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Abstract 

The Bayesian approach to image processing based on 
Markov random fields is adapted to image analysis 
problems such as object recognition and edge detec­
tion. In this context the prior models are Markov point 
processes and random object patterns from stochastic 
geometry. We develop analogues of Besag's ICM al­
gorithm. The erosion operator of mathematical mor­
phology turns out to be a maximum likelihood estima­
tor for a simple noise model. We show that the Hough 
transform can be interpreted as a likelihood ratio test 
statistic. 

1 Introduction 

This paper studies object recognition problems where 
a scene composed of several 'objects' is observed in the 
presence of blur and noise, and the task is to locate 
them. Bayesian techniques based on Markov random 
fields, which have been successful in segmentation and 
tomographic reconstruction [2, 4], are adapted to this 
new context where the desired output is not a pixel 
image but a graphical pattern such as a line drawing 
or list of filled polygons. The role of Markov random 
fields is taken over by Markov random spatial patterns 
(1, 3, 9, 10, 13]. Our work considers patterns of sev­
eral objects, whereas several recent studies (6, 7, 11] 
develop algorithms to recognise the shape of a single, 
deformable template object. 

2 Definitions 

The observed image y is digitized on a finite pixel lat­
tice T ('image space'), and Yt denotes the value at 
pixel t ET. 
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The objects to be recognized are assumed to be 
representable by a finite number of real parameters 
that determine size, shape and location. Let U denote 
the space of possible parameter vector values ('object 
space'), so that a point u E U represents an object 
R(u) ~ T. An object configuration is an unordered 
list of objects, 

x={x1,···,xn}, XiEU, i=l,···,n, n~O. 

Note that n is variable, and the empty list 0 is allowed. 

3 Maximum likelihood approach 

3.1 General formulation 

Analogously to [12] we formulate object recognition as 
a statistical parameter estimation problem. Assume 
the image y depends on the 'true' object pattern x 
through a known probability distribution, with den­
sity f (yix ). The maximum likelihood estimator {MLE) 
of x is 

x = argmaxxf(yix). (1) 

Following [5] our stochastic image model f(yix) con­
sists of a deterministic 'deformation' and a random 
noise component. Any object configuration x deter­
mines an image ()(x) in pixel space T, representing 
the ideal signal, which is then combined with random 
noise. 

We assume the pixel values Yt are conditionally 
stochastically independent given x, and the distribu7 
tion of Yt depends only on the value of the signal at 
that same pixel: 

f(y!x) = fl g(yt!O(x)(t)) (2) 
tET 

where g( · IB) is a known probability density for each 
value of B. For example this includes additive and 
multiplicative noise. 



For brevity here we assume a blur-free model in 
which o(x) ( t) takes either a foreground or background 
value 01, Bo according as pixel t lies inside or outside 
the 'silhouette' formed by the union of the objects, 

n 

S(x) = U R(xi)· 
i=l 

In other words the simplified model assumes the ob­
jects are first 'painted', without blur, onto the scene 
which is then corrupted with independent random 
noise. 

Figure 1 shows a realization of the simple model 
with additive (pixel wise independent) Gaussian noise. 

Figure 1: Realisation from simplified model with ad­
ditive Gaussian noise, SNR = 0.25. 

3.2 Relation to mathematical morphol­
ogy 

In the case of a binary data image, assume a model in 
which background pixels are randomly flipped from 
value 0 to 1 with probability q independently, and 
foreground (silhouette) pixels are unchanged. Let Y 
be the set of pixels with value 1. The likelihood is 
nonzero only when S(x) ~ Y and the loglikelihood is 
then a linear function of IS ( x) I, the total area of the 
silhouette. Hence, one solution for the MLE is 

xmax = YeR 

= {u EU: R(u) ~ Y}, 

which is a form of the erosion operator of mathemati­
cal morphology. This Xmax is the largest solution; the 
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other solutions are the subsets x i;;:; Xmax with the same 
silhouette, 

S(x) = S(i:max). 

In other words, the erosion technique is equivalent to 
assuming random binary noise in the background and 
taking the maximal MLE. 

3.3 Iterative maximum likelihood algo­
rithms 

Usually the MLE cannot be determined directly 
and we need to resort to iterative optimization tech­
niques. The simplest form of iterative adjustment is 
to add or delete objects. Recursively add an object 
u E U to the current list x, yielding x U u, if the log 
likelihood ratio 

f(ylx U u) 
L(x U u; y) - L(x; y) =log f(ylx) (3) 

is sufficiently large; and delete one of the existing ob­
jects Xi E x to yield x \ Xi if 

f(ylx \ Xi) 
L(x\xi;y)-L(x;y)=log f(ylx) (4) 

is sufficiently large. Two possible algorithms are 

coordinatewise optimization: Visit all points u E 
U in a prearranged order. If u is not in the cur­
rent pattern x, then add u to x if (3) exceeds 
a threshold w ;:::: 0. If u = Xi is in the current 
pattern, then delete it from x if ( 4) exceeds w. 
Repeat. 

steepest ascent: Find the maximum value of (3) 
over all possible new objects u, and the maxi­
mum of (4) over all existing objects Xi in x. If 
one of these exceeds a threshold w ;::: 0, add (or 
delete) the corresponding object. Repeat. 

Both algorithms increase the likelihood at each 
step, f (ylx(k+l)) ;::: f(ylx(kl), and in practical cases 
convergence is guaranteed (at worst there is cycling 
between images of equal likelihood). However these al­
gorithms do not necessarily yield the global maximum 
likelihood solution, and the local maximum obtained 
will depend on the initial configuration x<0l. 

3.4 Connection with Hough transform 

For our simple model 

L(xUu;y)-L(x;y) = L h(yt,Bo,81) (5) 
tER(u)\S(x) 
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Figure 2: Object recognition using MLE, steepest as­
cent. 

where 

h( () () ) g(ytflh) 
Yt, o, i =log g(ytl()o) 

is the difference in 'goodness of fit' at pixel t. In partic­
ular the log likelihood ratio of a single object u against 
an empty scene 0 is 

L({u};y)-L(0;y)= L h(y1,80 ,81 ). (6) 
tER(u) 

Now (6) is exactly analogous to the Hough transform. 
It has the same interpretation of a 'sum of votes' from 
all pixels belonging to the object R(u), with the modi­
fication that fractional and negative votes are allowed. 

Thus the Hough transform can be interpreted as a like­
lihood ratio test statistic. 

. \:'hen the .reference scene x is not empty, the log 
~1ke~1hood rat10 takes the form (5) which is a general­
~za~1on of the Hough transform calling for summation 
ms1de the complementary mask T \ S(x). 

For the add~tive Gaussian noise model, (6) is ex­
actly the classical Hough transform. One can also 

~how that preprocessing the data image before apply­
mg the Hough transform is equivalent to assuming a 
different noise model. 

Figure 2 shows the result of steepest ascent on the 
synthetic data of Figure 1. 
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4 Bayesian approach 

4.1 General 

Maximum likelihood solutions x tend to contain clus­

ters of almost identical objects where the reality is one 

single object (see Figure 2). To suppress this instabil­

ity and multiple response, one can adopt a Bayesian 

approach analogous to [2, 4, 7, 6]. In addition to the 

noise model f(yfx), the true image x is assumed to 

have been generated at random from a prior proba­

bility distribution with density p(x). The posterior 

probability distribution for x after observing data y is 

found by Bayes' formula p(xfy) ex: f(yfx)p(x) and the 

maximum a posteriori (MAP) estimator of x is 

x = argmaxxp(xfy) 

= argmaxxf(yfx)p(x). (7) 

Thus p(x) can also be regarded as a smoothing penalty 

attached to the optimization of f, and x as a penalized 

maximum likelihood estimator. 

4.2 Markov prior model 

Since x is no longer a discretized image but a 

variable-length list x = { x 1 , ... , xn} of parameter 

points in a continuous space, the natural stochastic 

models come from stochastic geometry and spatial 

statistics [3, 8, 13]. The counterparts of pixel-based 

Markov random fields (2, 4) are nearest-neighbour 
Markov point processes [l, 10]. 

For brevity we consider only the Strauss overlap­

ping object process [1] with probability density 

(8) 

where f3 > 0 and 0 ~ 'Y ~ 1. Here n(x) is the number 
of objects in x and r( x) the number of pairs of overlap­

ping objects. Interaction between objects is controlled 

by 'Y· If 'Y < 1, objects tend to avoid each other, in 
the sense that configurations with many overlapping 

objects have low probability; indeed, if 'Y = 0, overlap 

is not permitted. If 'Y = 1 we get a completely random 
(Poisson) process. 

4.3 MAP estimation 

Determination of the MAP estimator requires op­

timization (7) over variable-length lists x of objects. 

I~ (8) is adopted as the prior, we incur a multiplica­

tive penalty f3 for the presence of each object u, and a 

penalty 'Y for each pair of overlapping objects. These 



control the tradeoff between goodness-of-fit to the 
data and 'complexity' of the solution x. If f3 = I = 1 
the MAP estimator is just the MLE; when I= O the 
MAP estimator maximizes the likelihood subject to 
the constraint that no objects overlap. 

Exact solution of (7) is usually impossible and we 
use iterative algorithms similar to those developed for 
the MLE. Thus e.g. we iteratively add object u to list 
x iff 

1 f (y\x U u)p(x U u) (9) 
og f(y\x)p(x) > w 

where w 2 0 is a chosen threshold. This is analogous 
to Besag's ICM algorithm [2]. 

0 
O· oO 

0 
0 Oo 00 

oo CD 
0 0 

CD 0 0 
0 

Figure 3: Object recognition using MAP, steepest as­
cent 

Figure 3 shows the result of the steepest ascent MAP 
algorithm on our synthetic data using a Strauss prior 
with f3 = .0025, 1 = 0.25 and w = 0. 

Conclusion 

The ultimate objective of this study is to devise 
object recognition techniques which outperform ex­
isting ones. This is not yet demonstrated although 
the current algorithms perform creditably well in syn­
thetic tests, and the evidence supports the claim that 
Bayesian methods are appropriate. The most inter­
esting finding is a mathematical connection between 
existing ad hoe methods for object recognition (Hough 
transform, erosion) and general theoretical techniques 
such as maximum likelihood. 
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