
Integrating Memory Perspective
into the BSC Performance Tools

Harald Servat∗, Jesús Labarta†‡, Hans-Christian Hoppe∗, Judit Giménez†‡ and Antonio J. Peña†
∗Intel Corporation

†Barcelona Supercomputing Center (BSC)
‡Universitat Politècnica de Catalunya (UPC)

Abstract—The growing gap between processor and memory
speeds results in complex memory hierarchies as processors
evolve to mitigate such differences by taking advantage of locality
of reference. In this direction, the BSC performance analysis
tools have been recently extended to provide insight relative
the application memory accesses depicting their temporal and
spatial characteristics, correlating with the source-code and the
achieved performance simultaneously. These extensions rely on
the Precise Event-Based Sampling (PEBS) mechanism available
in recent Intel processors to capture information relative to
the application memory accesses. The sampled information is
processed with the Folding mechanism to provide a detailed
temporal evolution of the memory accesses and in conjunction
with the achieved performance and the source-code counterpart.
The results obtained from the combination of these tools help
application developers to understand better how the application
behaves and how the system performs. We demonstrate the value
of the complete work-flow by exploring an already optimized
state-of-the-art benchmark, providing detailed insight of their
memory access behavior.

Index Terms—performance analysis, memory references, sam-
pling, instrumentation

I. INTRODUCTION

The growing gap between processor and memory speeds
leads to complex memory hierarchies in current processors.
The memory hierarchy is organized in different strata to better
exploit the applications’ temporal and spatial localities of ref-
erence. On one end of the hierarchy lie extremely fast, tiny and
power-hungry registers while on the other end there is the slow,
huge and less energy-consuming DRAM. In between these
two extremes, there are multiple cache levels that mitigate the
expense of bringing data from the DRAM when the application
exposes either spatial or temporal locality.

Some performance tools, such as HPCToolkit [1],
dmem advisor [2] and Intel R© VTuneTMAmplifier [3] provide
the most referenced variables or the highest latency accesses
to help the user focusing when shortening the time—to—
solution. However, understanding the memory access patterns
not only help on this direction but also may offer additional
insights to improve the execution behavior by helping prefetch
mechanisms, calculating reuse distances, tuning cache organi-
zation and envision the usage of hybrid memory systems.

Detailed memory-access analysis has typically relied on
low-level instrumentation [4], [5], [6] with the consequent
performance overhead. The Folding mechanism [7] belongs to

the BSC performance analysis tool suite and demonstrates that
this analysis can rely on coarse-grain sampling and minimal
instrumentation and allows users exploring in-production bina-
ries. We have integrated tightly memory sampling mechanisms
into BSC tools to help on the exploration of the application
performance, its progression on code regions and their access
to the address space.

The organization of this paper is as follows. Section II
summarizes the extensions applied to the BSC performance
tool-suite to cover the memory accesses. Section III follows
with an exhaustive performance and memory access analyses
of a well-known benchmark. Finally, Section IV draws some
conclusions.

II. EXTENSIONS TO THE BSC PERFORMANCE TOOLS

We have extended the BSC performance tool suite in
two directions. First, in the context of the monitoring tool
(Extrae), we take advantage of the PEBS infrastructure built
in recent Intel R© Xeon R© and Intel R© Xeon PhiTMprocessors
to sample memory operations and capture information such
as the address referenced, its access cost and which part of
the memory hierarchy provided the data. To help the analyst
correlating addresses with the application, Extrae also captures
the application data objects by instrumenting dynamic memory
allocations (such as malloc and realloc) in addition to
exploring the binary for static data objects. This information
is used to match the sampled references into data objects
which are identified by their call-stack (dynamically-allocated)
or by their given name (statically-allocated). The integration
also allows capturing load and store references (if hardware
permits) by using Extrae’s multiplexing capabilities, and thus
avoiding the need to run the application twice.

Second, in the context of the Folding mechanism, the
tool provides a report where applications are explored in
three orthogonal directions: source code, memory accesses
and performance. This allows understanding the application
data locality exposed on different code regions while knowing
which is the achieved performance. The multiplexing capabil-
ities on the monitoring side also avoids having to explore two
independent reports with randomized address spaces1.

1Due to ASLR - Address Space Layout Randomization

1

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/ICPPW.2017.42

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

III. APPLICATION EVALUATION

We have evaluated HPCG (High Performance Conjugate
Gradient) on the Jureca system [8]. The code benchmarks
computer systems based on an additive Schwarz, symmetric
Gauss-Seidel preconditioned conjugate gradient solver [9].
We have compiled the application using the Intel compiler
suite with the -O3 -xavx -g compilation flags. We have
executed the benchmark using the 24 cores of a node using a
problem size nx=ny=nz=104. The analysis focuses on the
execution phase, ignoring the initialization and finalization.

In a preliminary analysis of the application, most of the
PEBS references were not associated to a memory object.
This occurs because the application allocates its data us-
ing many consecutive allocations below the threshold (100s
of bytes). The data objects are allocated using two differ-
ent mechanisms in lines 108-110 and 143 within the file
GenerateProblem_ref.cpp, respectively. The first set
of objects are allocated through the new C++ language
construct while the second set are allocated through the []-
operator of the C++ map structures. To avoid creating huge
event trace-files, we grouped these allocations in two groups
by manually wrapping the first and last addresses of each
group of allocations using instrumentation capabilities.

Figure 1 shows the result obtained when applied to the
modified version of HPCG. We notice that each iteration
consists of two calls to ComputeSYMGS_ref (labels A and
D) and ComputeSPMV_ref (B and E) and in between there
is a call to ComputeMG_ref (C). We identify linear accesses
in the higher and lower part of the address space. More
precisely, regions A and D present a phase (a1 and d1 in blue)
that accesses the address space from lower to upper addresses
(forward sweep) followed by a phase (a2 and d2 also in blue)
that accesses the address space from upper to lower addresses
(backward sweep). It is worth to note that there are no stores
(i.e. black points) in the lower part of the address space in the
execution phase, because data has been written in the setup
phase.

From the performance perspective, the code does not exceed
1500 MIPS representing an IPC of 0.6 considering the nominal
frequency except for the transitions between phases where
the performance shows a slight increase due to a reduction
of the cache misses. Although the instruction rate does not
significantly increase when the application progresses from
forward sweep to backward sweep there are performance
differences when executing these regions. Since the results
shown in Figure 1 indicate that a1 and a2 traverses the whole
data structure, the approximations for the memory bandwidth
while traversing the structure are 4197 MB/s and 4315 MB/s,
respectively. In comparison, the observed bandwidth while
traversing the same structure in region B achieves 6427 MB/s.

IV. CONCLUSIONS

The PEBS hardware infrastructure assists with sampling
memory-related instructions and gathering valuable details
about the application behavior. The usage of PEBS in the BSC
tools results in thorough memory access patterns exploration

0.00

0000

0000

C
od

e
li

ne

ghost
bottom

top
Aa1 a2 B C Dd1 d2 E

2adfdcc6d340
2adfde904f68
2adfe059cb90
2adfe22347b8
2adfe3ecc3e0 A

ddresses referenced000000000007
00000a1f1004
0000143e2001
00001e5d2ffe
0000287c3ffb

124_GenerateProblem_ref.cpp|617 MB

205_GenerateProblem_ref.cpp|89 MB124_GenerateProblem_ref.cpp|78 MB

0.00
0.05
0.10
0.15
0.20
0.25
0.30

0.00 196.12 392.24 588.36 784.48 980.60
0
500
1000
1500
2000
2500
3000

C
ou

nt
er

 /
in

st
ru

ct
io

n

Time (ms)

M
IP

S

Branches L1D miss L2 miss L3 miss MIPS

Fig. 1: Analysis of HPCG 3.0.

on a state-of-the-art benchmark without having to use high-
frequency sampling and thus not incurring on large overheads.
The exploration included scan of the memory access patterns
from a time perspective and the identification of the most
dominant data streams and their temporal evolution along
computing regions.

In particular, the HPCG results show that the main routine
traverses the address space two times (first forward then
backward); also a part of the address space is not modified.
HPCG also shows difference performance values for forward
and backward sweeps not only in cache miss ratios but also
in the cost of providing data from memory. Additionally, the
fact that a portion of the address space is only read during
the execution phase means that this region might benefit from
memory technologies where loads are faster than stores.

ACKNOWLEDGMENTS

This work has been performed in the Intel-BSC Exascale Lab. We
would like to thank Forschungszentrum Jülich for the compute time
on the Jureca system. Antonio J. Peña is cofinanced by the Spanish
Ministry of Economy and Competitiveness under Juan de la Cierva
fellowship number IJCI-2015-23266.

REFERENCES

[1] X. Liu and J. M. Mellor-Crummey, “A data-centric profiler for parallel
programs,” in International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’13, 2,013, pp. 28:1–28:12.

[2] A. J. Peña and P. Balaji, “Toward the efficient use of multiple explicitly
managed memory subsystems,” in IEEE International Conference on
Cluster Computing (CLUSTER), 2014, pp. 123–131.

[3] “Intel VTune Amplifier,” last accessed May 2017. [Online]. Available:
https://software.intel.com/en-us/intel-vtune-amplifier-xe

[4] K. Beyls and E. D’Hollander, “Refactoring for data locality,” Computer,
vol. 42, no. 2, pp. 62–71, 2,009.

[5] V. Subotic et al., “Quantifying the potential task-based dataflow paral-
lelism in MPI applications,” in Euro-Par, 2011, pp. 39–51.

[6] A. J. Peña and P. Balaji, “A framework for tracking memory accesses
in scientific applications,” in 43rd International Conference on Parallel
Processing Workshops (ICCPW). IEEE, 2014, pp. 235–244.

[7] H. Servat et al., “Unveiling internal evolution of parallel application
computation phases,” in Int. Conf. on Parallel Processing (ICPP), 2011.

[8] “Jureca system architecture,”
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/
JURECA node.html - last accessed, May 2017.

[9] J. Dongarra, M. A. Heroux, and P. Luszczek, “High-performance
conjugate-gradient benchmark: A new metric for ranking high-

performance computing systems,” IJHPCA, vol. 30, no. 1, pp. 3–10, 2016.

2

https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JURECA/JURECA_node.html

