
A Bandwidth-saving Optimization for MPI
Broadcast Collective Operation

Huan Zhou
High Performance Computing Center Stuttgart (HLRS)

University of Stuttgart, Germany

Vladimir Marjanovic
High Performance Computing Center Stuttgart (HLRS)

University of Stuttgart, Germany

Christoph Niethammer
High Performance Computing Center Stuttgart (HLRS)

University of Stuttgart, Germany

José Gracia
High Performance Computing Center Stuttgart (HLRS)

University of Stuttgart, Germany

Abstract—The efficiency and scalability of MPI collective op-
erations, in particular the broadcast operation, plays an integral
part in high performance computing applications. MPICH, as
one of the contemporary widely-used MPI software stacks, imple-
ments the broadcast operation based on point-to-point operation.
Depending on the parameters, such as message size and process
count, the library chooses to use different algorithms, as for
instance binomial dissemination, recursive-doubling exchange
or ring all-to-all broadcast (allgather). However, the existing
broadcast design in latest release of MPICH does not provide
good performance for large messages (lmsg) or medium messages
with non-power-of-two process counts (mmsg-npof2) due to the
inner suboptimal ring allgather algorithm. In this paper, based
on the native broadcast design in MPICH, we propose a tuned
broadcast approach with bandwidth-saving in mind catering to
the case of lmsg and mmsg-npof2. Several comparisons of the
native and tuned broadcast designs are made for different data
sizes and program sizes on Cray XC40 cluster. The results show
that the performance of the tuned broadcast design can get
improved by a range from 2% to 54% for lmsg and mmsg-npof2
in terms of user-level testing.

Index Terms—MPICH, Broadcast, Bandwidth-saving

I. INTRODUCTION

The message passing interface (MPI) [1] standard provides
a flexible and portable environment for developing high per-
formance parallel applications on different platforms. Since
the release of the first version of MPI, it has become a very
flexible communication layer providing mechanisms for both
point-to-point and collective operations.

The MPI standard specifies various types of collective oper-
ations [2] such as All-to-All (MPI Allgather, MPI Allscatter
and MPI Alltoall), All-to-One (MPI Gather and MPI Reduce)
and One-to-All (dissemination: MPI Bcast and MPI Scatter).
Many scientific applications use collective communications to
synchronize or exchange data.

Noticeably, collective communication is a critical and also
frequently used component in MPI. In particular, MPI broad-
cast, as the typical One-to-All interface, is an essential inter-
face widely used in many scientific fields, for instance, matrix
multiplication, basic linear algebra [3] and so on. Besides, a
profiling study [4] shows that the efficiency of MPI broadcast
operations can have a remarkable impact on the overall LS-

DYNA [4] performance. Therefore, the MPI implementors
are willing to put great efforts on the optimization of MPI
broadcast implementation.

MPICH [5] is a high-performance, freely-available and
portable implementation of the MPI and MPICH3 supports the
latest version of the MPI standard – MPI-3. In addition, A vast
majority of other MPI implementations, including IBM MPI,
Intel MPI, Cray MPI, OSU MVAPICH/MVAPICH2 and so
forth, are derived from MPICH. According to the new Top500
Supercomputer report [6], of the top 10 Supercomputers as
of November 2014, 90% are exclusively using MPICH or its
derivatives.

Multi-core processor [7] emerges to speed up the computa-
tion capability of processor through performing the workload
among multiple cores concurrently. With the advantage of
multi-core processor, it has been commonly deployed in the
nowadays computation clusters. Accordingly, we can basically
exploit two communication levels – intra-node and inter-
node [8] on multi-core clusters to analyze the broadcast
algorithm in MPICH3.

MPICH has already highly tuned the implementation of
broadcast operation in a way of using multiple algorithms
based on the message size and process count [9] and such
implementation design is still employed in MPICH3 [10].
However, there is still considerable room left at optimizing
broadcast especially when transferring the long messages
(lmsg), or medium messages but with non-power-of-two pro-
cess counts (mmsg-npof2). The occurrence of non-power-of-
two processes can be due to explicit user request at job-
launching, particularly on systems where the core count per
node is already non-power-of-two, or due to splitting on the
communicator in the applications.

For lmsg, MPICH3 adopts a scatter-ring-allgather ap-
proach, where the source data to be broadcast is first divided
up and scattered among the processes following a binomial
tree from root. The scattered data are then collected back
to all processes as a ring allgather operation. For mmsg-
npof2, the implementation is of multi-core awareness, where
we first perform an intra-node broadcast on the node of
root following a binomial tree, then perform the inter-node

ar
X

iv
:1

60
3.

06
80

9v
1 

 [
cs

.D
C

] 
 2

2 
M

ar
 2

01
6



broadcast by using the scatter-ring-allgather, finally perform
the intra-node broadcast on all nodes except for the node of
root again following a binomial tree. However, the subopti-
mal ring allgather operation potentially involves verbose data
transmissions which actually can be avoided. Further, for lmsg,
it is to be noted that we need put considerable emphasis on
the usage of bandwidth, which implies that the number of
useless data transmissions should be minimized aiming to save
bandwidth use. This is an interesting subject that is however
easily overlooked by most active MPI researchers.

Therefore, in this paper, we investigated in-depth the
methodology of designing an optimized broadcast algorithm
(scatter-ring-allgather) particularly for lmsg and mmsg-npof2
by tuning the suboptimal ring allgather design. The scalability
and portability of the optimized broadcast algorithm can be
maintained since such optimization is not bound to particular
platform or special features in hardware.

We have implemented the native and tuned scatter-ring-
allgather algorithms without multi-core awareness on the user
level. Hence we can compare the native and tuned scatter-
ring-allgather algorithms for lmsg and mmsg-npof2 case from
a broader perspective, which allows us to observe their per-
formance difference when the inter-node or intra-node data
transmissions are involved. Here on, all references to the
user-level implementation of the native and tuned scatter-
ring-allgather algorithms free of multi-core awareness refer
to MPI Bcast native and MPI Bcast opt, respectively. We
conduct a series of experiments on Cray XC40 to indicate
that the tuned design can improve the bandwidth performance
of broadcast operation by a range from 2% to 54% for lmsg
and mmsg-npof2 in terms of the user-level testing.

The rest of this paper is organized as follows: In Sec-
tion II we discuss related work. In Section III, we pro-
vide an overview of the native scatter-ring-allgather algo-
rithm (MPI Bcast native). In Section IV, the tuned design of
scatter-ring-allgather algorithm (MPI Bcast opt) is described
and explained with the pseudo-code as well. We evaluate the
tuned design and compare it with MPI Bcast native in Section
V. Conclusion is presented in Section VI.

II. RELATED WORK

There have been many careful studies about the optimization
of broadcast implementation targeting for the specific intercon-
nects. Two papers [11], [12] focus on the InfiniBand clusters
with hardware-supported multicast, which can improve the
overall performance of broadcast significantly and however are
closely dependent of the underlying interconnects. Addition-
ally, A study [13] demonstrates that the broadcast performance
can get improved on the Software-Designed network, which is
of controllability. The MPI broadcast operations get optimized
as a result of the network hardware acceleration for broadcast
provided by the Blue Gene/Q, shown in paper [14]. However,
those optimized designs will show poor portability when
applying them on other networks without multicast support,
controllability or dedicated hardware acceleration.

III. BACKGROUND

A. Overview of MPI Bcast native

MPI standard specifies that the broadcast operation should
disseminate a message from a root process to other processes
in a communication group. MPI broadcast is a blocking
operation, which means all processes are ready to use the
received data after the broadcast operation is successfully
returned.

The algorithm that is generally used by MPI Bcast native
for lmsg and mmsg-npof2 is the combination of a binomial
scatter and a suboptimal ring allgather operation. We assume
that there are P processes participating in the broadcast
operation. In theory, MPI Bcast native first uses a binomial
scatter to make process i get the i-th block of data from root
(Section I mentioned that the data source should be divided
up into P pieces of data block before the scatter operation),
then invokes a (P − 1)-step enclosed-ring allgather operation.

On the one hand, we explain how the scatter operation
proceeds following a binomial tree from the root 0 for a power-
of-two number of processes – 8 processes, shown in Figure
1. The root 0 divides the source data into 8 chunks, where
each chunk will be marked as a non-negative number i and
supposed to be transmitted to the corresponding process pi.
In this way the source data in root 0 consists of 8 chunks of
data marked with 0, 1, ..., 7 sequentially. In the first step, root
0 sends the chunk set of {4,5,6,7} to process 4, then a sub-
tree is spawned, as process p4 be the root. In the following
step, we spawn two new sub-trees, as process 2 and 6 be
the root respectively. Finally each process is able to get the
corresponding data after the third step and a binomial tree
spanning 8 processes is completed. Generally all processes
can get the corresponding data in log2P steps for power-of-
two processes. On the other hand, we, take 10 processes for
example, describe the generation of a binomial scatter tree
for non-power-of-two processes. The scatter path keeps the
same as the path in Figure 1 except that an additional branch,
as process 8 be the root, is spawned. In this case the entire
scatter operation finishes in dlog2P e steps, shown in Figure
2. According to the above two figures, we can conclude that
practically not only does each non-leaf node pi in the binomial
scatter tree own its corresponding chunk of data marked with
i, but it also provides all data chunks for its descendant.

Figure 3 shows us the suboptimal ring allgather operation
for 8 processes, process i sends its contribution to process
i + 1 and meantime receives the contribution from process
i− 1 (with wrap-around) in the first step and from the second
to seventh step each process i forwards to process i+1 the data
it received from process i − 1 during the previous step. The
set that is listed above each process indicates all data chunks
that it owns in reality after the binomial scatter operation,
illustrated in Figure 1. However we can find that this allgather
algorithm is carried out in an enclosed ring manner, where
each process pi pretends to only own the i-th data chunk and
thus repeatedly receives the data chunks that already existed in
it. This obviously leads to a large amount of useless data trans-



Fig. 1. Schematic for the binomial scatter operation in the case of 8 processes

Fig. 2. Schematic for the binomial scatter operation in the case of 10
processes

missions in each step. For the non-power-of-two processes,
the algorithm of ring allgather operation goes the same way
as that for power-of-two processes. Therefore, generally there
are totally data transmissions of P×(P−1) in this suboptimal
ring allgather operation with data transmissions of P at each
step.

Fig. 3. Enclosed ring for the original allgather algorithm in the case of 8
processes

IV. DESIGNING MPI Bcast opt

In this section, we describe the new broadcast algorithm
for lmsg and mmsg-npof2 and its potential advantage over
the original algorithm used by MPICH3, which has been
elaborated in Section III.

We optimize the native broadcast algorithm in MPICH3
by tuning the suboptimal ring allgather operation in a way
of letting each process be aware of the actual data chunks
that it already owned and skipping the verbose data transfers
happening in the original ring allgather operation (see Figure
3). Figure 4 shows the tuned ring allgather algorithm by
illustrating the send and receive events that happen in each
step with run size of 8.

Likewise, the set shown in the top row lists all data chunks
that a process has already owned after doing the binomial
scatter operation. Noticeably, we can see that the new ring
allgather algorithm proceeds in a non-enclosed ring manner.
Process 0 is the root owning the source data and thus it does
not need receive any chunk of data from process 7. In the
first four steps, process 4 gets the data chunks marked with
3,2,1 and 0 from process 3 in sequence, which complete the
receive buffer of process 4 together with its existing chunks of
data marked with 4,5,6 and 7. Therefore, from the fifth step on
process 4 stop receiving any further data chunk from process 3.
by analogy, we can see that process 2 and 6 collect data chunks
from process 1 and 5 till the seventh step, where process
2 and 6 already gets all the data chunks that they are lack
of. Therefore, each process only receives those missing data
chunks, ignores the repeated data chunks and also terminates
in 8 − 1 = 7 steps. The number of message transfers in the
original ring allgather algorithm is 8 × (8 − 1) = 56 for 8
processes, by contrast, the tuned design can reduces it by 12.

Figure 5 exhibits a more complex scenario, where the tuned
ring allgather algorithm performs with 10 processes as an
example of non-power-of-two. Process 4 stops receiving data
chunks from process 3 after reaching the sixth step since it
already gets all missing data chunks marked with 3,2,1,0,9 and
8 sequentially. Additionally, not only process 2 and 6 but also
process 8 get the full source data chunks which are broadcast
initially by root after eighth step. In this case, the number
of message transfers is 75 and reduced by 15 compared with
10 × (10 − 1) = 90 brought by the original ring allgather
algorithm.

According to Figures 4 and 5, we can deduce that the
decrement in the amount of the transferred data will increase
as the growing of the process count P . Furthermore, by
combining Figure 3 and Figure 4, we can conclude that the
tuned ring allgather algorithm reduces the data transmission
traffic to an extent using the same steps as the native ring
allgather algorithm.

Intuitively, the tuned ring allgather algorithm can speedup
the broadcast performance by reducing unnecessary data trans-
missions. Technically, in the case of intra-node, the point-to-
point operation is implemented via memory copying, which is
considered to involve the cpu-interference and buffer memory



Fig. 4. Non-enclosed ring for the tuned allgather algorithm in the case of 8
processes

Fig. 5. Non-enclosed ring for the tuned allgather algorithm in the case of
10 processes

allocation, which can be minimized in the tuned ring allgather
algorithm. In the case of inter-node, the source data should be
sent into network by the sender. In addition, there is currently
no high performance cluster capable to reach a ideal capability,
where the network environment is not negatively influenced by
the quantity of data transmission and has sufficient memory
resource or unlimited network bandwidth. Thus, with the tuned
ring allgather algorithm not only can we save the buffer
memory, but we also save bandwidth by decreasing the amount
of messages injecting into it and therewith bring down the
opportunity of network congestion. Accordingly, we can infer
that the tuned ring allgather algorithm can bring potential
performance benefit for broadcast operation on both the two
communication levels.

Pseudo-code for the tuned ring broadcast algorithm for lmsg
and mmsg-npof2 (MPI Bcast opt) is presented in listing 1,

where the added code is the auxiliary part helping to realize
the tuned ring allgather algorithm. First, we assume the com-
municator size is P , root divides the source data into pieces
of P and then scatters those pieces to the other processes
following a binomial tree. Second, each process computes out
the related step, which indicates that each process starts to
either send or receive data chunks from (P − step+1)-th step
on and the direction of data transmission is determined by the
value of flag. At last, unlike the native ring allgather algorithm,
the tuned ring allgather design makes all processes start the
collection of data chunks according to step and flag in the
purpose of omitting the useless data transmissions.

Listing 1. Pseudo-code for the MPI Bcast opt
void MPI_Bcast_opt (char *buffer,int count,int

length,int root,MPI_Comm comm)
{
/* Get the process rank and communicator size */
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&comm_size);

/* If the process 0 is not the root, then each
process needs to get the relative_rank with
respect to the root */

relative_rank=(rank>=root)?\
rank-root:(rank-root+comm_size);

/* Root devides the source data into pieces of
comm_size and disseminates them to the other
processes in a binomial tree */

scatter_size=(nbytes+comm_size-1)/comm_size;

/* See Figure 1&2 for details */
binomial_tree(buffer,count,length,root,comm);

/* --- The tuned ring allgather algorithm --- */

/* Each process computes the absolute left node
and right node in the virtual ring */

left=(comm_size+rank-1)%comm_size;
right=(rank+1)%comm_size;
j=rank;
jnext=left;

/* Added code: Each process calculates the step
based on which it decides to either send or
receive data inside the ring allgarther
operation */

mask=2ceil(log2comm_size);
while(mask>1){
right_relative_rank=(relative_rank+1<comm_size)?\

relative_rank+1:relative_rank+1-comm_size;
if(!(right_relative_rank%mask)){
step=mask;
if(right_relative_rank+mask>comm_size){
step=comm_size-right_relative_rank;}

/* Indicate only receive */
flag=1;
break;}

if(!(relative_rank%mask)){
step=mask;
if(relative_rank+mask>comm_size){
step=comm_size-relative_rank;}

/* Indicate only send */
flag=0;
break;}

mask>>=1;
}

/* Collect data chunks in (comm_size-1) steps at



most */
for(i=1; i<comm_size; i++){
rel_j=(j-root+comm_size)%comm_size;
rel_jnext=(jnext-root+comm_size)%comm_size;
left_count=minimum(scatter_size,

(nbytes-rel_jnext*scatter_size));
if(left_count<0){
left_count = 0}

left_disp=rel_jnext*scatter_size;
right_count=minimum(scatter_size,

(nbytes-rel_j*scatter_size));
if(right_count<0){
right_count=0;}

right_disp=rel_j*scatter_size;

/* Added code: Jugde if the process has reached
the point that indicates either send-only or
receive-only */

if (step<=comm_size-i){
MPI_Sendrecv(buffer+right_disp, right_count,

MPI_BYTE, right, 0, buffer+left_disp,
left_count, MPI_BYTE, left, 0, comm,
&status);

}
else{
/* The process reaches the send-only or

recevie-only point */
if(flag){MPI_Recv(buffer+left_disp, left_count,

MPI_BYTE, left, 0, comm, &status);}//Receive
point

else{MPI_Send(buffer+right_disp, right_count,
MPI_BYTE, right, 0, comm);}//Send point

}

j=jnext;
jnext=(comm_size+jnext-1)%comm_size;}
}

V. EXPERIMENTAL EVALUATION

In this section we describe our experiments and give a
detailed explanation of the comparison results. We conducted
the micro communication benchmarks for broadcast to test its
bandwidth on two clusters with the following configures for
our tests:

1) Cray XC40, called Hornet: dual Intel Haswell E5-
2680v3 2.5GHz processors compute node with 128GB
of main memory, 24 cores per node. The nodes are
interconnected through a Cray Aries network using
Dragonfly topology.

2) NEC Cluster, called Laki: dual Intel Xeon X5560 2.80
GHz processors compute node with 8MB L3 Cache,
8 cores per node. The nodes are interconnected via
Infiniband using switched fabric topology.

All processes are synchronized with a MPI barrier before
reaching the broadcast interface. We then repeat the broadcast
operation for 100 iterations and report the bandwidth. Note,
that the bandwidth we present in this section is the rate at
which the broadcast messages can be processed, and measured
in Megabytes per second (MB/s). Note, that throughout this
paper we use megabytes (MB) and kilobytes (KB) in the base-
2 sense, i.e., 220 and 210, respectively.

The message size threshold determined by MPICH3 to
switch from short messages to medium messages is 12288
bytes and the message size threshold to switch from medium

messages to long messages is 524288 bytes. Thus, we suppose
that the long messages should be larger than 524287 in bytes
and medium messages should be larger than 12287 and smaller
than 524288 in bytes. Our experiments are classified into
two types. First, we evaluate the tuned design in the case
of long message transmission varying the sizes from 524288
to 30000000 bytes with the number of processes of 16, 64
and 256 respectively. Second, we evaluate the tuned design
for medium messages and long messages with non-power-
of-two processes, as for example 9, 17, 33, 65 and 129
processes. Third, we measure the tuned design for a range of
message sizes from 12288 to 2560000 bytes with 129 running
processes.

Now we introduce two comparison objects for the two
experimental platforms – Hornet and Laki. For Hornet, we
implement the native and tuned broadcast algorithms on the
user-application level (mentioned in Section I). The compiler
we used is Cray compiler. For Laki, we implement the tuned
broadcast algorithm on the MPI level, which is altered directly
inside the MPI code. Therefore, the compiler we used is the
MPICH in-build compiler – mpicc.

In this section, we only present the comparison results on
Hornet since the results from both Hornet and Laki basically
deliver the same bandwidth performance trend.

A. Long Messages with Power-Of-Two Processes

In this experiment, we measure the bandwidth performance
of MPI Bcast native and MPI Bcast opt on Hornet over a
range of long message sizes with power-of-two processes, as
for example 16, 64 and 256 processes. All data transmissions
occur within one node when only 16 processes are launched
since all the processes are placed among the nodes in a blocked
manner by default on Hornet. The comparison results are
shown in Figure 6 for Hornet system. The results are explained
as follows:

16 processes: As described in Section IV, when the
broadcast operation only involve the intra-node data trans-
mission, the tuned allgather design can avoid extra mem-
ory copying operations, which can help to save the mem-
ory source consumption and alleviate host processing over-
head in the MPI Bcast opt implementation. The bandwidth
performance results for 16 processes are shown in Figure
6(a). We observe an improvement of as high as 12% for
bandwidth as comparison to MPI bcast native at 512KB,
The results also show us that the MPI Bcast opt consis-
tently outperforms MPI Bcast native even for very large
messages (beyond 10MB). Additionally, The MPI Bcast opt
and MPI Bcast native report a peak bandwidth of up to 2748
MB/s and 2623 MB/s, respectively. We see that the peak
bandwidth performance of MPI Bcast opt is slightly (10%)
better than that of MPI Bcast native.

64 processes: When 64 processes are launched on Hornet,
not only is the intra-node data transmission involved in the
broadcast, but the inter-node data transmission also play a
certain role in the broadcast operation. The growing number
of outgoing inter-node messages will increase the burden



of network routing. As can be noted from the Section IV,
compared to MPI Bcast native, the number of inter-node
messages will be reduced to an extent in the MPI Bcast opt
algorithm, which leads to the improvement of the overall
broadcast performance in bandwidth. Further, Figure 6(b)
shows the bandwidth results for 64 processes. Comparing
with the MPI Bcast native we can observe that the bandwidth
achieved by the MPI Bcast opt can be increased by as high as
41% for 64 processes on Hornet. The MPI Bcast opt performs
13% better than the MPI Bcast native in peak bandwidth.

256 processes: There are more inter-node messages inject-
ing into network for 256 processes than for 64 processes,
Therefore, in the case of 256 processes, the performance of
the broadcast depends on the network efficiency more than
the case of 64 processes and also the inter-node message
transmissions form a greater portion of the overall cost of
broadcast operation. The results shown in Figure 6(c) indi-
cate that MPI Bcast opt can yield an improvement of up
to 20% in bandwidth as comparison to MPI Bcast native
for 256 processes on Hornet. Additionally, compared with
MPI Bcast native, the MPI Bcast opt improves the peak
bandwidth by 16% for 256 processes. Moreover, The curves
shown in Figure 6(c), Figure 6(b) and Figure 6(a) for Hornet
suggest that the MPI Bcast opt gains the biggest peak band-
width advantage for 256 processes. The drop in bandwidth per-
formance of MPI Bcast opt and MPI Bcast ori starts from
around 4MB for 16 processes, is attributed to the limited
memory capacity. Likewise, the bandwidth performance shows
slow growth as the increase of transfer message sizes for 64
processes. We see that there is a sudden drop at around 3MB
for 256 processes due to cache effects.

B. Medium Messages and Long Messages with Non-Power-
Of-Two Processes

In this experiment, we first test the throughput (here de-
noted as the broadcast messages per second) speedups of
MPI bcast opt over MPI Bcast native for medium messages
(take two critical message sizes – 12288 and 524287 bytes for
example) and long messages (take 1048576 bytes for example)
with non-power-of-two processes involved. Second, we fix the
number of processes to 129 and then evaluate the bandwidth
performance of MPI Bcast native and MPI Bcast opt by
increasing message sizes from 12288 (medium message size)
to 2560000 (long message size) bytes contiguously.

Figure 7 shows the throughput speedups of MPI Bcast opt
over MPI Bcast native. Specifically, the significantly higher
speedups are achieved for message size of 12288 bytes than
for the other two cases – message sizes of 524287 bytes and
1048576 bytes. We can see that MPI Bcast opt performs more
than two times better than MPI Bcast native for 12288 bytes
in the case of 9, 17 and 33 processes. However, as can be noted
from the speedup trend in Figure 7, the speedup goes down
suddenly as the transferred message sizes are increased on up
to 65 processes for 12288 bytes. Regarding the case of 524287
bytes and 1048576 bytes, they show similar speedups on the
measured number of processes – 9, 17, 33 and 129. In addition,

 256

 1024

 4096

2
19

2
20

2
21

2
22

2
23

2
24

2
25

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (Bytes)

MPI_Bcast_native

MPI_Bcast_opt

(a) np=16

 256

 1024

 4096

2
19

2
20

2
21

2
22

2
23

2
24

2
25

B
a
n

d
w

id
th

 (
M

B
/s

)

Message Size (Bytes)

MPI_Bcast_native

MPI_Bcast_opt

(b) np=64

 256

 1024

 4096

2
19

2
20

2
21

2
22

2
23

2
24

2
25

B
a

n
d

w
id

th
 (

M
B

/s
)

Message Size (Bytes)

MPI_Bcast_native

MPI_Bcast_opt

(c) np=256

Fig. 6. Bandwidth comparison for long messages with power-of-two
processes on Hornet



 0

 0.5

 1

 1.5

 2

 2.5

 3

9 17 33 65 129

S
p

e
e
d

u
p

Number of Processes

ms=12288

ms=524287

ms=1048576

Fig. 7. Throughput speedups of MPI Bcast opt over MPI Bcast native

 8

 16

 32

 64

 128

 256

 512

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

B
a
n

d
w

id
th

 (
M

B
/s

)

Message Size (Bytes)

MPI_Bcast_native

MPI_Bcast_opt

Fig. 8. Bandwidth comparison for medium and long messages with 129
processes on Hornet

compared with the case of 12288 bytes and 524287 bytes, a
more stable speedup curve is presented for 1048576 bytes.
In overall, we can observe that in the case of non-power-of-
two processes the MPI Bcast opt consistently performs better
than MPI Bcast native in throughput no matter what ratio of
inter-node messages to intra-node messages involved in the
broadcast operation is.

Figure 8 takes, 129 processes for example, and shows the
variance in bandwidth as the message sizes are increased from
12288 to 2560000 bytes. From this figure, we can conclude
that the bandwidth increases steadily as the growth of message
sizes under conditions that have sufficient memory capacity.
In the best case, the bandwidth achieved by MPI Bcast opt
get improved by up to 30% as comparison to MPI Bcast ori.
No sudden change is expected in the curves shown in Fig. 8
since Cray MPI keeps using rendezvous message protocol for
message sizes ranging from 12288 to 2560000 bytes.

VI. CONCLUSION

In this paper, we have proposed an optimized design for
the MPI broadcast collective operation based on the native

broadcast algorithm used by MPICH3. We observe that, in
the case of long messages or medium messages but non-
power-of-two process counts, the suboptimal ring allgather
algorithm used by broadcast operation in MPICH3 leads to
the inefficiency of broadcast operation. Therefore, we designed
a tuned ring allgather algorithm to serve MPI broadcast
implementation. Our design aims to reduce the amount of
data transmission traffic brought by the native ring allgather
operation, which in turn eases the burden of network and
host processing. Additionally, our performance evaluation at
the user level on current Cray system reveals that the tuned
broadcast algorithm can reduce the bandwidth by a range from
2% to 41% for long messages with power-of-two processes
(16, 64 and 256 processes). For non-power-of-two processes,
the tuned design is also superior to the native one according to
the throughput speedup curve. Additionally, with 129 running
processes, the bandwidth achieved by the tuned broadcast
design get improved by 30% at best.

ACKNOWLEDGMENT

This work has been supported by the CRESTA project
funded by the European Community’s Seventh Frame-
work Programme (ICT-2011.9.13) under Grant Agreement
no.287703. We gratefully acknowledge funding by the German
Research Foundation (DFG) through the German Priority Pro-
gramme 1648 Software for Exascale Computing (SPPEXA).

REFERENCES

[1] “The Message Passing Interface (MPI) standard,” [online],
http://www.mcs.anl.gov/research/projects/mpi/.

[2] MPI Forum, “MPI: A Message-Passing Interface Standard. Version
3.0,” September 21st 2012, available at: http://www.mpi-forum.org/docs/
mpi-3.0/mpi30-report.pdf (Sept. 2012).

[3] A. Petitet, R. Whaley, J. Dongarra, and A. Cleary, “HPL -
A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers,” [online],
http://www.netlib.org/benchmark/hpl/.

[4] G. Shainer, T. Liu, P. Lui, and D. Field, “The Effect of MPI Collective
Operations and MPI Collective Offloads on LS-DYNA Performance,” in
8th European LS-DYNA Users Conference, May 2011.

[5] “MPICH Overview,” [online], http://www.mpich.org/about/overview/.
[6] “Top500 - list statistics - november 2014,” http://www.top500.org/

statistics/list/, accessed: June 2015.
[7] L. Chai, Q. Gao, and D. K. Panda, “Understanding the Impact of Multi-

Core Architecture in Cluster Computing: A Case Study with Intel Dual-
Core System.” in CCGRID. IEEE Computer Society, 2007, pp. 471–
478.

[8] B. Tu, M. Zou, J. Zhan, X. Zhao, and J. F. 0002, “Multi-core aware
optimization for MPI collectives.” in CLUSTER. IEEE, 2008, pp. 322–
325. [Online]. Available: http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=4655410

[9] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH.” IJHPCA, vol. 19, no. 1, pp.
49–66, 2005.

[10] “MPICH Source Code,” [online], http://www.mpich.org/downloads/.
[11] J. Liu, A. Mamidala, and D. Panda, “Fast and scalable MPI-level

broadcast using InfiniBand’s hardware multicast support,” in Parallel
and Distributed Processing Symposium, 2004. Proceedings. 18th Inter-
national, April 2004, pp. 10–.

[12] T. Hoefler, C. Siebert, and W. Rehm, “A practically constant-time MPI
Broadcast Algorithm for large-scale InfiniBand Clusters with Multicast.”
in IPDPS. IEEE, 2007, pp. 1–8.

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.top500.org/statistics/list/
http://www.top500.org/statistics/list/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4655410
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4655410


[13] K. Dashdavaa, S. Date, H. Yamanaka, E. Kawai, Y. Watashiba,
K. Ichikawa, H. Abe, and S. Shimojo, “Architecture of a High-Speed
MPI Bcast Leveraging Software-Defined Network.” in Euro-Par Work-
shops, ser. Lecture Notes in Computer Science, vol. 8374. Springer,
2013, pp. 885–894.

[14] S. Kumar, A. R. Mamidala, P. Heidelberger, D. Chen, and D. Faraj,
“Optimization of MPI collective operations on the IBM Blue Gene/Q
supercomputer.” IJHPCA, vol. 28, no. 4, pp. 450–464, 2014.


	I Introduction
	II Related Work
	III Background
	III-A Overview of MPI_Bcast_native

	IV Designing MPI_Bcast_opt
	V Experimental Evaluation
	V-A Long Messages with Power-Of-Two Processes
	V-B Medium Messages and Long Messages with Non-Power-Of-Two Processes

	VI Conclusion
	References

