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Parallel Implementation and Evaluation of Motion Estimation 
System Algorithms on a Distributed Memory Multiprocessor 

using Knowledge Based Mappings

Alok N. Choudhary, Mun K. Leung, Thomas S. Huang and Janak H. P atel

Coordinated Science Laboratory 
University o f Illinois 
1101 W. Springfield 
Urbana, IL 61801

Abstract

Computer vision systems employ a sequence of image understanding vision algorithms in which the output of 
an algorithm is the input of the next algorithm in the sequence. Vision systems consist of algorithms that exhibit 
varying characteristics, and therefore, require different data decomposition and efficient load balancing techniques 
for parallel implementation. However, since the input data of a task is produced as the output data of the previous 
task, this information can be exploited to perform knowledge based data decomposition and load balancing. This 
paper presents several techniques to perform static and dynamic load balancing techniques for vision systems. These 
techniques are novel in the sense that they capture the computational requirements of a task by examining the data 
when it is produced. Furthermore, they can be applied to many vision systems because many algorithms in different 
systems are either same, or have similar computational characteristics. These techniques are evaluated by applying 
them on a parallel implementation of the algorithms in a motion estimation system on a hypercube multiprocessor 
system. The motion estimation system consists o f the following steps: 1) extraction of features, 2) stereo match of 
images in one time instant, 3) time match of images from different time instants, 4) stereo match to compute final 
unambiguous points and, 5) computation of motion parameters. It is shown that the performance gains when these 
data decomposition and load balancing techniques are used are significant and the overhead of using these tech
niques is minimal.

This research was supported in part by National Aeronautics and Space Administration Under Contract NASA NAG-1-613, and in part by 
National Science Foundation Grant IR I87-05400.
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1. Introduction

Computer vision tasks employ a broad range of algorithms. In vision system many algorithms with different 

characteristics and computational requirements are used in a sequence where output of one algorithm becomes the 

input o f the next algorithm in the sequence [1,2]. An example of such a system is a motion estimation systems. In 

such a system, a sequence o f images of a scene are used to compute the motion parameters of a moving object in the 

scene. Figure 1 shows the computational flow for a motion estimation system in which stereo images (Lim and Rim) 

at each time frame are used as the input to the system. Briefly, the involved tasks (or algorithms) in this system are 

as follows. The first algorithm is computation of zero crossings o f the images (edge detection (Lzc and Rzc))- The 

zero crossings are used as feature points for both stereo and time matching. The stereo match algorithm provides 

points to compute 3-D information about the object in the scene. Using these matched points (Lsm and Rsm), the 

corresponding points in the image in the next time frame (Ltm) are located and this task is performed by time match 

algorithm. Again, stereo match is used to obtain the corresponding 3-D points in the next image frame. These two 

sets of points provide information to compute the motion parameters. The above process is repeated for each new 

set o f input image frame.

This paper presents techniques to perform efficient data decomposition and load balancing for vision systems 

for medium to large grain parallelism. Two important characteristics of these techniques are that they are general 

enough to apply to many vision systems, and that they use statistics and knowledge from execution of a task to

Lim(f{)

Rim(it)

Lim(f,+1)

Rim(f,-+i)
Lsm(^..i)l) Ltm(ij hi) Pt

TM SM MP
—»

Out
Put

ZC: Convolution and Zero Crossings 

TM: Time Match MP: Motion Parameter Computation

Figure 1 : Computation Flow  for M otion Estimation

SM : Stereo Match
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perform data decomposition and load balancing for the next task. For example, in the motion estimation system 

sufficient knowledge can be obtained about the output data from the zero crossing step to perform data decomposi

tion and load balancing for the stereo matching step. The advantages of such schemes are as follows. First, these 

techniques use characteristics of tasks and data, and therefore, work well no matter how data changes. Second, 

many vision systems consist o f such tasks and exhibit the above described computation flow, and therefore, these 

techniques can be used in any system (e.g., object recognition, optical flow etc.) [2].

The performance of the proposed techniques is evaluated by using a parallel implementation of the motion 

estimation system algorithms on a hypercube multiprocessor system. The results show that using uniform partition

ing, without considering the computations involved, parallel processing does not provide significant performance 

improvements over sequential processing. Furthermore, by applying the proposed data decomposition and load 

balancing techniques significant performance gains (as much as 6 fold) can be obtained over uniform partitioning.

This paper is organized as follows. In Section 2 we provide a brief description of each step in the motion esti

mation system . For a detailed description, the reader is referred to [3,4]. These algorithms will provide insight into 

the involved computations in the motion estimation system. Section 3 describes the proposed load balancing and 

data decomposition techniques. In section 4 we present a parallel implementation of these algorithms in an 

integrated environment on a hypercube multiprocessor, and discuss the performance results for each of these algo

rithms and data decomposition and load balancing schemes. Some o f these techniques have been applied to other 

integrated vision systems and have been shown to work well [2,5]. Finally, concluding remarks are presented.

2. Steps in the Motion Estimation System

The motion estimation system consists o f the following steps: 1) extraction of features, 2) stereo match of 

images in one time instant, 3) time match of images from different time instants, 4) stereo match to compute final 

unambiguous points and, 5) computation of motion parameters. We will not discuss, the last process, calculation of 

motion parameters, but a discussion on how to compute them can be found in [6]. The matching algorithms use 

stereo image pairs, and the algorithms are designed to find point correspondences between two consecutive time 

instants, i.e., f,-_i and f/. From the point correspondences, we can estimate the motion parameters. Typical stereo 

image pairs at two consecutive time instants (f 7 and f g) used in this paper are shown in Figure 2, which are outdoor 

scenes of truck at different locations. The images are segment out from larger images of size 1 0 2 4 x 1 0 2 4 . The 

imaging setup used in taking the images is parallel axis method. The feature points used in the matching process are
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edge points which are considered as the more reliable features obtained from an image. In order to save consider

able computation time, the matching process in done by employing non-iterative procedures with the assumption of 

limited displacement (or disparity) between frames. We apply the matching algorithm on two stereo image pairs at 

two consecutive time instants ¿7 and t  g. The following is a brief description for each major step of the motion esti

mation system.

2.1. Feature Points

The feature points used in this algorithm are zero crossing points of an image. We use the method suggested 

by Huertas and Medioni in [7] to extract the zero crossings of an image. In order to eliminate non-significant zero 

crossing points and maintain enough details, we threshold the zero crossing image based on the intensity gradient at 

each zero crossing point Figure 3 depicts one of the thresholded zero crossing images, l-j. We associate each zero 

crossing point with one the sixteen possible zero crossing patterns as suggested and used by Kim and Aggarwal [8]. 

The patterns are not used directly; instead, we assign each pattern a value according to its local connectivity. These 

pattern values are used in the matching process.

22. Matching

Once zero crossings are extracted in all the involved images, the matching process is applied to find point 

correspondences among the images (two stereo image pairs at two consecutive time instants). The evidences used 

in this process to obtain matched point pairs are the normalized correlation coefficient, and the zero crossing pattern 

values. Furthermore, in order to limit the search space, the assumption o f limited displacement or disparity between 

frames is exploited. The matching process consists o f six steps as follows:

1) Perform stereo (from left to right) matching in the f,_i stereo image pair.

2) Obtain unambiguous matched point pairs by eliminating multiple matches.

3) Perform time matching between the unambiguous matched points in the left f,_i image and the 

feature points of the left i,- image.

4) Obtain unambiguous matched point pairs from the time matched points by eliminating multiple 

time matches.
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5) Perform stereo matching betw een the unambiguous matched points (obtained in step (4)) in the left 

t¡ im age and the feature points o f  the right t¡ image.

6) Obtain unam biguous matched point pairs from the results o f  t¡ stereo m atching by elim inating m ul

tiple m atches.

The results o f the above steps are two sets of unambiguous stereo matched point pairs at time instant \ and 

t¡. These two sets are related through steps (3) and (4), the matching over time; therefore, we can pick out all the 

unambiguous matched points that correspond to each other among the two stereo image pairs at time instants f¿_i 

and f¿. The matching algorithm was applied to the images shown in Figure 2. The final results are depicted in Fig

ure 4 , which shows that we have enough point correspondences for the motion estimation.

3. Data Decomposition and Load Balancing Techniques for Parallel Implementation

In a multiprocessor system the simplest method to implement a task in parallel is to decompose the data and 

equally and uniformly among the processors. In a completely deterministic computation in which the computation is 

independent of the input data such schemes perform well, and normally, the processing time is comparable on all 

the processors. That is, efficient utilization and load balancing can be obtained. For example, regular algorithms 

such as convolutions, filtering or FFT exhibit such properties. The amount of computation to obtain each output 

point is the same across all input data. Therefore, uniform decomposition of data results in load balanced implemen

tation.

Most other algorithms do not exhibit a regular structure, and the involved computation is normally data 

dependent Furthermore, the computation is not uniformly distributed across the input domain. In such cases, a sim

ple decomposition of data does not provide efficient mapping, and results in poor utilization and low speedups. 

Also, the performance cannot be predicted for a given number of processors, and a given data size, because the 

computation varies as type of data and its distribution varies. For example, in the stereo match algorithm, the com

putation is more where feature points are dense, and is comparatively small where number of features is small and 

sparsely distributed (Figure 3).

In a vision system, it is important to efficiently allocate resources and perform load balancing at each step to 

obtain any significant performance gains overall. An important characteristic of such systems is that the input data 

of a task is the output of the previous task. Therefore, while computing the output in the previous task enough
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(a) Left and right images at time instant t-j

(b) Left and right images at time instant t  g 
Figure 2 :  Images set of /  7 and t  g
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Figure 3 : Left and right zero crossings at time instant 1 7
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(a ) : At time instant ¿7

(a ) : At time instant fg
Figure 4 : Unambiguous matched points of Figure 2
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knowledge about the data can be obtained to perform efficient scheduling and load balancing.

Consider a parallel implementation of a task on n processor parallel machine. Let 7 /  (1 < i </t) denote the 

computation time at processor node i. Then the overall computation time for the task is given by

T  max =  m a x /T  (1)

The total wasted time (or idle time) Tw is given by

i=n
Tw =  S y n ta x  ~  Ti) (2)

j=l
If T max =  Ti for all i, l< i  <n, then the task will be completely load balanced. Another measure of imbalance is 

given by the variation ratio V,

V  =  , 7,min =  m in / 'r 1...... T J  (3)
■* min

The goal in performing load balancing is to minimize Tw, or move V  as close to 1 as possible. In the best case, 

Tw =  0  or V  =  1.

^  Tseq is the time to execute the same task on a sequential machine then the speedup is given by

Sp ~  j
seq

(4)
max

Therefore, by minimizing Tw, the achievable speedup can be maximized. In the following we discuss such 

techniques, and in the next section we present the performance results for a parallel implementation of algorithms in

the motion estimation system.

3.1.1. Uniform Partitioning

Data decomposition using uniform partitioning performs well as a load balancing strategy for input data 

independent tasks, because equally dividing the data distributes the computation equally among processors. If total 

input data size is D  then total computation time to execute a task is T  — k x D ,  where k is determined by the com- 

putation at each input data point For example, in convolution of an image with m x m  kernel, k =  2 x m  floating 

point operations. Hence, for an n node multiprocessor, the data decomposition methods to balance the computation 

is to make the granule size to

di
D_
n

(5)
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For data independent algorithms, such a partitioning guarantees equal distribution of computation among pro

cessors. Therefore, if communication time can be minimized, then optimal performance can be obtained on a given 

multiprocessor.

3.12. Static

When computation is not uniformly distributed across the input domain, and is data dependent, uniform parti

tioning does not work well for load balancing. Normally, computation depends on significant data elements in a par

tition. Many vision algorithms exhibit this behavior. For example, in stereo match, hough transform etc., the com

putation is proportional to the number of features (edges) or significant pixels in a granule rather than on the granule 

size. Therefore, equal size granules do not guarantee load balanced partitioning because of the data dependent 

nature of the computation. In many such algorithms, the computation time for a granule (i), 7 / ,  is proportional to a 

certain extent on the granule size (fixed overhead to process a granule), and to the number of significant data in a 

granule. That is,

where, d t is the granule size, f i  is a measure of significant data in granule (i), and A and B  are arbitrary constants 

which depend on the algorithm. The objective is to divide the computation among processors such that each proces

sor receives equal measure of computation. One way to assign a granule to a processor is to compute the total 

measure of computation and partition is as follows:

where, g is the total number of granules in the input domain (Note that the number of granules for the current task is 

n for an n processor system).

For example, consider computing hough transform of an edge image to detect line segments. If there exists a line

Ti = A x d i  + B x f i (6)

n

(7)

whose normal distance from the origin is r, the normal makes an angle 0 with the x-axis then if a point (x,y) lies on 

that line, the following equation is satisfied.

r  = x c o sQ  +  ysinQ

r  and 0 are quantized for desired accuracy and then for each significant pixel (where there is an edge), r  is 

computed for all quantized 0  values. If two partitions of equal size contain different number of edge pixels, then the
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amount o f computation will be different for the two partitions despite them being equal in size. In fact» the computa

tion is directly proportional to the number of edge pixels in a partition. A way to perform static load balancing will 

be to decompose the input data such that each partition contains equal number of edge pixels. The computation to 

recognize this pardoning can be performed in the task in which edges are detected by keeping a count of the number 

of edges detected by a processor. Once a task is completed» the data can be reorganized such that the number of

Z  Za
edges with each processor is in the interval ( -------- 8 , —  +  8), where Za is the total number of edges detected in

n n

the image, and 8 is determined by the minimum granule size from fixed overhead considerations.

3.1-3. Weighted Static

When the computation in a granule not only depends on number of significant data points in the input domain, 

but it also depends on their spatial relationships, then data distribution needs to be taken into account as a measure 

of load to perform load balancing. For example, in stereo match or time match, not only does the computation 

depend on the number o f zero crossings, but it also depends on their spatial distribution. If the zero crossings are 

densely spaced, then the computation will be more than that if the same number of zero crossings are sparsely distri

buted. The reason is that if the zero crossings are densely packed, then more number of zero crossings need to be 

matched with each corresponding zero crossing in the other image, whereas less number of zero crossings need to 

be matched if they are sparsely distributed. Hence, the computation also depends on the spatial density (such as 

features/row if one dimensional matching is performed). That is,

Ti =  A x d i +  B  xw iX di (8)

where, w t- is the feature dependent spatial density. For example, if the minimum granule size is a row of the input

Hata then Wj =  rp , where r,- is the number of features in row i, and (3 is a parameter, 0< P < 1. P =0  means that 

the computation is independent of how the features are distributed within a row. Therefore, to divide the computa

tion equally among n processors, the following heuristic can be used.

i=R
T  A x d ; +  B x w iX d i

r .  -  ™  (9)
1 n

where, R  is the number of rows in the image. Note that the above heuristics approximate the load and do not exactly 

divide the computation among processors. However, in the next section we will show that these schemes perform

well.
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3.1.4. Dynamic

Above three methods use the knowledge about the data when it is produced to perform load balancing for the 

next task. However, once decomposition is done, then the data is not reshuffled. Therefore, we consider the above 

methods as knowledged based static load balancing schemes. In the dynamic scheme, the data is decomposed into

finer granules such that the number o f tasks, (that is number of independent granules) A/, is much larger than the
/

number o f processors.

At execution time the processors are assigned these tasks dynamically by a designated scheduler from a task 

queue containing these tasks. Processors are assigned new tasks as they finish their previously assigned tasks, if 

there are more tasks left to be assigned. However, the knowledge obtained from the previous step can be used again 

to anticipate the completion of a task, in order to assign a new task to a processor. That is, the task assignment can 

be pipelined, thereby reducing the overhead of dynamic assignment

The following procedure illustrates the dynamic assignment of tasks onto the processor. The pseudo code 

essentially illustrates what the scheduler does in order to perform dynamic load balancing. The number of tasks 

(max_tasks) are determined during the execution of the preceding step in the system, and the task_queue contains 

all the tasks including the computational information associated with each task. Initially, the scheduler assigns few 

tasks to each processor. The number of tasks to be assigned initially is a parameter (pipe_line_no). If this parameter 

is 1, it implies that there is no anticipatory scheduling. In other words, a processor is assinged a new task only when 

it finishes the task it is currently executing. A task is assigned to a processor only if the task contains significant 

computation. For example, in stereo match, if a task’s data does not contain any zero crossings, then the task can be 

discarded because it is not going to produce any useful information anyway. In a blind scheme, where little is 

known about a task, the task will be assigned, which is an overhead, and can be avoided by using the knowledge 

obtained from the previous steps. Whenever a processor P[ completes the current task, it sends a compljnsg to the 

scheduler which assigns Pt a new task if the task_queue is not empty. Once the task_queue becomes empty, the 

scheduler sends a termjnsg  (terminate message) to all the processors. Upon receiving a termjnsg  from the 

scheduler, processors complete the remaining tasks in their task_queues, and sends a termjnsg  to the scheduler, ter

minating the computation. Note that by using the pipe_line_no, anticipatory dynamic scheduling can be performed, 

and a processor need not be idle when a new task is being assigned. By using this parameter, the amount of initial 

static assignment, and dynamic assignment can be controlled.
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Dynamic Scheduling o f Tasks 
/•Initial Assignment*/

1.
2.
3.
4.
5.
6.
7.
8.
9.
10. 
1 1 . 
12.

13.
14.
15.
16.
17.
18.
19.
20. 
21. 
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

currjask = 0;
for j = 1 to j <= pipe_line_.no do

for i *  l  to i *  num_proc do
if comp(task_queue(curr_task)) > 0

schedule curr_task at proc. Pi; 
curr_task = cuir_task+l; 

else
curr.task = curr_task+l; 
go to 4.

end_if
end_for

end_for

/•Scheduling*/

done = false; k = num_proc; 
while not done do

wait for msg from a processor,
receive msg;
if  ( msg = compì msg )

P i  = sender processor, 
if  curr_task < max_tasks

if comp(task_queue(curr_task)) > 0 
schedule curr_task at proc. 
cuir_task = cuir_task+l;

else
curr_task = curr_task+l; 
go to 19. 

else
send termjnsg  to P t. 

else if ( msg = termjnsg) 
k = k - 1; 
if (k <= 0)

done = true.

4. Parallel Implementation and Performance Evaluation

This section presents a parallel implementation of the algorithms that are part of motion estimation system 

and describes the performance of the algorithms and load balancing strategies.

4.1. Hypercube Multiprocessor

A hypercube multiprocessor system of size P has P processors, where P is an integral power of 2. P processors 

are indexed by the integers 0,...,P-1 and the following criteria is satisfied. If the processor numbers are represented 

by lo g 2 ( P ) bits then two processors are connected by communication links if and only if their bit representation
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differs by exactly one bit. Therefore, each processor is connected to lo g 2 (P )  processors with direct communication 

links. Diameter o f the hypercube o f size P is lo g 2( /5) (diameter is the maximum distance between any two nodes). 

We used Intel ipsc/2 hypercube multiprocessor consisting of 16 nodes. Each node consists of an Intel 80386 proces

sor, Intel 80387 co-processor, 4 megabyte memory, and a communication module.

42 . Feature Extraction

Features used for stereo match algorithms are the zero crossings of the convolution of the image with Lapla- 

cian. Zero crossing computation involves 2-D convolution and extraction of zero crossings from the convolved 

image. Since convolution is a data independent algorithm uniform partitioning is sufficient to evenly distribute the 

computation. The mapping is a division of NxN image onto P processors. Each processor computes the zero cross

ings of share o f N2 IP pixels. Data division onto the processors is done along the rows. This mapping reduces com

munication to only in one direction. The reason is that 2-D convolution can be broken into two 1-D convolution [7]. 

This not only reduces the computation from W2 sum of products operations per pixel to 2 xW sum of product 

operations per pixel (W is the convolution mask window size), but also reduces the communication requirements in 

a parallel implementation if  the data partitioning is done along the rows. There is no need for communication when 

convolution is performed along the rows.

Table 1 shows the performance results for the above implementation for an image of size 256x256 and con

volution window of size 20x20. First column shows the number of processors in the cube( P). Second column 

represents the total processing time (tproc) for convolution. Column 3 shows the number of bytes communicated by 

a processor to the neighboring processor, and column 4 shows the corresponding communication time which is 

small compared to the computation time. The seconcf half of the table shows the computation time for extracting 

zero crossings from the convolved image. Corresponding speedups are also shown.

It can be observed that almost linear speedup is obtained for convolution. Two factors which contribute 

toward this result are that communication overhead is relatively small, and communication is constant as the number 

of processors increases. However, the speedup obtained in the elapsed time, which includes the program and data 

load time also, is sub-linear due to the following reason. The hypercube multiprocessor’s host does not have a 

broadcast capability, and therefore, the overhead of loading the program increases linearly with the number of pro

cessors. However, data load time increment with the increase in the number of processors is comparatively small 

because amount of dam to be loaded to one processor decreases as the number of processors increases. The only
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Table 1 : Performance for feature Extraction (Zero Crossings)

Computation for Convolution and Zero Crossings
Convolution Window Size = 20x20

No. Proc. Conv. Conv. Conv. Conv. ZC
Comp. Comm. Comm. Total Conv. Comp. ZC
Timefsec.) Bytes Time(ms.) Timefsec.) Speed Up Time(sec.) Speed Up

1 109.0 0 0 109.0 1 6.47 1
2 54.76 2816 13 54.78 1.98 3.23 1.99
4 27.51 5632 36 27.55 3.95 1.66 3.89
8 13.88 5632 36 13.92 7.83 0.85 7.60

16 7.07 5632 36 7.11 15.33 0.42 15.25

Feature Extraction Performance (Eia psed Time)
No. Proc. Elapsed

Time(sec.)
Speed up

1 116.2 1
2 58.8 1.97
4 30.1 3.86
8 16.1 7.22

16 9.6 12.1

increment in data load time results from the number of communication setups from the host to the node processors, 

which increases linearly with the number of processors.

4 3 . M atching Features

This task involves matching features in stereo pair o f images. Since the imaging setup uses the parallel axis 

method, the epipolar constraint is used to limit the search space for matching to one-dimension which is in the hor

izontal direction. Thus data pardoning along the rows for parallel implementation results in no communication 

between node processors as long as each partition contains an integral number of rows.

The computation involved in stereo matching algorithm is data dependent. The computation varies across the 

image because it depends on the number of zero crossings, distribution of zero crossing across the image, and distri

bution of zero crossings along the epipolar lines. Therefore, pardoning the data uniformly among the processors (i.e. 

assign each processor equal number of rows) may not yield expected speedups and processor udlizadon. A proces

sor which has very few zero crossings, and sparsely distributed zero crossings will be under utilized, whereas a pro

cessor with a large number o f zero crossings, and densely distributed zero crossings will become a botdeneck.

We used uniform partitioning, static load balancing, weighted static and dynamic load balancing schemes to 

decompose the computation on the multiprocessor. Static load balancing can be achieved by keeping a count of the 

zero crossings with each processor when the previous task (feature extraction) is executed. At the completion of the
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task, the data is reorganized using this information, and using the techniques described in the previous section.

Figure 5 shows the distribution of the computation times for 8 processor case. The X-axis shows the proces

sor number, and the Y-axis shows the computation time for each scheme. As we can observe, uniform partitioning 

does not perform well at all because the variation in computation time is tremendous, and therefore, performance 

gains are minimal. The static load balancing scheme (shown as dashed bars) performs much better than uniform par

titioning, but variation in computation times is still significant because the computation also depends on the distribu- 

* tion of zero crossings. The weighted static scheme performs better than static, and further reduces the variation in 

computation times. Note that these schemes only measure the load approximately, and therefore, will not divide the 

computation exactly uniformly. Furthermore, minimum granularity is a row boundary in order to avoid communica

tion between processors. Finally, for 8 processor case, dynamic scheme performs the best. Table 2 summarizes the 

distribution for the 8 processor case. The Table shows the computation time, variation ratio, and improvement ratio 

for each processor under all four methods. Table 2 summarizes the distribution for the 8 processor case. The table

Processors

Figure 5 : Distribution of Computation Times for Stereo Match (P=8)
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shows the computation time for each processor for all four methods. For example, the variation ratio is 44.25 for 

uniform partitioning, is 2.71 for static load balancing, is 1.50 for weighted static, and is 1.09 for dynamic load 

balancing. Improvement ratio is the ratio of speedup obtained with load balancing to that of uniform partitioning. 

The computation times shown include all the overhead of load balancing schemes. Figure 6 shows the speedup 

graph for varying size of multiprocessor from 1 processor to 16. We observe that uniform partitioning does not pro

vide any significant gains in speedup as the number of processors increases. Dynamic scheme performs the best 

among all the schemes, and the two static scheme perform comparably with the dynamic scheme. We believe that as 

the number of processors is increased, the two static schemes will move even closer to dynamic scheme, or even 

perform better than the dynamic scheme, because for a larger multiprocessors, the overhead of dynamic scheme will 

be greater.

4.4. Time Match

The computation in time match algorithm is similar to that in stereo match except the search space is two- 

dimensional, and the input to the algorithm is stereo match output Other difference is that the number of significant 

points in the input data is much smaller than that in stereo match, because a great deal o f input points get eliminated 

in stereo match. Table 3 shows the distribution of the computation times for the 16 processor case. We only present 

uniform partitioning and static load balancing cases. The most important observation is that uniform partitioning

Table 2 : Distribution of Computation Times for Stereo Match

Comirotation Time Distribution for Stereo Match (P=8)
Proc. Uniform Static Static Dynamic
No. Partitioning Weighted

Time (ms.) Time (ms.) Time (ms.) Time (ms.)
0 364 1402 2439 2890
1 164 3333 2606 2786
2 878 3066 2219 2980
3 7258 3327 2277 2967
4 6827 3371 2798 2818
5 5207 3269 3328 2913
6 762 3063 2864 2803
7 312 1243 3223 3051

Max. 7258 3371 3328 3051
Min. 164 1243 2219 2786
Variation
ratio 44.25 2.71 1.50 1.09
Improvement
ratio 1 2.15 2.19 2.38
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Figure 6 : Speedups for Stereo Match Computation 

performs worse than that in the case of stereo match, and static load balancing performs better.

The Table shows how the measure of computation (number of zero crossings left from stereo match step) is 

divided among the processors in the two cases. It is clear that the number of zero crossings are very evenly distri

buted (within the minimum granule of one row constraint) in the static case, whereas they are lumped with a few 

processors in the uniform partitioning case. Figure 7 shows the speedup graphs for the two schemes for a range of 

multiprocessor size. The speedup gains for the load balanced case is very significant over the uniform partitioning 

case. We computed the overhead of performing knowledge based static load balancing, and the overhead was 3 ms., 

which is negligible compared to the computation time, and the performance gains are significant.

4.5. Second Stereo Match

This step involves stereo match computation for features from images at time instant f,-+i after time point 

correspondence is established between images at time t t and f , - + T h e  matching is similar to that in first stereo 

match except that it need to be done only at those points at which time correspondence has already been established.
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Table 3 : Distribution o f Computation Time for Time Match

Computation for Time Match ( Proc. = 16)

Proc. Uniform Partitioning With Load Balancing
No.

Matching Total No. Matching Total No.
(Sec.) (Sec.) Zcs (Sec.) (Sec.) Zcs

0 0.14 0.22 3 935 10.00 47
1 0.03 0.14 2 1238 12.55 50
2 0.02 0.13 0 13.12 13.21 53
3 0.02 0.13 0 14.23 14.27 43
4 0.02 0.13 0 11.88 11.91 45
5 3.61 3.72 21 10.93 10.95 44
6 13.45 13.56 55 12.82 12.85 53
7 5.09 5.20 20 12.16 12.19 51
8 26.65 26.76 93 11.41 11.44 45
9 45.85 45.97 182 10.63 10.65 40

10 73.82 73.93 259 13.89 13.91 50
11 27.20 27.32 121 13.69 13.71 44
12 0.31 0.42 3 15.07 15.09 43
13 0.11 0.22 1 15.70 15.72 56
14 0.42 0.53 4 1436 14.39 56
15 0.08 0.10 0 5.21 5.68 43

Max. Min. Variation Speed Improvement
time(sec.) time(sec.) ratio up ratio

Uniform 73.82 0.10 738 2.69

Balanced 15.72 5.68 2.76 12.63 4.7
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Figure 7 : Speedup for Time Match

Consequently, the number of features to be matched are much less than that in the first computation, and hence, the 

importance of load balancing is further increased. Figure 8 depicts the distribution of computation times for the 

second stereo match step. The three load balancing algorithms used in this case are Uniform Partitioning, Static and 

Dynamic. We observe from the Figure that uniform partitioning does not perform well compared to the other two 

schemes. The variation in computation time is significant, and the static and dynamic schemes perform comparably.

Figure 9 presents the speedups for the same algorithm for various multiprocessor sizes. The Figure shows that 

the gains from these load balancing schemes are very significant over uniform partitioning. One important observa

tion can be made by comparing results in Figure 6 and 9. Note that the performance of uniform partitioning in the 

second stereo match is much worse than that in the first stereo match. For example, for 16 processor case, the 

speedup in the first case is 5.55, whereas for the same multiprocessor size speedup is only approximately 2.3 for the 

second stereo match. Therefore, as the computation progresses in an integrated environment, the gains of these load 

balancing schemes become increasingly significant.
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Figure 8 : Distribution of Computation Times for Second Stereo Match (P=8)
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Figure 9 : Speedups for Second Stereo Match

4.6. Summary of Results

In summary, the following important observations can be made from the results presented in this section. 

First, the improvement in performance (such as utilization and speedup) itself increases using the load balancing 

schemes as the number of processors increases. Therefore, performance gains are expected to be higher for larger 

multiprocessors. Second, in an integrated environment, the overheads of such methods are small because measure of 

load can be computed at run time as a bi-product o f the current task. Finally, though we showed the performance 

results o f the implementation on the hypercube multiprocessor, these methods can be applied when algorithms are 

mapped on any medium to large grain multiprocessor system, because these techniques are independent of the 

underlying multiprocessor architecture.

Consider the overall performance gains for the entire system. As the computation progresses from one step to 

the next, uniform partitioning performs worse because the data points reduce, but the computation at each point 

increases. Hence, the gains of using parallel processing are minimal. However, the load balancing techniques recog

nize the data distribution at each step, and the data is decomposed using the distribution. Therefore, performance
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gains are expected to improve as the computation progresses in an integrated environment. For example, consider 

zero crossing, stereo match, time match, and second stereo match steps. In zero crossing computation, uniform par

titioning performs well and load is balanced. Hence, the improvement ratio is 1. For stereo match the improvement 

of static over uniform partitioning is 2.15 few 8 processor case, and is 2.22 for 16 processor case. Similarly, for time 

match step, the improvement of static load balancing for 8 processor case is 3.38, and for 16 processor case, it is 4.2. 

Therefore, the improvement in performance itself increases as the number of processors increases as well as when 

the computation progresses in from one step to the next in a vision system.

5. Concluding Remarks

In this paper we presented techniques to perform efficient data decomposition and load balancing for vision 

systems, for medium to large grain parallelism. Two important characteristics o f these techniques are that they are 

general enough to apply to any such integrated system, and that they use statistics and knowledge from the execu

tion of a task to perform data decomposition and load balancing for the next task in the system. Knowledge from 

each step is used to perform load balancing in the next step. The advantages of such schemes are as follows. First, 

these techniques use characteristics of the tasks and the data, and therefore, work well no matter how the data 

changes. Secondly, many vision systems consist o f such tasks and exhibit the above described computation flow, 

and therefore, these techniques can be used in any system.

Finally, the performance of the proposed techniques was evaluated by using a parallel implementation of the 

motion estimation system algorithms on a hypercube multiprocessor system. The results show that using uniform 

partitioning without considering the computations involved, parallel processing does not provide significant perfor

mance improvements over sequential processing. Furthermore, by applying the proposed data decomposition and 

load balancing techniques significant performance gains (as much as 6 fold) can be obtained over uniform partition

ing.
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