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Abstract

The paper presenls a problem—independent con-
trol algorithm for image undersianding providing both
data-driven and model-driven control siruciures. By
an easy combination of these siruclures any mized
straleqy can be achieved. The basis is a fremework
for the representation of declarative and procedural
knowledge using a semantic network,

1 Introduction

Beside the acquisition and representation of task—
specific knowledge the flexible and efficient use of the
available knowledge sources is necessary for the auto-
matic interpretation of sensor signals, According to
the flow of information and the activity through the
representational layers the data-driven (bottom-up)
and model-driven (top-down) strategy are the two
basic control paradigms. Unfortunately, the appropri-
ate way strongly depends on a specific task-domain.
For a problem with unambiguous results of prepro-
cessing a data—driven analysisis suitable, because this
leads to a small number of competing interpretations.
On the other hand, a model-driven strategy is effi-
cient for applications with a small and/or unambigu-
ous knowledge base, because many hypotheses, in-
compatible with the model, can be excluded in an
early state of the analysis. Otherwise, a mixed top-
down and bottom-up strategy should be preferred.
Therefore, a problem-independent control algorithm
must incorporate both data-driven and model-driven
control structures which can easily be combined to
any mixed strategy.

In this paper we present a control algorithm tak-
ing the above requirements into account. The algo-
rithm is embedded in a framework representing the
declarative and procedural knowledge on the basis of
a suttable definition of a semantic network.
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2 The semantic network language

Contrary to other approaches, in our definition of
the network there exist only three different types of
nodes and three different types of links. They have
a well defined semantics and we believe that these
structures are adequate to represent the knowledge
of different pattern understanding tasks. To handle
such tasks a basic requirement is the ability to repre-
sent classes of objects, events, or abstract conceptions
having some common properties. This is done by the
node type concept. In the context of image or speech
understanding an important step is the interpretation
of the sensor signal in terms modeled in the knowl-
edge base. That means, one connects certain areas of
the signal with concepts of the knowledge base. For
that reason, the second node type, called instance,
is introduced representing an extension of a concept
found in the sensor data. The instance is a copy of
the related concept except that the general deserip-
tion is substituted by concrete values caleulated from
the signal data. In an intermediate state of processing
it may occur that instances of some concepts cannot
be computed because certain prerequisites are miss-
ing. Nevertheless, the available information can be
used to constrain an uninstantiated concept. This is
done via the node type modified concept which rep-
resents modifications of a concept due to intermediate
results of the analysis. Tor a clear distinction between
a term and the related model in the network, the fol-
lowing convention isused: the term xyz is represented
by the concept Xz An instance of Xyz is denoted by
I(Xyz), a modified concept by M(Xyz).

Like in all approaches to semantic networks there
exists a link type specialization which connects a
concept with a more general concept (ie. Car it
Jeep). Closely related to this link is an inheritance
mechanism by which a special concept inherits all
properties of the general ones. Another well-known
link type is part which decomposes a concept into its
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natural components (i.e. Car %23 Wheel). For a clear
distinction of knowledge of different levels of abstrac-
tion the link type concrete is introduced. For exam-
ple, the concepts Wheel and Circle represent terms
of different levels because wheel belongs to the level
“named object” while circle belongs to the level “ge-
ometric objects”. According to the fact that circle
is more concrete to the signal than wheel we intro-
duce the link Whee! =5 Circle. Beside the type a
link has a particular name expressing the functional
role of this link. For example, a link from Car to
Wheel can be characterized by the roles “frontwheel”
or “rearwheel”.

Additionally, a concept can be described by at-
tributes which represent numerical or symbolic {ea-
tures of a concept., For example, possible attributes
for Car are height, length, or speed. Furthermore,
one can specify relations defining a relationship be-
tween diflerent attributes, i.e. “height < length”. As
the results of the initial segmentation are often not
perfect, an instance of a concept may be more or less
erroneous. For that reason, the definition of a concept
is completed by a judgment function which estimates
the correspondence of an area of the sensor signal to
the term defined by the related concept.

The creation of modified concepts and instances
constitutes the knowledge utilization in the semantic
network, TFor the creation of instances, this process
is based on the fact that if you have all parts of an
object which can be taken apart then you can put it
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together, In the network language, this idea is ex-
panded to the existance of instances for all parts and
concretes of a concept. That means that a concept
with no parts and no concretes can be instantiated at
once on the basis of the sensor signal. These instances
can be used to instantiate more complex concepts and
so on. For the creation of a modified concept M(4),
the existance of a new modified concept M(B) or a
new instance 1(B) is sufficient if one of the following

condltlons is valid: 425 B, A 2% B, B2 4, or
22, A. For a detailed description of the network
1anguage see [4, 7).

Figure 1-a shows a graphic representation of a rac-
ing car. A simple model of this racing car can be
represented in the semantic network in the following
manner (see Figure 1-b). Racing_car is a specializa-
tion of the concept Car. Car has four parts, namely
Bodywork, Window and two Wheels with the func-
tional roles front.wheel and rear_wheel. (For sim-
plicity, the roles of all other links are not shown in
Figure 1-b). Wheel is concretized by the concept Cir-
ele, Window by Rectangle, and Bodywork and Spoiler
by Polygon. Due to the fact that a racing car is a
special car, the related concept inherits all parts of
Car and has the additional part Spoiler. Figure 1-c
shows a segmented image containing hypotheses for
citcles, polygons, and rectangles. Beside the correct
hypotheses, one incorrect polygon and one incorrect
circle were detected. In the next section, this image
will be analyzed with the problem-independent con-



trol algorithm.

3 A problem-independent control al-
gorithm

Figure 2 shows an outline of a general control al-
gorithm which offers both data—driven and model-
driven control features. The algorithm is demon-
strated with the example of Figure 1.

initialize the search space by the node n0; OPEN =1

select initial goal concepls Cr

FOR all G

generate one successor node nk of the root node n0
and insert C% in nk :

judge nk due to an optimistic estimation for the costs
of a complete interpretation and bring nk to OPEN

WHILE OPEN # #

remove the best-judged node n from OPEN

Ir (1) the analysis goal is reached for node n

THEN [stop analysis as n contains the optimal inter-
pretation of the sensor signal

ELSIF

(2) a new instance can be created

THEN [create a new instance and generate data~

driven modifications up to the goal concept

(3) all objects of # are instances but the level

ELSIF
' of interpretation is not sufficiently absiract

estimate bottom-up new goals due to the
paths in the knowledge base

THEN

ELSIF | {4) a model-driven modification is possible

THEN |create top-down a néw modified concept

ELSIF| (5) there exist not interpreted signal areas,
although n contains a complele interpretation

of an appropnate Jevel

due to the model, create a modified concept
of a specialization

THEN

Figure 2: An outline of a problem-independent con-
trol algorithm

As image and speech signals are ambiguous, com-
peting instances and thus competing interpretations
are calculated. To focus on the most promising inter-
pretation the A*-algorithm is used to direct the anal-
ysis. Every node in the search space represents one
congistent (partial) interpretation of the sensor sig-
nal. Therefore, the search space is initialized by the
root node 70, and the set QPEN containing the ac-
tive nodes is the empty set. Then, as starting points
of the analysis initial goal concepts have to be se-
lected.. According to the level of abstraction a more
data-driven or a more model-hased strategy is first
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performed. For example, with the concept Polygen
(most concrete level) the sensor data can be imme-
diately incorporated into the analysis. This is done
by the instantiation of Polygon. Such an instance
I(Polygon) represents a concrete polygon found in the
sensor data. On the other hand, an initial goal con-
cept Car causes a model-driven strategy, as the ex-
pectations of the model determine the further pro-
cessing. Fach goal concept is regarded as a competing
hypothesis and therefore is inserted in one successor
node of n0. To process only promising interpreta-
tions each search tree node n is judged on the basis
of the concepts, modified concepts and instances col
lected in n. The initial nodes nk only contain one
concept so the judgment is an optimistic estimation
of the costs of a complete interpretation. Otherwise,
the judgments of the modified concepts and instances
are taken into account. An example for a judgment
function in the task-domain “speech understanding”
is given in (8] and for “object recognition” in [2]. In
our small example we select Polygon as the single goal
concept, so that only one node nl is in OPEN.

After that initialization phase, the A*-algorithm
begins to work. While OPEN is not the empty set
the best-judged node n is selected for further pro-
cessing, If the analysis goal is reached, i.e, the entire
sensor signal is interpreted on a sufficiently abstract
level, the analysis is finished and n contains the opti-
mal interpretation. This is not fulfilled for node nl,
therefore the next condition is tested, As Polygon has
no parts and no concretes, the instantiation process is
activated. Depending on the results of preprocessing
for each detected polygon in the image one instance
and one successor node is created (see Figure 3). They
represent competing partial interpretations of the im-
age. In the following, every new search tree node is
judged and inserted into OPEN. Generally, the in-
stantiation is a data—driven process which creates a
new interpretation of a signal area.

For the next iteration we assume that n2 is the
best—judged node. Tor this node the third condition
is fulfilled and new goals are estimated bottom-up
according to the neiwork. By this data-driven pro-
cess the high-level knowledge is incorporated into the
analysis whereby the search process can be reduced.
Figure 4 shows two competing search tree nodes after
the estimation of new goals. In node n5 1;(Polygon)
is interpreted as a body-work of a car, while for n6
Ii(Polygon) is interpreted as a spoiler of a racing car.
These hypotheses aie expressed by the two modified
concepts My (Car) and M, (Recing_car) and by the two
instances Iy ( Bodywork) and I (Speiler), After the first
estimation, the new goals usually do not belong to the
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Figure 4; Content of search tree nodes after the esti-
mation of new goals

most abstract level, They only represent intermedi-
ate goals which are verified in a model-driven man«
ner. After the verification, new goals in higher levels
are estimated. This alternating process is repeated
untii the desired level of abstraction is achieved. De-
pending on the length of the estimated path a varying
amount of knowledge of the model is used for further
processing. Correspondingly, a more or less model-
driven strategy is designed.

In the next iteration, for the (best-judged) node
nS a model-driven modification is feasible. On the
basis of M)(Cer) a new modified concept for Wheel
(i.e. with the functional role front_wheel) is gener-
ated. With this process all restrictions of My(Car)
are propagated into M, ( Wheel). Figure 5-a shows the
new generated search tree node and the restriction of
M; ( Wheel) resulting from the position of I;( Polygon)
in the image. In the next step, these restrictions are
propagated into M;{Circle), whereby the admissible
instances are reduced to the circle in the restricted
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area. Therefore, the number of competing search tree
nodes is reduced, too. Figure 5-b shows the content
of a node after this process. By a model~driven mod-
ification of Wheel (role rear_wheel) and Circle the
concept Car can be instantiated in an efficient way
(see Figure 8-a), If the analysis goal is reached for
that node the control algorithm stops. Otherwise,
the last condition is fulfilled and a modified concept
M;(Racing_car) i3 created (see Figure 6-b). After
a top-down modification of Spoiler and Polygon the
corresponding modified concepts and M; (Racing.car)
can be instantiated.

In this example the basic properties of the con-
trol algorithm are demonstrated. These are the data~
driven interpretation in terms of the knowledge base
(instantiation, goal estimation) and the model-driven
generation of predictions out of the knowledge base
(top-down modification, specialization), Depending
on the selection of initial goals and on the intermedi-
ate estimation of new goals almost any strategy can
be achieved. A detailed description of the control al-
gorithm may be found in [1].

4 Realized applications

The successful utilization for different task-
domains indicates the quality of the presented control
algorithm. The applications cover the interpretation
of industrial scenes [2], the diagnostic interpretation
of image sequences of the heart [6], the automatic
diagnosis of arthrosis of the knee joint [5], and the
understanding of spoken language [3]. The obtained
results show that the problem-independent control al-
gorithm is able to handle totally dlﬁ'erent applications
in an efficient manner.
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