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Abstract

Most methods to reconsiruct surfaces from their
derivatives assume two orthogonal derivatives in per-
fect registration. We propose an approach to use
derivatives in arbitrary directions and to register or-
thogonal derivalives in case they are not registered.
We also develop a method to integrate second deriva-
lives in the reconstruction.

1 Introduction

Several 3-D sensing methods measure surface
derivatives. Since most applications require 3-D coor-
dinates, surface depth is to be computed from the mea-
sured derivatives. Surface can be reconstructed from
its derivatives by integration: The depth along one
line can be computed by integration along a straight
line in one direction of the measured derivatives, using
an arbitrary depth at one end of the line. The surface
is fully reconstructed by integrating along the lines of
the orthogonal direction, using the depth of the initial
line as a starting point. This integration method has
no redundancy, and it is very sensitive to errors.

Surface reconstruction from measured derivatives
was originally used to estimate phase from phase dif-
ferences [4, 5, 6, 7, 9]. One of the main vision ap-
plication is in shape from shading algorithms, where
surface slopes are estimated from the image intensity
[3].

Fourier based methods [3, 5] reconstruct surfaces
using all derivatives in two orthogonal directions, the
redundancy increases their stability. We generalize the
Fourier methods by using measurements in more than
two directions, to increase the redundancy of measure-
ments and the accuracy of reconstruction. The direc-
tions of derivatives do not have to be orthogonal.

All reconstruction methods require registration of
the measured derivatives. In many cases, however,
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the sensor moves, and the measurements are not reg-
istered accurately. We present a method to register
derivatives in two orthogonal directions for a possible
translation. We also present a method for reconstruc-
tion from second derivatives.

2 Two Orthogonal Directions

In this section we review the approach to compute a
surface s(z,y) from two orthogonal measured deriva-
tives 5;(2,y), 3y(z,y). We represent the surface as an
N x N array. Derivatives s;(%,y), sy(x, y) of a surface
s(z, y) satisfy the integrability constraint [3}:

d%s _ d%s
dedy ~ dydz’

1)

The integrability constraint on the derivatives of a
surface assures that the integral of derivatives along
any close curve will be zero. As the measured deriva-
tives 5.(z,y), 5y(x,y) have errors caused by inaccu-
racies and noise, they do not satisfy the integrabil-
ity constraint and do not describe a surface. A sur-
face 5(z, y) is then computed, such that its derivatives
5.(x,y), 8y(z,y) are closest to the measured deriva-
tives, minimizing the distance:

E(3) = /W (155 = &% + 13y — 3y|%] dedy.  (2)

Let F(a) be the Fourier transform of the derivative op-
erator (—1,1): F(a) = 1—e(¥~¥"). Tt has been shown
[3, 4], that the Fourier coefficients of the reconstructed

surface 3(z, y) are:

_ F(u)S5(u,v) + F(v)Sy (u,v)
F@)P+[F@)P

S(u,v) (3)

where S(u,v), 5z(u,v), Sy(u, v) are the Fourier trans-
forms of 5(z,y), 5:(z,y), 5y(z, y) respectively.

Summary: The reconstruction algorithm consists
of the following steps:



1. Performing FFT on the two arrays of the mea-
sured derivatives, 5,(z,y) and §,(z,y), to get

Se(z,y) and Sy (z, ).
2. Computing S(u, v) using Eq.(3).

3. Performing the inverse FFT on S(u,v) to get the
reconstructed surface $(z,y).

2.1 Using Second Derivative

The multiplication of S, (u, v) and Sy (u, v) by F(v)
and F(u) is simply taking the z and y derivatives in
the Fourier domain, thus Eq.(3) is equivalent to in-
tegration of the surface Laplacian by dividing it by
|F(u)|? + | F(v)|?. Therefore Eq.(3) can be rewritten:

. Se. (u,0) + Sy, (u,v)
S(u,v) === X , 4
R Oy T OTE “
where S, and S'yy are the Fourier transform of the

second derivatives of the surface, 3;, and 3, , respec-
tively. Eq.(4) is being used because of the ease of its
derivation, but it is not optimal in the least-squares
sense.

3 Derivatives in Arbitrary Directions

Let 54(z, y) be the measured surface derivatives in
direction . Given derivatives in a set of directions £,
{5a]a € Q}, we would like to find the surface §(x,y)
such that its derivatives {5, | € 2} minimize the dis-
tance:

EG) =)

aeQ VY

z,y) — 5a(z,y)’dzdy.  (5)

|3e(

As in the case with derivatives along two orthogo-
nal directions, surface reconstruction is done using
the Fourier transform. It can be shown that the
surface $(z,y) that minimizes the error (Eq.(5)) be-
tween the measured directional derivatives §q(z,y),
and the directional derivatives of the reconstructed
surface §4(z,y), also minimizes the error between the
respective Fourier coefficients:

N-1
BE@#) =3 3 15a(u,v)

a€Qu,u=0

= So(w, ). (6)

We will generalize F,,(u, v) to be the Fourier transform
of the derivative in direction a:

Fo(u,v) =
—~2iTU —2imv )

)) + sin(a)(1 — exp(

cos(e)(1 — exp(
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Figure 1:
derivatives in four directions: synthetic data.
a) Reconstructed surface.

b) Error of reconstructed surface as function
of noise. Dashed line uses four directions, and

solid line uses two directions. Advantage of
using four direction is seen at high noise level
(Low SNR).

Since: Sa(u,v) = S(u,v)Fy(u,v), the error E(3) is
then rewritten as:

= Sa(w,v)%. (7)
Minimization of Eq.(7) provides the Fourier coeffi-
cients of the reconstructed surface:

Zaeﬂ S’a(u) v)Fa(uv v)
Laeq [Falw,v)?

Surface reconstruction is therefore done by using
the same steps as described in previous section, but
having more freedom in the measuring directions. Us-
ing more then two derivatives has the advantage of
processing more information about the surface, and
integrating it with minimum error propagation. In
case that each measured directional derivative 3, has
a different confidence, say Ky, Eq.(8) can be modified,
getting:

SA'(U,U) = (8)

2 ) = Saen aSa () Fa(u,v)
S(u,v) = S KalFa(u,0)]

(9)

4 Cyclic Basis Functions

The Fourier basis functions generate only cyclic sur-
faces. To make the measured derivatives 5;(z,y), and
5y(z,y) inan N x N arrays, satisfy the cyclic property,
we generate an additional last column to the z deriva-
tives and an additional last row to the y derivatives.
The added values are [5):

z
L

gf(Ny y) = gr(rvy)a

]
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=}



z
L

5y(z,N)=—
y

(10)

Sy(z,y).

i
o

Consider the case of two directional derivatives
measured in arbitrary directions, so(z, y) and sg(z, ),
which are organized in N x N arrays. We will make
them satisfy the cyclic property by adding one row
and one column. Since:

(11)

it holds for every row of the directional derivatives
that:

salz,y) = cos(a)sy(z, y) + sin(a)sy (2, y),

N-1 N-1 N-
Z Sq(z,y) = cos a)Z Se(z,y) + sin(o Z
=0 =0 z=0 (12)
N-1 N- N-1

Sp(z,y) = cos(ﬂz (z,v) +sm(ﬁ)2 5y(z,y).
=0 =0 =0

The two unknowns in these equations are Em —0 Sz
and Z 0 §y, which can be computed by solving these
two equations. Applying Eq.(11) on 5,(N,y), and
substituting Eq.(10) in the result to satisfy z cyclic
surface, leads to:

N-1
- cos(a)z 5:(z,y) + sin(a)dy (N, y). (13)

z=0

§a(N,y) =

The above constraint restricts the z component of
(NN, y) to be the sum of the z components of 54(z, ),
0 < & < N—1. For determining 5, (N, y) we apply the
integrability constraint on the cyclic surface (Fig.2):
5y(N,y) = 5(N,y) — 5:(N,y+1) +5,(0, ), (14)

where 5;(N,y), 5:(N,y + 1) are obtained by using
Eq.(12), and §,(J,y) can be obtained from 5,(0,y)
and 53(0, ).

Summary: The values 5,(N,y) at the (N + 1)st
column are generated by:

e Solving Eq.(12) to obtain Y0 &.
¢ Computing 5, (0,y) from 54(0,y) and 35(0,y).

o Using the values from the first two steps to cal-
culate §,(N,y) from Eq.(14).

o Substituting the values §,(N,y) and Z
Eq.(13) to get 5o(N,y).

0 5. in
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Figure 2: Derivatives in a cyclic surface:

s(N +1,y) = s(0,).

The values of §4(z,N) can be generated similarly.
54(N, N) is than computed by:

N-1 N-1

~5a(N,N) = cos(a)y_ 3z(x, N)+sin(a)) | 3,(N,y).
z=0 =0

S

5 Registration of Derivatives

Surface
X-derivative grid

Y-derivative grid

Figure 3: Measurements of derivatives might
not be aligned due to translational movement.

At least two measurements of derivatives from dif-
ferent directions are necessary for surface reconstruc-
tion. In many cases the derivatives might not be
aligned, but alignment is essential for accurate recon-
struction. To align the directional derivatives we use
the observation that the sum of derivatives of a surface
along a closed contour is zero. When derivatives in two
directions are not aligned, the sum of derivatives on
closed contours will not be zero. The minimal closed
curve is a block of 2 x 2 pixels, and the sum of the mea-



b)

Figure 4: The effect of non-registered deriva-
tives on surface reconstruction of range im-
ages.

a) Reconstruction with non-registered deriva-
tives. Derivatives are displaced by about 21
pixels (picture size is 256 x 256).

b) Reconstruction with registration: The pa-
rameters of translation were obtained to align
the derivatives before reconstruction.

sured derivatives along this curve given a translation
(tz,ty) between the measurements is:

c(to,ty, 2,9) = 5:(2,9) + 5, (2 + 1 =ty — ty)
—&p(z,y+ 1) —5y(z —tg,y—ty). (16)

Under discrete derivation Eq.(16) can be written as:

e(toyty, 2,y) = 8z, (2, y) — &y, (2 — to,y — ty). (17)

Minimizing C(ts,ty) = 3, ,(c(ts, ty, z,y)%) over t,
and t, will be used to register the derivatives. We will
do it by applying a motion registration algorithm to
find the translation between 3, and 5, [1, 2].

Surface reconstruction is performed after the reg-
istration of the directional derivatives. The surface
is divided into three areas: An area having measured
derivatives in both directions, and two areas having
measured derivatives in only one direction. The recon-
struction algorithm is first applied on the area having
measurements in two directions. Reconstruction in
the other two area is done by integrating the deriva-
tive in one direction starting from the values on the
boundary of the first computed region.

6 Concluding Remarks

We have proposed an approach to reconstruct a sur-
faces from derivatives in any arbitrary directions. A
method to register derivatives in different directions
has been also presented. These steps contribute to
the effort of generating surfaces from measured direc-
tional derivatives, overcoming the limitation of exist-
ing methods that only work on registered orthogonal
derivatives.
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