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Abstract
Existing estimators for edge length in 2D and surface
area in 3D are applied to a binary representation of the
object. In this paper we estimate length and area
through volume measurements. Volume is measured
without thresholding and does not introduce a sampling
error. Edges are transformed into volumes by giving
them a constant height after which they can be shifted
perpendicular to the edge over a small distance.
Subtraction of two images shifted in opposite direction
produces a volume that is proportional to the edge
length. To guarantee a constant edge height along the
edge or across the surface to be measured we apply a
“soft” clipping operation to the linear region of the
edge. For accurate and isotropic displacement of edges
we introduce a continuous space equivalent to the
discrete local minimum and maximum filters. These
filters are sampling invariant and allow shifts in the
subpixel region.

1. Introduction

The estimation of edge length such as the perimeter of
an object from its digital image is a well-known
problem. Practical recipes summarizing experimental
results have been proposed [1] for the worst case in
which only a binary image is available. Fitting an
analytical curve to interpolated digital contour points
and calculating its length is a more theoretically
founded approach [2].

We believe that in the thresholding that usually
produces the binary image valuable information is lost
that should be preserved to improve the estimation of
edge length.

The method presented here works on grey value
images and combines edge detection and edge length
estimation. Apart from a few plausible assumptions it
is founded on sampling theory.

2. Edge length estimation in the discrete domain
is a problem, volume estimation is not

Edge detection is generally based on thresholding. The
simplest example is thresholding of the original grey
image at a fixed level, e.g. half edge height.
Thresholding the original image at a space variant
level (a reference image that can be derived from the
original by low–pass filtering or local minimum and
maximum filtering [4]) is equivalent to high pass
filtering and thresholding at a fixed level. In particular,
one often thresholds a second derivative at level zero.
This introduces noise sensitivity but solves the level
selection problem.

Thresholding is a very nonlinear operation in the
sense that the Taylor expansion of the corresponding
scaling function T(grey level) → {0,1} has
appreciable higher-order terms. Consequently, [3]
thresholding in the continuous domain can only be
replaced by an equivalent digital operation "sampling
→ digital thresholding → interpolation" at the cost of
equally appreciable oversampling.

By contrast,  the volume of a grey value landscape
(integrated grey value) is equal to the sum of the
samples if only the Nyquist criterion is fulfilled (no
oversampling). This has led us to look for an
estimation method where edge length is expressed in a
volume measure.

3. Constant height edges

3.1. Straight edges

To start with, we employ our argument in the
continuous domain. In order to convert an edge length
into a volume of a grey value landscape proportional
to it we can see from dimension considerations that
we must multiply by a constant width and a constant
height. For an edge of constant grey level (constant
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edge range) this value could be used as constant
height. But  the problem remains how to introduce a
constant width.

The solution we found is to apply an analog round
local maximum filter  of diameter size to the analog
edge. The effect of which is mainly a sideways
translation of the edge over the filter radius.

The volume enclosed between the original and the
translated edge is then equal to

volumeof max ori length size edgeedge range−( ) = ⋅ ⋅1
2 (1)

with max being the result after maximum filtering and
ori the original edge image.

For a straight edge the relation is exact as long as
the maximum filtering truly amounts to translation.
We shall discuss ways to ensure this.

3.2. Curved edges

For a curved edge, maximum filtering will not only
translate the edge, but will also change the edge
radius. From the simple example of a circular step
edge we see that it is then better to apply two filters,
an analog round local maximum filter and an analog
round local minimum filter, to the original edge. The
volume enclosed between the results is then equal to

volumeof max min length size edgeedge range−( ) = ⋅ ⋅ (2)

For an edge of different shape it is more
complicated to define edge position and edge length.
There are several traditional definitions of edge
position. The simplest is based on thresholding which
produces a binary edge. In section 6 we show how
edge length according to other traditional definitions –
such as the zero crossing of a second derivative – can
be handled. For now, we  remark that eq. (2) holds for
one particular uncommon definition of edge position
(cf. fig.1): the average (continuous) position reff of the
binary edge in a cross section perpendicular to the
edge, when the average is taken over the entire
interval of threshold levels (0, edge height).
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Figure 1: Cross section perpendicular to an
edge of constant height.

This follows immediately from the expression below
for a sector dφ of the enclosed volume
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4. Isophote edge length

In practice the edge height will show ripple and noise.
To achieve a simulated constant height we apply
clipping at two levels cliplow and cliphigh. This
amounts to using a more general  definition of edge
position (cf. fig.2): the average (continuous) position
reff of the binary edge in a cross section perpendicular
to the edge, when the average is taken over an
interval of threshold levels (cliplow , cliphigh).
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Figure.2: Cross section perpendicular to the
edge; reff is the average position of the binary
edge, when the average is taken over an
interval of threshold levels (cliplow,cliphigh).

In particular, the clipping levels can be chosen close
together around a fixed “threshold” level t . Then the
length calculated is that of the isophote at level t.. As
we are still handling continuous positions we have
constructed a continuous analogy of contour length.
Just like discrete contour length, our edge length
depends on a “threshold” level.

5. Continuous edge length from a sampled image

When assessing the volume that is representative for
edge length it makes little difference whether the
image is sampled or not. For a bandlimited image the
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integral over continuous grey value equals the sum of
the grey value samples.

Two operations used to convert edge length into
volume need attention when assessing continuous
contour length from a sampled image:

• the continuous maximum filter used for
translation of the edge must be replaced by a
discrete operation which on the basis of the
sampled image yields the sample values of the
translated continuous edge,

• the clipping operation being a nonlinear scaling
function must be handled with care.

In both issues an approximation is proposed to make a
practical compromise between bandlimitation and
accuracy.

Edge translation over size/2 is approximated by a
truncated Taylor expansion.
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In terms of the 2D image this reads (r is along the
gradient direction)

h r
size

h x y
size

h x y

size
h x y

+



 = ( ) + ( )( )

+ 



 ( )( )

2 2

1

2 2

2

, grad ,

SDGD ,

(4b)

where

grad , gradh x y h
h

x

h

y
( )( ) = ( ) = 





+






∂
∂

∂
∂

2 2

and SDGD stands for Second Derivative in the
Gradient Direction and can be written as
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Although the derivatives are all bandlimited, the
modulus of the gradient and the SDGD convert a
bandlimited image into results that can only be hoped
to be approximately bandlimited. The reason for this
hope is in the fact that non–linearity of the modulus
and of the SDGD does hardly occur in the center part
of the edges which we select for edge length
estimation.

Clipping a sampled image is tantamount to clipping
the continuous image and sampling; clipping the
continuous image distorts the grey value landscape so
that it is no longer bandlimited. (The distortion is

already much weaker than the one caused by
thresholding.) In order to reduce aliasing we propose to
replace the grey scaling function of clipping by a
smoother function, the error function, between the
same levels.
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with cliprange = (cliphigh – cliplow).
In cross sections where the edge slope between
clipping levels is approximately constant

 h(r) = ar + b

the edge is shaped into a scaled error function
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the approximate bandwidth of which is
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Hence, if the clipping interval and the linear part of
the edge slope encompasses 1/k of the total grey
range, the erf clipping needs k times oversampling

1
2 2 1π ≈(

�
) . The value k=4 seems reasonable and

practical.

lemma 1
As a signal and its derivative have the same
bandwidth, we take for the approximate bandwidth of
the error function the value of 2 2 2σ πσfreq = ( )  of the

gauss function of which it is the integral. As the error

function is defined as erf expz t dt
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lemma 2
The original slope is limited by a a≤ max

≡ 2 1
2π f greyrangemax  where fmax is the maximum

frequency in the original cross section.
proof of lemma 2
The steepest slope occurs if all allowed frequencies
add up with the same phase

∂
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sin 2 2
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(7)

the maximum signal value that can occur is
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t

( ) ( ) = ( )∫ ∫=
cos2

0
π (8)

The spectrum that gives the steepest slope with
respect to the maximum signal h greyrangemax = 1

2  has

amplitude A f h f f( ) = −( )max maxδ , with steepest slope

 a f h f greyrangemax max max max= =2 2 1
2π π (9)

6. Zerocrossing of second-derivative edge length

When edge height varies slowly like in shading, the
length of an isophote does not represent edge length
properly. The edge is then defined as the position
where a weighted sum of second derivatives along and
perpendicular to the edge crosses zero. We shall
loosely call this "the second derivative" (secder).
Examples are: the Laplacian, the second derivative in
the gradient direction and their sum [5,6]. We now
define the local “threshold” tloc in such a way that it
intersects the original edge where the second
derivative crosses zero. The easiest way to achieve
this is to take

t ori secderloc = + α (10)

with α  chosen so as to yield a constant tloc in the
cross section perpendicular to the edge, i.e.

grad gradt oriloc( ) • ( ) = 0

α − ≈ − ( ) • ( ) ( )1 2grad grad gradori secder ori

7. Experiments and conclusions

The test images contain a simulated image of a step
edge imaged through an optical system and sampled
at the Nyquist frequency (1N) and at four times the
Nyquist frequency (4N). Such an edge is constructed
under various orientations with respect to the square
sampling grid in order to detect directional
dependencies. Bandlimited disk images are
constructed in a similar way. To construct an arbitrary

bandlimited object, we start out from its Fourier
transform, ensure proper bandlimitation by multiplying
with the OTF (optical transfer function), and apply an
inverse Fourier transform to obtain the desired image.
From eq. (4) we notice that the SDGD is used to shift

the edge. The operator SDGD gradori ori( ) ( ) 2
 requires

three times oversampling [3]. In order to avoid spurious
aliasing effects by shifting the edge, the image must
at least be sampled at three times the Nyquist
frequency (even then it may introduce some aliasing
because in the shift procedure we use  SDGD(ori),

dividing SDGD gradori ori( ) ( ) 2
 by grad ori( ) 2

is not

guaranteed to be bandlimited). If a fixed optical
system and image sensor cannot provide this, then the
bandwidth must be reduced by a digital low–pass filter
such as a Gaussian filter. Earlier work [6] showed that
(applied to a Nyquist sampled signal) a Gaussian filter
with σ = 2.7 reduces the bandwidth by a factor of
three, as needed.

The digital implementation can be achieved using two
different strategies.

In the first strategy, we start with clipping around a
certain “threshold” to ensure a constant edge height.
The result of clipping is then shifted perpendicularly to
the edge according to eq. (4). Following  eq. (2), the
edge length is given by

length ori clipedge range= ( )( )volumeof grad

We notice that the SDGD does not contribute to the
final result.

The second strategy starts with shifting the edge
image, selecting a suitable “threshold” level and
apply the clipping around the selected “threshold”.
Now the measured edge length is given by
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The filters used to build |grad| and SDGD are the first
and second derivatives of a Gaussian. In order to
guarantee isotropy, all partial derivatives used to
construct the SDGD must have the same built–in
low–pass filter, equal σ. At the same time this σ is
used to avoid spurious aliasing.

For curved edges the Gaussian filter built in the
derivative filters virtually shifts the isophote inwards.
The reason is that for a filter with center on the
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isophote (starting from 50% overlap for a straight
edge) the overlap between filter and object will
decrease with increasing curvature. This will happen,
even if (minimizing edge displacement by OTF and
noise combatting low pass filters) we base the
isophote on the PLUS edge detector.

The first strategy allows us to choose the following
parameters:

• the threshold level and clipping range,
• the built–in σ of the derivative filters.

The second strategy has one additional parameter:
• the size of the analog max and min filters

For strategy 1, the experiments show that the type of
clipping (soft clipping using the error function or hard
clipping) does not make any difference here. Sampling
at the Nyquist frequency seems to be sufficient
(surprisingly, oversampling is not needed), since all
measurements with small built–in σ worked well (cf.
table 1). For straight edges, the edge length was
independent of the “threshold” level and clipping
range. For circular edges the isophotes have different
length. A larger σ reduces the length of the isophote at
half height and produces a systematic underestimate
of the contour length. Since the edge radius is not a
priori known we have chosen not to correct for this
error [5].

Table 1: Relative errors in the measured edge length
using strategy 1
bandlimited edges σ=1.0 σ=1.5 σ=2.0 σ=2.5
Straight edge   max 0.5 % 0.3 % 0.1 % 0.0 %
0° – 45°         mean 0.2 % 0.1 % 0.1 % 0.0 %
straight edge 0° 0.0 % 0.0 % 0.0 % 0.0 %
straight edge 5° 0.5 % 0.3 % 0.1 % 0.0 %
straight edge 22.5° 0.0 % 0.0 % 0.0 % 0.0 %
straight edge 45° 0.0 % 0.0 % 0.0 % 0.0 %
circular edge   max <0.4% <0.5% <0.8% <1.2%
15<R≤32       mean 0.2 % 0.3 % 0.5 % 0.7 %
circular edge   max<0.3% <0.2% <0.3% <0.4%
33≤R≤50       mean 0.2 % 0.1 % 0.2 % 0.2 %
circular edge R=15 0.2 % –0.3 % –0.7 % –1.2 %
circular edge R=32 0.1 % –0.1 % –0.3 % –0.4 %
circular edge R=50 0.2 % –0.0 % –0.1 % –0.1 %

For strategy 2, the experiments show that only soft
clipping gives a good length measure. Hard clipping
causes unacceptable errors (at best 10% and much too
sensitive to the choice of σ) for straight edges under
0° and 45°. For soft clipping the straight edge under 0°
turned out to be the most sensitive to parameter
choices (σ, and size). An acceptable sensitivity could
not be achieved when omitting the SDGD contribution

to the edge shift. Typical combinations are shown in
table 2 and 3.

Table 2: Relative errors in the measured edge length
using strategy 2 for straight edges
bandlimited edges σ ≥ 4

size/2 = 0.3
1 x Nyquist

σ ≥ 1
size/2 = 0.3
4 x Nyquist

straight edge          max 0.2 % 0.1 %
0° – 45°                mean 0.1 % 0.0 %

Table 3: Relative errors in the measured edge length
using strategy 2 for circular edges
bandlimited edges σ = 2

size/2=0.3
1xNyquist

1≤σ≤2.5
size/2=0.3
4xNyquist

σ ≥ 1
size/2=0.3
8xNyquist

circular edge    max
15 ≤ R ≤ 30    mean

0.5 %
0.3 %

circular edge    max
40 ≤ R ≤ 121  mean

0.2 %
0.1 %

circular edge    max
80 ≤ R ≤ 140  mean

0.1 %
0.0 %

A 3D implementation to measure surface area is under
way.
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