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Abstract

1 Introduction

Auto-synchronized scanning geometry.
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This paper introduces a new method for the calibra-
tion of a range camera based on active triangulation.
The technique is based on a model derived from the
geometry of the synchronized scanner. From known
positions of a calibration bar, a logistic equation is �t-
ted with values of spot positions read from a linear
position detector at a number of angular positions of
a scanning mirror. Furthermore, with an approximate
form of the general equations describing the geome-
try, a series of design guidelines are derived to help a
designer conduct a preliminary study of a particular
range camera. Experimental results demonstrating the
technique are found to compare favorably with theoret-
ical predictions.

et al.

et al.

Among the many techniques proposed to extract
three-dimensional information from a scene, active tri-
angulation is used in applications such as automatic
welding, measurement and reproduction of objects,
and inspection of printed circuit boards [1]{[2]. An
innovative approach, based on triangulation using a
synchronized scanning scheme, was introduced by Ri-
oux [3] to allow very large �elds of view with small
triangulation angles without compromising on reso-
lution. With smaller triangulation angles, a reduc-
tion of shadow e�ects is inherently achieved. Imple-
mentation of this triangulation technique by an auto-
synchronized scanner approach gives a considerable re-
duction in the optical head size compared to standard
triangulation methods. A 3-D pro�le of a surface is
captured by scanning a laser beam onto a scene by
way of an oscillating mirror, collecting the light that
is scattered by the scene in synchronism with the pro-
jection mirror, and, �nally, focusing this light onto a
linear position detector. Figure 1 depicts the synchro-
nization e�ect produced by the double-sided mirror.
This measurement process yields two quantities per
sampling interval: one is for the angular position of
the mirror and one for the position of the laser spot on
the position detector. Owing to the shape of the coor-
dinate system spanned by these variables (see Fig. 2a),
the resultant images are not compatible with the co-
ordinate systems used by most geometric image pro-
cessing algorithms. A re-mapping of these variables to

Figure 1:

a more common coordinate system like a rectangular
system is therefore required.

In [4], Bumbaca present a method to calibrate
a range �nder without assuming any re-mapping func-
tion for the geometric distortions. The authors use a
calibration bar composed of two sections: one having a
uniform re
ectance and one made of equidistant �du-
cial markings of lower re
ectance, painted onto the
surface. By constructing two tables from known po-
sitions of this calibration bar in space, they correct
range and longitudinal distortions. The calibration
bar is moved so as to de�ne a rectangular coordinate
system as depicted in Fig. 2b. Without knowledge of
the distortion laws, any attempt to reduce the ran-
dom noise present in the raw data to reveal the re-
mapping function inherent in the range �nder geom-
etry becomes an art. Archibald [5] propose re-
placing one of the tables by a series of linear equations
�tted from data taken along the scan angles (Fig. 2c).

It is the goal of this article to extend the method
presented in [4]{[5] and to introduce a novel method
and procedure for the calibration of a range cam-
era based upon the synchronization principle. Sec-
tion 2 gives a description of the optical arrangement
and presents the equations that describe the geome-



a)
c
o
n
s
t
a
n
t
 
p

constant azimuth

c)
constant azimuth

c
o
n
s
t
a
n
t
 
r
a
n
g
e

b)

c
o
n
s
t
a
n
t
 
r
a
n
g
e

longitudinal contours β

-

γ / 2

z

x

β
-

γ

θ

β

p

P

θR (θ)
o

R  (θ)
-

R (θ)
p

f

e

d

a
b

c

ST

τ
γ

γ−τ

O

Projection

axis

D etection

axis

fo

Len s

plan e

p

p

p p

0

0

0
0

0

0 0

0

0

�
� �

�
�

�
�

�
� �

�
�

�
�

�1

1

A

OAC OED
OBC OFD

D
E F

DE DF

2 Range camera equations
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Un-folded geometry.

Figure 2:

try from which a model is de�ned. These equations
are used as design tools to characterize the volume of
measurement and the spatial resolution, and to give
some guidelines for a precise calibration of a range
camera. Some experimental results obtained from a
range �nder intended for space applications are pre-
sented. Finally, a discussion of several advantages and
limitations of the analysis and the proposed technique
follows.

Figure 3 shows the geometry used for the triangu-
lation where the projection and collection axes have
been unfolded. The dotted lines depict the static ge-
ometry, i.e., for ( = 0). Here, the scanning angle is
measured from these dotted lines. Most triangulation-
based range �nders take advantage of the Scheimp
ug
optical arrangement [6]. The equations relating the
spot position to the location of a point on the pro-
jection axis can be found from Fig. 3 in the follow-
ing manner. Here, the scanning mirror has been tem-
porarily removed and a pinhole model for the lens has
been assumed. A rectangular coordinate system ha
been located on the axis joining the equivalent posi-
tion of the respective pivot of the projection and col-
lection axes. These two positions are represented by
large circles on the axis. The axis extends from a
point midway between them towards in�nity. Super-
imposed on the �gure is the equivalent geometry for a
synchronized rotation of the projection and collection
axes by an angle .

The synchronized geometry implies that, for a spot
position = 0 (point on Fig. 3), the acute angle
between the projection and collection paths is equal
to a constant . From this, all the other angles can
be inferred. Two sets of similar triangles {
and, { can be identi�ed. From these, the
following relation is extracted,

( ) ( )

( ) ( )
= (1)

where is the spot position on the detector (detec-
tion axis), e.g., CCD, and for a given scanner angle ,

( ) is the distance ( ) along the projection axis
corresponding to , ( ) is the location of the van-
ishing point on the projection axis, and ( ) is the
location corresponding to = 0. is the location
on the position detector of the vanishing point on the

Figure 3:

detection axis:

=
sin( )

cos( )
=

( )

sin( )
(2)

where is the focal length of the lens, is the e�ective
distance of the position detector to the imaging lens,
is the tilt angle of the position detector, and is the

triangulation angle.
The transformation of eq. (1) to an ( ) repre-

sentation is computed from the fact that two points
and and a third point belong to the same straight

line if the vectors and are linearly dependent.
Hence,

( ) ( )

( ) ( )
=

( ) ( )

( ) ( )
= (3)

The above equations are decomposable in both or-
thogonal directions, i.e.,

( ) = ( ) +
( ) ( )

(4)

( ) = ( ) +
( ) ( )

(5)

These linear fractional equations, also known
as logistic equations, emphasize the nature of the
Scheimp
ug geometry, that is, the limiting response
( = ) for as it approaches (collection
path parallel to the position detector) and ( = )
for as it approaches + (projected ray parallel to
collection path).
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3 Proposed calibration method
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The coordinates of points are

( ) =
cos( 2 ) + cos( ) sin( 2 )

cos( )

(6)

( ) =
(sin( 2 ) + sin( ))

cos( )

cos( ) cos( 2 )

cos( )
(7)

( ) =
sin(2 )

sin( )
(8)

( ) =
cos(2 ) + cos( )

sin( )
(9)

where is the distance between the lens and the ef-
fective position of the collection axis pivot and is
half the distance between the projection and collection
pivots. These equations constitute the basis for the
derivation of the design tools and calibration method
presented in Section 3.

Once the equations describing the geometry are
known, one can estimate some of the most important
characteristics of a particular design.

Usually one begins with a given �eld of view and
resolution for a particular application and uses the
static geometry ( = 0) to evaluate those numbers.
At this point, laser beam propagation must also be
considered. Then, eqs. (4)-(9) are computed for a
particular scan width and position detector size. This
process is repeated until the system speci�cations have
been met.

Two methods can be used to estimate the resolu-
tion. The �rst, given below, is the result of the ap-
plication to ( ) of the law of propagation of errors
due to the measurement of ( ) through eqs. (4)
and (5). The second method is the actual calcula-
tion of the joint density function of = ( �) and
= ( �). This method allows for a full charac-

terization of the two random variables and taken
jointly. This result will be reported separately.

Blais [7] has designed a galvanometer controller
that achieves a peak-to-peak error of 1 part in 5000
on a uni-directional scan for an optical angle of 30 ,
i.e., 0 0001 . The measurement of is in prac-
tice limited by the laser speckle impinging on the CCD
position detector. Baribeau and Rioux [8] predicted
that such noise behaves like a Gaussian process and
the estimated rms 
uctuation of determined by the
noise is approximately

=
1

2 cos( )
(10)

where is the wavelength of the laser source and
is the lens diameter. In a well-designed system and

when enough light is collected from the scene, the ef-
fect of the noise generated in the electronic circuits
and the quantization noise of the peak detector on the
measurement of are swamped by speckle noise.

Assuming the functions = ( ) and = ( )
have no sudden jumps in the domain around a mean
value and , then the means ( ) and the variances
( ) can be estimated in terms of the mean, vari-
ance, and covariance of the random variables and �.
The analysis of the optical arrangement together with
the fact that the errors associated with the physical
measurement of and are Gaussian random pro-
cesses and are not related lead one to assume that
they are uncorrelated. Therefore,

+ (11)

+ (12)

where the functions and and their derivatives are
evaluated at = and = , and and are
the variances of the spot, and the angular scanning
measurement, respectively.

As demonstrated in [4]
and [5], two tables can be constructed from known po-
sitions of a calibration bar in space. A good calibra-
tion procedure should thus allow and to be deter-
mined accurately for all calibration plane and �ducial
markings. Both methods require that one table be
generated from measurements of �ducial markings on
a calibration bar. These markings must be recognized
by interpreting the brightness image of the bar. As
of yet, no model has been proposed to quantify the
e�ect of the light distribution on the measurement of
these �ducial markings. For now, only the measure-
ments of and have been su�ciently characterized.
Also, because a model describing the synchronized ge-
ometry in terms of these same variables is now avail-
able (Section 2), a calibration technique that requires
only the measurements of and along known posi-
tions of a calibration bar, without any interpretation
of the brightness image, would be highly desirable.
Moreover, the design equations can be used advanta-
geously to determine the number of calibration planes
and their location for look-up table construction.

One can think of an arrangement where a cali-
bration bar is moved in such a way as to de�ne an
oblique Cartesian coordinate system as illustrated in
Fig. 4. This arrangement represents a variation of
the one proposed in [9]. One table is created from
constant displacements of the bar in the direction
and another from constant displacements. These
displacements are not necessarily known exactly but
su�ciently to meet the targeted calibration accuracy.
Then, these two tables are transformed such that
and become a function of both and . In a prac-
tical situation, an oblique coordinate system is much
easier to set up than a rectangular one. The unwarp-
ing of the tables into a rectangular coordinate system
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Figure 4:

de�ned along some given horizon can be computed by
measuring a wedge placed at di�erent positions in the
�eld of view. A rectangular coordinate system should
yield a constant angle for the wedge. The exact spac-
ing between horizontal and vertical lines are computed
with a reference object.

A calibration method
that tries to establish a set of tables can become very
cumbersome to implement when the volume of mea-
surement is large. A technique based on �tting a
model to some calibration points in space would be
of considerable interest. A model like the one devel-
oped in Section 2, i.e., (4) and (5) can be �tted to the
data measured at each sampled angle in the �eld of
view.

We propose using a linear fractional equation to
calibrate a range camera for large �elds of view. The
chi-squared merit function is proposed in order to es-
timate the six parameters required for each angular
position; three parameters are in the direction and
three in the direction. One will minimize the follow-
ing merit function for the positions

( ) =
( )

(13)

where is the parameter vector, is the rms error
associated with each measurement of , the are
known within system tolerance (e.g., accurate trans-
lation stage), and is the number of data points.
The same merit function can be applied to the po-
sitions. According to theory [8], if the measurement
errors on the are normally distributed, then (13) will
give the maximum likelihood estimation of those pa-
rameters. Relevant intervals of con�dence for those
parameters can also be estimated. Once the six pa-
rameters are found for a particular angular position
of the projection mirror, then simple inversion of the
fractional equation can be done. The unwarping of
the ( ) oblique coordinate system to a rectangular
system is performed as described in Section 3.3.1.

A number of tests, some of which are reproduced
here, were carried out to demonstrate the calibration
techniques and were found to compare favorably to
theoretical predictions. In one of these tests, the rms

uctuation of the logistic equation �tting for 512 an-
gular positions was found to be approximately 1 30
pixel. In that same test, a reference wedge was cali-
brated and the resulting error between true and mea-
sured edges was well within system tolerance. In an-
other test, the estimated obtained from �tting a
logistic equation and the theoretical model were tried
for a large volume on a range camera intended for
space vision applications. It features random access
of any position in a �eld of view of 30 by 30 [10].
Objects located within a range of 0.5 m to 100 m can
be detected. Figure 5 shows the image after calibra-
tion of a quarter-scale model (at National Research
Council) of the cargo bay of the Space Shuttle Or-
biter. The closest and farthest points in the �eld of
view were at 2.6 m and 4.5 m, respectively. Both esti-
mated and measured resolution of the camera at these
two locations were found to be in (along width of
cargo) 125 m and 1.5 mm and, in (along the depth
of cargo) 200 m and 4 mm. This scale model of the
cargo bay measures 4.33 m by 1.42 m by 0.6 m.

The critical elements of this calibration method are
the validity of the model and the number and location
of the calibration targets. The fractional equation of
Section 2 resulted from several assumptions related to
the nature of the imaging lens and the planarity and
location of the mirrors. The scanning mirror is con-
sidered to be in�nitely thin. Also, the galvanometer
wobble and the di�raction of the laser beam were ne-
glected. Obviously, any distortion produced by the
imaging lens could be modeled. But considering the
fact that the angular �eld of view of the imaging lens
in our range cameras rarely exceeds 10 for volumes of
view varying between 1 cm and 100 m , the pinhole
assumption appears reasonable.

This paper has introduced a new method for the
calibration of a range camera based on active trian-
gulation. A model which is derived from the analysis
of the synchronized geometry provides a basis for the
method. From the analysis of the optical arrange-
ment, some partial design guidelines are presented to
assist in the initial stage of design of a range camera.
Parameters like the size of the volume of view and
longitudinal and range resolution can be computed.
Two calibration methods are discussed. One method
is based on look-up table construction. The second
is aimed at range �nders that can scan large volumes,
i.e., 1 m . A logistic equation derived from the anal-
ysis is �tted with values of spot positions read from a
linear position detector at a number of angular posi-
tions of the scanning mirror. An experiment involving
the measurement of a quarter-scale model of the cargo
bay of the Space Shuttle Orbiter was carried out. A
complete raster image was obtained.
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Though the analysis considered only laser range
�nders based upon the synchronized scanner approach
other triangulation geometries with di�erent require-
ments can be accommodated by a similar analysis.
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