencies between tasks are very limited
and performance issues related to task size dominate.

III. PROBLEM ANALYSIS

Tasking provides an automatic work-scheduling scheme
which helps overcome one of the fundamental performance
concerns of multithreaded OpenMP applications: load imbal-
ance. This comes at the cost of additional task management
overhead. Schmidl et al. [16] identified three performance
issues specifically related to OpenMP tasks:

• Very small tasks may cause high overhead.
• Very large tasks may reduce the load-balancing effect.
• On larger scales, the task creation may become a bot-

tleneck if tasks are created only by a small number of
threads.

The major strategy of optimizing performance for OpenMP
tasks is to find the appropriate size for the tasks. It is
difficult to specify general thresholds because they depend

on various parameters. Thus, any performance analysis tool
should provide the user with the necessary information to:

• Determine the appropriate limits for task runtime.
• Identify tasks that incur performance penalties.
To achieve this, the following measurements must be reli-

ably taken by the performance analysis tool:
• Runtime of task instances. However, considering the

number of task instances in an OpenMP program, the
information must be statistically processed. Of particular
interest are the mean, maximum, and minimum runtimes
of the task instances.

• Creation time for a task instance.
• Management overhead for tasking. This includes task

creation, but task suspension/resumption and task com-
pletion also contribute management time.

• Waiting time at task scheduling points.
• Association of tasks with a context to support identifi-

cation of problematic task instances.
Considering the specific data that is necessary to provide the

user with useful information, we propose call-path profiling
based on direct instrumentation.

Besides the inefficiency situations already described, also
task dependencies can cause idle times. For example, some
threads may not be able to execute a task because all enqueued
tasks depend on not yet completed tasks. However, in OpenMP
3.0 the options of specifying task dependencies are limited
to taskwait statements, which cause a task to wait for the
completion only of direct child tasks. Therefore, dependency-
induced problems are more likely to occur in tasking systems
with more possibilities to define task dependencies such as
OmpSs [17].

IV. PROFILING DESIGN

Tasks introduce an additional and different level of paral-
lelism. Thus, the question arises how to display tasks in a
call-tree structure. This section describes our solution with the
design of the task profiling system. It extends the profiling
system of the Score-P measurement system [13], which is
briefly introduced. A detailed discussion of considerations to
be taken into account follows in Section IV-B. It is concluded
in Section IV-C with the presentation of the actual profiling
algorithm we developed.

A. The Score-P profiling system

The basis for our profiling approach is the Score-P mea-
surement system [13]. It uses compiler instrumentation to
detect function calls and implements the POMP2 interface,
which specifies the calls the source-to-source instrumenter
OPARI2 uses to instrument an application. The basic profiling
algorithm in Score-P is derived from the Scalasca profiling
system. A function in the measurement system is called for
every specified event such as the enter or exit of a function or
an OpenMP region. At runtime, this event stream is translated
into a profile which is stored in a tree structure, the call tree
(see Figure 1).

Fig. 1. An event stream and its translation into a profile. Note that the events
are nested as needed for the profiling algorithm of Score-P. The functions
foo() and bar() are entered and exited inside of main without overlap.

When the program is started, the first event is usually the
enter event of the main function, for which the root node is
created. For every enter event that follows the existing child
nodes of the current node are checked whether a node for that
code region already exists. If so, the metrics are attributed to
that node, if not, a new node is created. When an exit event is
encountered the pointer referencing the current node is moved
to the parent of that node. Timestamps are taken which allow
information on the inclusive runtime to be gained, i.e., the time
that was used for that function including all the functions that
were called from it.

Each node in the call tree thus refers to a source-code
region. It stores the required data on certain metrics, e.g.,
the inclusive runtime and the number of visits, together with
information required for statistical analysis, i.e. the sum, the
minimum, the maximum and the number of samples. By
subtracting the inclusive runtimes of all children the exclusive
runtime is obtained, i.e., the time spent exclusively inside the
function itself.

In multithreaded applications, every thread operates on a
separate section of preallocated memory and constructs a
separate call tree. This avoids overhead-prone locking.

B. Considerations on task sub-tree location

Event streams of OpenMP programs, before the intro-
duction of the tasking feature, were—strictly speaking—
indistinguishable from event streams of serial applications.
To the measurement system Score-P an OpenMP region is
no different from a function that is entered and left. Of
course, there is one stream for each thread, but all in all,
to the measurement system each single stream of events was
comparable to that of a serial program or of an application
parallelized with MPI running on different processes.

Tasks introduce a number of problems in this regard, as they
can be very dynamic at runtime. The following issues must
be addressed:

1) The nesting condition of enter/exit events may not be
fulfilled.

2) Tasks may be executed under a node in the call tree
different from that where they were created.

Fig. 2. Event stream with tasks. Both task1 and task2 are suspended
inside of foo(). The enter and exit events of foo() inside of task1
cannot be distinguished from the events in task2. This event stream cannot
be translated into a profile with the standard profiling algorithm in Score-P.

3) When a task is suspended, another task starts or is
resumed, without there necessarily being a direct parent-
child relationship between the two.

4) After a task is suspended it may be resumed under a
different node in the call tree.

Each of these issues is now discussed in detail. A deeper
understanding of this new and different kind of parallelism and
the implications for our traditional approach in Score-P leads
to our new profiling and visualization scheme for OpenMP 3.0
tasks.

1) Nesting of events: We want to preserve the functionality
the profiling system in Score-P provides as much as possible.
Especially there should be no change for programs running
without tasks. For the parallel region in programs employing
tasks, there should also be no change in functionality. The
execution of the explicit tasks however may lead to event
streams which are not compatible with our profiling algorithm.

Fig. 1 shows how the enter and exit events of the functions
foo and bar are nested inside of main. When tasks are
used, the event stream may be as depicted in Fig. 2. Note
that the nesting condition, as it is mandatory for the profiling
algorithm described above, is not fulfilled anymore. The two
tasks that are created, they both call function foo, and are then
suspended. The exit events of foo that then follow cannot be
distinguished from one another without storing information
about the specific task instance that is active at the moment
they are registered. This leads to the scheme introduced in [10]
to keep track of specific task instances by modifying OPARI2
to insert instrumentation to store IDs of task instances inside
the tasks’ context itself.

2) Node assignment: In principle, there are two possibilities
to assign a task to a node; it is possible to assign it to the node
where it is created or to the node where it is actually executed
(see Fig. 3). The former would present the call tree in the
logical order of the program’s source code. This would enable
a visualization in a way a programmer would find intuitively
familiar. On the other hand, the latter method would more

Fig. 3. Comparison of calculated exclusive times when assigning the task
execution to the creating node vs. the executing node. In the former case
negative values can occur, which does not make sense. Also the time attributed
to the barrier is too large. The time spent executing the task is useful work
and should not be attributed to the barrier. The exclusive execution time of
a node is calculated by subtracting the inclusive execution time of its child
nodes from its own inclusive execution time.

precisely reflect the runtime behavior of the program.
To assign the task to the node where it is created also

leads to problems, as shown in Fig. 3. On the right hand
side, the execution of the task is attributed to the barrier. The
numbers shown stand for the exclusive execution times. The
start of the parallel region, the task creation and the time spent
waiting in the barrier are small. The actual work is done in the
task. On the left hand side, however, the profiling scheme for
calculating exclusive times leads to a task creation time of -5,
which does not make sense. The waiting time in the barrier
seems to be 7, which is too much, as most of that time was
spent doing useful work. This example shows quite clearly
that the attribution of metrics is only meaningful if the task is
assigned to the node where it is actually executed.

3) Relationship between suspended and resumed task: If
task instances are only created by implicit tasks and contain no
scheduling points, their execution will automatically form one
sub-tree which aggregates the execution of all task instances.
Thus, it will provide the statistical information that is required.
In contrast, Fig. 4 shows an example of an event stream
where a task is suspended, in this case due to a taskwait
statement. The task instance task1 is suspended, task2 is
executed until it is suspended, too. Then, task1 is resumed.
As described above, we would create the node for task2 in
the profile as a child of the scheduling point where it was
executed (the taskwait construct). However this leads to a
number of problems:

• The call-tree structure would vary, depending on de-
cisions of the runtime-system and the order in which
the tasks are executed, reducing the reproducibility of
performance results. Furthermore, it would become more
difficult to compare results from multiple performance
runs.

• The size of the profile may explode or the tree depth
limits might kick in and most of the resulting tree
would be pruned. This might especially be the case when
considering recursive task creation.

• A fragmented call tree can not provide an easy overview
of mean task execution time, minimum execution time or
maximum execution time, which are some of the desired

Fig. 4. Event stream where a task is suspended and another task is executed
in the taskwait construct, which can be used as a scheduling point by the
OpenMP runtime.

measurement results.
These issues are solved if the profile contains no par-

ent/child relationship between explicit tasks. Then every tasks
is recorded independently, although all task instances of the
same task region will finally form a common sub-tree. How-
ever, for correct metric measurement, scheduling points of
explicit tasks must measure exclusive values. This means, time
measurements for a task must be stopped/resumed when the
task is suspended/resumed.

4) Suspended task is resumed under another node: A
task may be suspended and resumed at another scheduling
point of the implicit task. In this case, as also shown in
Fig. 4, the profile could simply copy the task’s current call
path to the new location. But how should we attribute not
divisible metrics, like number of visits, or display meaningful
maximum, minimum and mean of the execution time for the
whole task? If we attribute them only to one fragment of
the execution, the resulting picture is imbalanced, leading to
misinterpretation of the data. To avoid this, the profile must
present the task’s sub-tree as a whole besides the implicit task’s
call tree.

However, we still want to follow the above argument
(Section IV-B2) that the execution of a task appears as a child
of the scheduling point, in which it was executed. As solution,
a stub node is placed in the profile for each executed task
region, as child of the scheduling point’s node. The stub node
contains the task’s contribution to the measured implicit time
at the scheduling point. Furthermore, it counts the number of

Fig. 5. Example for a call tree of an application with tasks. The lower red
box marks the stub node for task0. It shows that 113s of task execution
happened inside the barrier. 103s time is still spent inside the barrier not
executing a task. This time may be overhead caused by task management
and/or idle time. The upper red box marks the call tree of the task which
gives insight into the task itself. E.g., we can see that the task region had
51.5s exclusive execution time and 25.8s were spent creating new tasks

times a task fragment was executed and also records other
statistics for the executed fragments.

In addition, the task as a whole is presented above the main
call tree. The task tree contains the statistics about the exe-
cution of the task as a whole and presents its inner structure.
An example of a measurement with Score-P, visualized with
CUBE, is shown in Figure 5.

C. Task profiling algorithm

For an application using tasks, it can not be guaranteed
that all enter/exit events for a thread are correctly nested. The
execution of multiple tasks may interleave, and thus, each
task instance must be monitored as long as it has not been
completed. It follows that we need to maintain the call-path
information for each active task instance. In this context we
refer to active tasks as tasks that started execution but have not
yet completed, even though they may have been suspended. To
keep track of active task instances we store the current position
of every active instance and maintain a pointer to the position
of the task that is currently being executed by a thread. As
long as we have not created any tasks, the current task is the
implicit task (see Figure 6).

Fig. 6. The state of the profiling system before tasks are created. The table
of explicit tasks is empty and the current task points to the position of the
implicit task.

When the application creates a task, it enters and exits a task
creation region. This will create a node in the call tree that
contains information about the time spent for task creation.
For other scheduling points, like taskwaits and barriers, the
profiling algorithm issues an enter event for the region before
the scheduling point and an exit event afterwards, measuring
the time inside that region. Figure 7 continues the example of
Figure 6.

Fig. 7. The application has created tasks of the task region A, but not yet
started execution. Afterwards, it has entered a barrier.

The implicit task can only proceed if all created tasks have
been completed. Thus, the runtime will start the execution of
a task (see Figure 8). As soon as the task starts execution,
the profiling system creates an entry in the task instance table.
For the new task instance, a separate call tree is created with
the task region as root node. The current task pointer is now
set to point to the position of the task that starts execution.
Furthermore, we want to distinguish between waiting time and
execution time of tasks inside the barrier of the implicit task.
Thus, a second node for the task is created under the node of
the barrier, with the implicit task pointer referencing it. This
stub node contains the time the thread spent executing tasks
inside this barrier.

Fig. 8. Inside the barrier, the application has started execution of task A
instance 1.

If a task contains a scheduling point, the measurement
system creates an enter event for this scheduling point. If
the thread switches to another task at this scheduling point,
e.g., because it starts execution of another task instance, the
profiling system creates the necessary data for this instance
and updates the current task pointer. The implicit task leaves
the node of the task region, when that task is suspended, and
enters the task region of the resumed task. If both instances are
created by the same task construct, it will be the same node.
The situation after starting execution of a second instance is
shown in Figure 9.

Fig. 9. Instance 1 entered a taskwait and was suspended, before a second
instance of that tasking construct was started.

When a task completes execution, the following steps are
carried out (Fig. 10 shows the results):

• The sub-tree is merged with the main profile tree, to
appear as a separate tree besides the main tree. A new
node is created for the first occurrence of this tasking
construct. Later occurrences are merged with this node.

• The task instance’s data structures are kept for later reuse.
• The implicit task exits the task region.
• If another explicit task is resumed or started, the implicit

task enters the task region node of the resumed/started
task.

• The current task pointer is updated to point to the position
of the task that continues execution (either the implicit
task or the next active task instance).

Fig. 10. Task instance 2 completed its execution without entering any other
region. It was merged with the main profile before the thread continued
execution of instance 1.

For explicit tasks, the interval between task suspension
and resumption is subtracted from the time measurement
and the measurement of other metrics. Thus, the task’s tree
contains only statistics about the execution of the task itself.
Imbalance information is only required for each thread which
is represented by the implicit task. Thus, only the implicit
task’s call tree contains task nodes as children of its scheduling
points.

After all tasks are done, the profile contains the call tree of
the implicit tasks and a call tree for each task construct which

merges the statistics about the execution of all instances of this
task construct. Figure 11 shows the profile after the completion
of all tasks.

Fig. 11. Task instance 1 completed its execution.

Figure 12 compiles the the actions taken on task begin,
task end and task switch events. On taskwaits, barriers and
task creation only enter/exit events for the particular region
are issued.

D. Untied tasks
Until now, the existing system supports only tied tasks.

Untied tasks differ from tied tasks in two points: They may mi-
grate to another thread and their execution can be interrupted
at arbitrary points in the program’s execution.

1) Migration: In principle the algorithm from Section IV-C
also works for migrating tasks. The instrumentation allows to
store pointers as identifiers. Only the executing thread needs
to access the task-specific data and the task’s call tree. Thus, if
a task migrates, the pointer to the task-specific data migrates
together with the task. Thus, if a task was started by a thread
A and later task B resumes the task, it can safely access the
task’s call tree.

2) Interruption: Untied tasks may be interrupted anywhere
during execution, preventing detection by source code instru-
mentation which encloses possible scheduling points. Because
the task switch events are essential for our algorithm, we
cannot support those tasks unless the runtime system provides
support for these events. As a work-around, our instrumenta-
tion makes all tasks tied by default.

V. OVERHEAD EVALUATION

The evaluation of the presented profiling mechanism of
tasks has two major parts. In Section V-A, we evaluate the run-
time measurement overhead. Therefore, we instrument and run
the Barcelona OpenMP Tasks Suite [8] and compare the run
times with those of the uninstrumented version. Section V-B
evaluates the memory requirements for the intermediate task
instance trees. The Barcelona OpenMP Tasks Suite (BOTS)
[8] contains nine codes using OpenMP tasks. All experi-
ments were done on the Juropa system [18] at the Jülich
Supercomputing Centre, a Linux cluster with 2 Intel Xeon
X5570 (Nehalem-EP) quad-core processors on each node. The
applications and Score-P were compiled with GCC version
4.6.2.

1 TaskBegin(task region, task instance)
2 {
3 Create task instance specific data
4 TaskSwitch(task instance)
5 Enter(task instance, task region)
6 }
7
8 TaskEnd(task region, task instance)
9 {

10 Exit(task instance, task region)
11 TaskSwitch(implicit task)
12
13 Merge task tree into global
14 profile of thread
15 }
16
17 TaskSwitch(task instance)
18 {
19 if current task is an explicit task
20 {
21 Exit(implicit task,
22 root region of current task)
23
24 Stop time measurement on all open
25 regions of current task
26 }
27
28 Set current task to task instance
29
30 if task instance is an explicit task
31 {
32 Resume time measurement on all
33 open region of task instance
34
35 Enter(implicit task,
36 root region of task instance)
37 }
38 }

Fig. 12. Pseudocode for the task profiling algorithm, specifying the action
for the task events. Enter/exit events and TaskBegin/TaskEnd events are called
with the handle of the entered/exited source code region and the identifier of
the executing task instance as parameters. TaskSwitch events are called with
the identifier of the resumed task instance as parameter.

A. Overhead of the profiling system

To determine the overhead of the profiling system, we
instrumented all nine BOTS applications with OPARI2 [13],
the default compiler instrumentation of Score-P was disabled.
The BOTS benchmark provides multiple versions of the appli-
cations. Because the current system can not support untied
tasks, we evaluated only the versions with tied tasks. If a
version with a cut-off for recursive task depth was provided
(fib, floorplan, health, nqueens, strassen) we chose the cut-off
version. For sparselu the version that creates tasks in a single
construct was used.

The instrumented and uninstrumented version of the code
ran on the Juropa system with 1, 2, 4, and 8 threads and
medium input size. The benchmark gives the runtimes of
its parallel region, containing the tasking kernel, as output.
This was used to determine the measurement overhead of the
instrumented applications. The results are shown in Figure 13.

For alignment, sparselu and strassen, the measurement

Fig. 13. The runtime overhead of the task profiling system with OPARI2
instrumentation (no compiler instrumentation), showing the runtime overhead
of the computing kernel in percent compared to the uninstrumented version
of the BOTS benchmark codes. This figure shows the measurements with the
optimized (i.e., cut-off) version if available. Missing bars mean zero percent
overhead. Negative values are due to measurement inaccuracy.

results show no measurable overhead. For nqueens and sort,
the measured overhead is around 6 percent. For floorplan,
the instrumented measurements with 2 and 4 threads can be
divided into two classes. With 2 threads, class A contained
9 out of 50 measurements which took between 9.6s and 9.9s
while class B contained the other 41 measurements which took
between 19.4s and 19.9s. With 4 threads, class A contained
15 measurements which took between 4.5s and 5.2s while the
other 35 measurements which belong to class B took between
7.8s and 8.0s. The uninstrumented measurements showed only
results which are close to results of class B. Inspection of the
profiles showed, that in case of class A, the execution time
of the tasks was evenly distributed between the threads. The
measurements of class B show that half of the threads executed
no tasks, but idled the whole time. Thus, our conclusion is
that, in the uninstrumented case all measurements behaved like
class B. The overhead calculation for floorplan with 2 and 4
threads considered only the results of class B. This correction
results in an overhead of approx. 6% for 1 and 2 threads,
11% for 4 threads and 2% for 8 threads. The measurements
for class A would lead to an overhead of -47% for 2 threads.

On the other hand, the fib code with 310 % overhead, is
an artificial pathological example. It basically creates 2 child
tasks, waits for them and then only sums up two numbers.
This is done recursively by each child task until a specified
level of recursion is reached. However, the taskwait statements
still create an enter and exit event. Because the computation
time for one addition is small, these two events create large
relative overhead.

Furthermore, fft and health show larger overhead, too. fft
starts with 16.7% overhead for one thread which decreases to
10.5% for 8 threads. For health the decrease is even stronger,
starting with 32.1% with one threads and ends with 5.6% with
8 threads.

Except fib, the application versions selected in Figure 13

Fig. 14. The runtime overhead of the task profiling system with OPARI2
instrumentation (no compiler instrumentation), showing the runtime overhead
of the computational kernel in percent compared to the uninstrumented
version. In contrast to Figure 13, this figure shows the unoptimized versions
of the codes.

Fig. 15. The runtime of the uninstrumented BOTS benchmark codes version
without cut-off, for those codes for which a version with cut-off is provided.
The runtime is shown in percent compared to the highest measured value for
that code.

represent real world applications where tasks perform a rea-
sonable amount of work. However, as a stress test of the
profiling system, we also ran the BOTS version without the
cut-off (see Figure 14), which creates a large amount of
small tasks. With increasing number of threads, the overhead
decreases significantly from large values (e.g. 527% for fib)
to values near or even below zero percent. The only exception
is strassen, which always has a low overhead.

When looking at the runtimes of the codes in Figure 15, we
can see that the overall runtime increases. The only exception
is the strassen code. Table I shows the number of tasks and the
mean execution time of tasks for each application. Obviously,
the mean execution time of a task in strassen is approximately
two magnitudes larger than the mean execution time in fib,
health, and nqueens and still more than fifteen times larger
than the tasks in floorplan. On the other hand, the number of
tasks in stassen is significantly smaller. Our conclusion is that
the mean execution time of 149 µs in strassen is reasonable,
while the tasks in the other codes are too small.

Inspection of the profile of the other codes shows that
the total time spent outside the OpenMP runtime does not
increase, but stays constant. The additional time is spent inside

TABLE I
MEAN EXECUTION TIME OVER ALL TASKS AND NUMBER OF TASKS FOR

CODE VERSIONS WITHOUT CUT-OFF.

code mean time number of tasks
fib 1.49 µs 3,690,000,000
floorplan 8.57 µs 73,700,000
health 2.35 µs 17,500,000
nqueens 1.24 µs 378,000,000
strassen 149.0 µs 960,800

OpenMP synchronization points or during task creation.
The reason is that the task management inside the OpenMP

runtime system becomes a bottleneck, presumably due to
necessary locking during access to internal data structures.
Instrumentation shifts some of the overhead from the OpenMP
runtime system to the profiling system, and thus, is shadowed
when comparing the runtimes of the uninstrumented version
with the instrumented version. Furthermore, it might reduce
conflicts inside the OpenMP runtime system by increasing the
runtime of the tasks.

This effect may also explain the overhead decrease for the
health and fft code with cut-off.

A conclusion of these measurements is that for codes
that are optimized and, thus, have small task management
overhead, the additional runtime overhead for task profiling is
limited, too. If the tasks are small, the measurement overhead
is shadowed by the runtime overhead if multiple threads are
used. However, massive use of taskwait statements or use of
small tasks on one thread may result in huge overhead. In
these cases, the the overhead increases the visibility of the
performance problem.

B. Memory requirements

The profiling system maintains a separate call tree for every
executing task instance. This task instance tree is created when
the task instance starts execution (not when it is created).
The task instance tree is merged into the main profile and
the memory is released when the task instance completes
execution. Considering the amount of tasks that may be
created, the memory requirements need to be considered.

The memory requirements for the task instance trees depend
on the complexity of a task instance tree and the number of
concurrently executed tasks for which the profiling system
must maintain a task tree. While the complexity of a task tree
can be seen in the call-path profile of the tasks, the number of
concurrently executing tasks is not obvious. Thus, we maintain
a counter for the current number of task trees per thread and
store the counter’s maximum value for each parallel region.
The results for the BOTS codes are given in Table II

The measurement results show that the number of con-
currently executed tasks is never larger then 20. In 8 of the
14 cases the maximum number of tasks is even less than 5.
In recursive algorithms, the maximum number of concurrent
tasks reflects the recursion depth.

High numbers of tasks do not only cause management
overhead in the profile, but the runtime system also needs
to maintain data about all created tasks. Thus, keeping the

TABLE II
MAXIMUM NUMBER OF CONCURRENTLY EXECUTING TASKS PER THREAD.

THE VERSIONS WITH CUT-OFFS ARE MARKED AS SUCH.

code max tasks
alignment 1
fft 19
fib (cut-off) 4
floorplan 20
floorplan (cut-off) 5
health 4
health (cut-off) 3
nqueens 14
nqueens (cut-off) 3
sort 18
sparselu 2
strassen 8
strassen (cut-off) 3

number of created tasks below a probably system-dependent
threshold also limits the memory requirements for the runtime
system. Therefore, the longest dependency chain (e.g. the
recursion depth) of an application may serve as a good
estimate for the number of concurrent tasks.

Because released task-instance tree nodes are reused and
the number of concurrent tasks was low in all test cases, the
memory overhead seems to pose no general problem. It could
become a limitation though if dependency chains become
extremely long.

VI. ANALYSIS EXAMPLES

Since the Barcelona OpenMP Tasks Suite [8] provides
multiple versions of each code, which, in some cases, show
significant performance differences, they provide examples
where we can demonstrate the usage of the task profiling
system. Like the overhead evaluation in Section V, all tests
ran on the Juropa system [18].

As an example, we chose the nqueens code. It calculates all
possibilities to place n queens on a chess board with n2 fields.
It is a recursive algorithm that places a queen successively on
each field of the current line. If the placement does not conflict
with earlier placements it creates a new task to process the
next line. The benchmark suite provides a version which cuts
the creation of new tasks at a certain level of recursion and a
version which continuously creates new tasks.

If we look a the runtime of the uninstrumented nqueens
version without cut-off for different number of threads, we see
that the runtime increases with increasing number of threads
(see Figure 15), indicating a performance problem.

To get a first impression, we look at the profile of an
instrumented run with 4 threads. It shows that three quarters
of the time inside the tasks is spent creating child tasks. This
indicates that too many tasks are created that are too small.
The mean exclusive execution time of a task was only 0.30 µs,
while the mean time to create a task was 0.86 µs.

Furthermore, comparison of profiles of instrumented runs
with different numbers of threads shows that the sum of the
exclusive execution times of the task region had only little
variation. However, the measured execution time attributed

TABLE III
EXCLUSIVE EXECUTION TIMES OF AN INSTRUMENTED nqueens RUN FOR

THE TASKWAIT AND TASK CREATE REGIONS INSIDE THE nqueens TASK
CONSTRUCT FOR DIFFERENT NUMBERS OF THREADS. FURTHERMORE THE

EXCLUSIVE TIME OF THE BARRIER IN THE MAIN TREE IS SHOWN.

1 thread 2 threads 4 threads 8 threads
task 106.0 s 112.6 s 114.3 s 106.65 s
taskwait 2.44 s 6.69 s 24.83 s 101.7 s
create task 56.0 s 95.9 s 323.8 s 1102.3 s
barrier 0 s 40.1 s 183.0 s 947.7 s

TABLE IV
SUM AND MEAN OF THE INCLUSIVE EXECUTION TIMES OF A TASK IN

nqueens DEPENDING ON THE LEVEL OF RECURSION. ADDITIONALLY THE
NUMBER OF TASKS AT EACH LEVEL IS SHOWN.

depth level mean time sum number of tasks
0 25.5 µs 0.00036 s 14
1 19.8 µs 0.0039 s 196
2 15.8 µs 0.0344 s 2,184
3 12.3 µs 0.2340 s 19,096
4 9.42 µs 1.270 s 134,848
5 7.06 µs 5.347 s 756,952
6 5.01 µs 16.94 s 3,380,776
7 3.46 µs 40.45 s 11,690,784
8 2.35 µs 72.76 s 30,966,152
9 1.59 µs 97.00 s 61,487,832

10 1.12 µs 99.29 s 88,522,448
11 0.82 µs 74.71 s 90,606,208
12 0.61 µs 38.40 s 63,166,908
13 0.33 µs 8.889 s 27,176,000

to task creation, taskwait and implicit barriers, increase sig-
nificantly (see Table III). Because the management time for
task completion and task switches is attributed to these re-
gions, we conclude that the increase in runtime is due to
management overhead of the runtime system. The mean time
for a management action increases with increasing number
of threads. If the runtime system needs exclusive access
to internal data structures, many small tasks causing many
management actions on many concurrent threads increase the
probability of synchronization overhead. This leads to a higher
mean time for management actions. The solution is to create
less but lager tasks.

The application uses a recursive approach to create tasks.
In order to evaluate the link between runtime and recursion
level, we inserted parameter instrumentation into the task. This
results in a profile with separate sub-trees for the tasks of each
recursion level. The result is shown in Table IV. It shows that
the average runtime of tasks decreases with increasing depth.
Furthermore, most of the time was spent in tasks of depths 9
to 13. While tasks in depth level 0 to 3 contributed only an
insignificant fraction to the runtime, but provided tasks with
a reasonable runtime. 2000 tasks should be enough to fill and
balance up to 8 threads. Thus, stopping task creation at level
3, as done by the nqueens version with cut-off, reduces the
runtime of the uninstrumented computing kernel from 187 s
to 11.5 s with 4 threads, providing a speedup of 16.

VII. CONCLUSION

Finding the appropriate task granularity is essential for
the performance optimization of task-based applications in

OpenMP 3.0. Examples show that the runtime overhead due
to ill-sized tasks may lead to an increase in runtime when
moving to larger scales.

We presented a first algorithm that correctly creates task
profiles by measuring task execution via direct instrumen-
tation. Due to the runtime system overhead, the relative
measurement overhead of the profiling system is limited. The
profile statistics of the task and the main tree provides the
required information to pinpoint inefficient task usage, for
example, by comparing task creation time, which may grow
with the number of threads, to the execution time of tasks.

Also the time spent inside the runtime system at synchro-
nization points is measured. However, it is not yet possible
to distinguish if this time is required for management, or if it
is waiting time on the completion of some tasks. Combined
with the number of task switches and the task creation and
execution time, it might be possible to derive an estimation.
However, this would require more research.

Automated trace analysis, like Scalasca [5] does for other
programming paradigms, might provide some additional infor-
mation, and/or highlight particular performance problems. For
example, the time between the enter of the last synchronization
point and the task switch event would be of interest. In this
way it would be possible to calculate the ratio of overall
management time to exclusive execution time for tasks.

Furthermore, the profile does not contain any analysis or
information on the effects of task dependencies. Trace-based
analysis could provide insight into dependencies among tasks,
which may on the one hand provide hints to distinguish
between management and waiting time, and on the other hand
it may help in optimizing dependency chains that cause load
imbalance.

VIII. ACKNOWLEDGMENT

This work is based upon work supported by the US Depart-
ment of Energy under Award Number DE-SC0001621.

REFERENCES

[1] OpenMP Architecture Review Board, “OpenMP Application Progam
Interface Version 3.0,” OpenMP Architecture Review Board, Tech. Rep.,
May 2008. [Online]. Available: http://www.openmp.org/mp-documents/
spec30.pdf

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, “HPCTOOLKIT: Tools for
Performance Analysis of Optimized Parallel Programs,” Concurrency
and Computation: Practice and Experience, vol. 22, pp. 685–701,
April 2010. [Online]. Available: http://dx.doi.org/10.1002/cpe.v22:6

[3] K. Fürlinger and M. Gerndt, “ompP: A Profiling Tool for OpenMP,”
in 1st Int. Workshop of OpenMP (IWOMP). Berlin, Heidelberg:
Springer-Verlag, 2005, pp. 15–23. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1892830.1892833

[4] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “PARAVER: A Tool to
Visualize and Analyze Parallel Code,” in WoTUG-18: Transputer and
occam Developments, Mar. 1995, pp. 17–31.

[5] M. Geimer, F. Wolf, B. Wylie, E. Ábrahám, D. Becker, and B. Mohr,
“The Scalasca Performance Toolset Architecture,” Concurrency and
Computation: Practice and Experience, vol. 22, no. 6, pp. 702–719,
2010.

[6] S. S. Shende and A. D. Malony, “The TAU Parallel Performance
System,” International Journal of High Performance Computing Appli-
cations, vol. 20, no. 2, pp. 287–311, 2006.

[7] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. Müller, and W. Nagel, “The Vampir Performance Analysis Tool Set,”
in Tools for High Performance Computing. Springer, Jul. 2008, pp.
139–155.

[8] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguadé, “Barcelona
OpenMP Tasks Suite: A Set of Benchmarks Targeting the Exploitation
of Task Parallelism in OpenMP,” in 38th International Conference on
Parallel Processing (ICPP ’09), IEEE Computer Society. Vienna,
Austria: IEEE Computer Society, Sep. 2009, pp. 124–131.

[9] N. R. Tallent and J. M. Mellor-Crummey, “Effective Performance
Measurement and Analysis of Multithreaded Applications,” in 14th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). New York, NY, USA: ACM, 2009, pp. 229–
240.

[10] D. Lorenz, B. Mohr, C. Rössel, D. Schmidl, and F. Wolf, “How to Rec-
oncile Event-Based Performance Analysis with Tasking in OpenMP,” in
6th Int. Workshop of OpenMP (IWOMP), ser. LNCS. Springer Berlin
/ Heidelberg, 2010, vol. 6132, pp. 109–121.

[11] K. Führlinger and D. Skinner, “Performance Profiling for OpenMP
Tasks,” in 5th Int. Workshop of OpenMP (IWOMP), ser. LNCS, vol.
5568. Springer, May 2009, pp. 132–139.

[12] B. Mohr, A. Malony, S. Shende, and F. Wolf, “Design and Prototype of
a Performance Tool Interface for OpenMP,” The Journal of Supercom-
puting, vol. 23, no. 1, pp. 105–128, August 2002.

[13] D. an Mey, S. Biersdorff, C. Bischof, K. Diethelm, D. Eschweiler,
M. Gerndt, A. Knüpfer, D. Lorenz, A. D. Malony, W. E.
Nagel, Y. Oleynik, C. Rössel, P. Saviankou, D. Schmidl, S. S.
Shende, M. Wagner, B. Wesarg, and F. Wolf, “Score-P: A
Unified Performance Measurement System for Petascale Applications,”
in Competence in High Performance Computing 2010 (CiHPC),
Gauß-Allianz. Springer, 2012, pp. 85–97. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24025-6 8

[14] Y. Lin and O. Mazurov, “Providing Observability for OpenMP 3.0
Applications,” in 5th Int. Workshop of OpenMP (IWOMP), ser. LNCS,
vol. 5568. Springer, May 2009, pp. 104–117.

[15] M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin, “An OpenMP Runtime
API for Profiling,” Sun Microsystems, Inc., Tech. Rep., 2007.

[16] D. Schmidl, P. Philippen, D. Lorenz, C. Rössel, M. Geimer, D. an Mey,
B. Mohr, and F. Wolf, “Performance Analysis Techniques for Task-based
OpenMP Applications,” in 8th Int. Workshop of OpenMP (IWOMP), ser.
LNCS, vol. 7312. Berlin / Heidelberg: Springer, Jun. 2012, pp. 196–
209.

[17] R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Martorell,
R. Badia, E. Ayguade, and J. Labarta, “Optimizing the Exploitation
of Multicore Processors and GPUs with OpenMP and OpenCL,” in
Languages and Compilers for Parallel Computing, ser. LNCS, 2011,
vol. 6548, pp. 215–229. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-19595-2 15

[18] “JuRoPA,” 2012. [Online]. Available: http://www.fz-juelich.de/ias/jsc/
EN/Expertise/Supercomputers/JUROPA/JUROPA node.html

