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Abstract 
A new layered representation of images is  proposed 

using, what one m a y  call, vector wavelets defined b y  
generalized Hermite  polynomials. This  representation 
has some special properties : ( i )  It is  distinct from 
and superior t o  the other wavelet schemes of the lit- 
emture ; ( i i )  It i s  stable ; ( i i i )  It transforms the im- 
age into matrices of coefficients in  the same manner 
as the standard transforms (Fourier, Hadamard and 
others), but at the specified 'scales' ; ( iv)  The zero- 
crossings of the signal at various scales can be directly 
obtained f rom the coefficients ; and (v )  The size of the 
resolution cell in  the 'phase-space' is  variable even at 
a specified scale, depending on the image being anal- 
ysed. This representation has been successfully applied 
t o  diflerent types of images, both synthetic and natu- 
ml. 

1 Introduction 

It is known that biological (including human) vision 
employs multi-channel processing for low-level analy- 
sis of sensory data. One of the reasons for this type of 
decomposition is that the structures or details in the 
physical world constituting the input to the sensory 
system have many different sizes. Motivated by this 
discovery (Hubel and Wiesel [l]), some recent investi- 
gations in the area of computer vision have dealt with 
the problem of representation of an image in several 
frequency channels. Such 'scale-space' representations 
have been the subject of current research. 

When the signal includes important structures that 
belong to different scales, it is useful to reorganize the 
signal information into a set of components of varying 
size. An important requirement in any such scheme is 
that a small perturbation of the representation should 
correspond to a small modification of the original sig- 
nal. At the same time, it is also desirable to local- 
ize the spatial-spectral information in the image. The 
need for localization of information in the spatial and 
frequency domains has led to signal decompositions 
based on either windows or frequency channels. 

A suggested structure for implementing a multi- 
scale representation is called the pyramid [2]. Assum- 
ing a 2-D function f(x,y) defined over a digital grid, 

one can define the pyramidal structure as a collection 
of subsampled images connected by a mapping trans- 
formation. A disadvantage of such a representation is 
that the data sets at separate levels are correlated. 

1.1 Previous Work 
An approach to the extraction of localized spectral 

information is the use of Fourier analysis in a window 
of the signal. This results in a representat,ion which 
is intermediate between a spatial and a frequency de- 
scription. A modification was made by employing a 
Gaussian window in an attempt to minimize the un- 
certainty associated with the spatial-spec tr a1 resolu- 
tion, exemplified by the results of Marr 131, which 
involve the filtering of the original image with the 
Laplacian of a Gaussian for various values of the vari- 
ance parameter. The multiscale representation is a 
multichannel representation in the frequency domain 
where a channel corresponds to some specific band- 
width. However, the size of the resolution cell in such 
a representation is fixed, and, therefore, finer details 
in an image when interspersed with coarse information 
cannot be separated out satisfactorily. 

In order to overcome this deficiency of the window 
Fourier transform, a combined space-spatial frequency 
representation a la Gabor [4] or the so-called wavelet 
transform can be attempted. The former representa- 
tion uses a modulated version of the Gaussian, but 
the Gabor functions do not constitute an orthogo- 
nal basis. It is also known that they are not eas- 
ily amenable to an orthogonalization procedure for 
extracting the coefficients of the signal in the Gabor 
space [5]. 

On the contrary, the wavelet transform is computed 
by expanding the signal into a family of functions 
which are the dilations and translations of a unique 
function, d(z), called a wavelet. Grossman and Mor- 
let [ti] decompose a function in L 2 ( R )  using the family 
of functions (fid(~x)),~R. A wavelet transform is 
then interpreted as a decomposition of the given sig- 
nal into a set of frequency channels having the same 
bandwidth on a logarithmic scale. However, in prac- 
tice, the standard procedure for computation is a de- 
composition of the image using the so- called "quadra- 
ture mirror" filters [7]. 

Let 4 Consider a one-dimensional signal in L 2 .  
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denote a function with sufficient decay, say 4(z) 5 
(&) 7 with 

1 
4da: = 0, and q5s(z) = - 4 ( z / s ) ,  s S 

Such a function is called a Wavelet. The wavelet 
transform of a signal is given by correlating f with 4:: 

The choice of q!~ determines the compactness of the 
representation. Inversion is achieved by an appropri- 
ate inverse integral. In practice, most commonly, s and 
a are restricted to some discrete subset: s = 2-" and 
a = 2-" with m , n  E 2, generating a set of dyadic 
wavelets. The Haar basis is a standard example for 
discrete wavelets. 

The generation of trhe wavelet function, 4 ,  has been 
the subject of many investigations. Some authors 
use a function which is similar to the Laplacian of 
the Gaussian (LOG), and others have tried to gener- 
ate wavelets by recursive procedures. Common to all 
these atternpts is the difficulty in generating orthogo- 
nal functions for a unique representation of the given 
signal. For instance, Mallat [7c] starts with an or- 
thonormal basis of L 2 ( R )  generated by the family of 
functions 

However, there still remains the problem of ex- 
tracting the coefficients of representation. It may be 
noted that orthogonality, apart from facilitating the 
computation of coefficients, guarantees their unique- 
ness [8b]. Other authors (see References in [7c]) have 
dealt with discrete wavelets 4(z) with the property 
that (fi+(z))jCz constitute an orthonormal basis of 
L 2 ( R ) .  It  is found that building up of such orthonor- 
ma1 bases of L 2 ( R )  is quite involved. 

2 Results based on a new vector 
wavelet transform 

In practice, images are finite in spatial extent, and 
hence are not strictly finite in extent in the spectral 
domain. However, for mathematical analysis, they can 
be treated as being approximately infinite in  both the 
spatial and spectral domains. To represent them, we 
employ generalized Hermite polynonials in  multiple 
channels, each channel corresponding to the scale pa- 
rameter u. For each channel, the representation is in 
the explicit form of a matrix of coefficients. 

2.1 Mathematical Background 
Images, which are treated as 2-D functions, are as- 

sumed to be defined over -co, co) x (-00, co) in both 

and y are independent (space) variables. 

2, y E R, with the Fourier transform, 

the spatial and spectral 6 omains. In what follows, x 

~ ( j u ,  j w z )  = 1: 1; f (z ,  y)ezp(-jwlz, -jww)dzdy 

Let f(z,.y) E L2(R).  be a real-valued function of 

The two functions, f(x,y) and F ( j w l , j w z ) ,  form a 
Fourier integral pair. The classical uncertainty princi- 
ple says that they cannot both have compact support 

The following concepts are needed in the determi- 
nation of the size of a cell in the phase-space. The 
uncertainty inequality can be obtained by defining the 
spatial and spectral spreads of the function as follows: 

[91[1 01. 

Let 

(2 - 20)  = A ~ o ,  ( Y  - YO) = AYO, (@I - w10) = 
Then the effective spreads X,, We around ( TO,  yo) 

A q O ,  and (w2 - wzo)  = Aw20. 

and (w10,wzo) are, respectively, defined by : 

The corresponding inequality is : X, We 2 1 
2.2 Choice of Basis Functions and their 

Consider the generalized 1-D Hermite polynomials 
properties 

parametrized by u, 

for n = 0,1,2,... ,which can, in turn, be used to gen- 
erate (by tensor product) the 2-D generalized Hermite 
polynomials, parametrized by u1 and 6 2 ,  

Hrn,n(z, Y , ~ I ,  u2) = pm(zc, Cl)Pn(y,u2) (2) 

for m,n = 0,1,2 ,... 
It is known [12][13] that the Pn's form a complete 

basis for the class C of real functions, f(x), defined 
on the infinite interval (-co, co), which are piecewise 
continuous in every finite sub-interval [-a,.] and satisfy 
the condition 
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For the 2-D basis representation, we use, in what 
follows, the vector notation, p, to denote (at times, for 
convenience, when no explicit reference to a particular 
spatial variable is required) the variables (2, y, ul,  u2) 
as a whole. 

The generalized Hermite polynomials can be shown 
to satisfy useful recurrence relations [ll] and are or- 
thogonal on -00 < x, y < 00. An important property 
of these polynomials which facilitates multi-scale / 
multi-channel decomposition of signals is that they are 
Fourier transformable, and their transforms have sim- 
ilar mathematical forms. The parameters u 1 , q  con- 
trol the effective width of the signal in both the spatial 
and frequency domains -- the smaller the values of 
bl and 02,  smaller the spatial width (and greater the 
spectral width), and vice versa, in the the directions 
x and y (and w1 and w ~ )  respectively. 

denotes summation with re- 
spect to m, n each ranghg, unless otherwise indicated, 
from 0 to 00. Let the L2-norm squares of these poly- 
nomials be denoted by km,n l  for m,n = 0,1,2,... 

In what follows, C, 

Now we define formally the series, 

where the coefficients T,,~ are calculated from the 
relation, 

for m,n = 0,1,2 ,... In practice, we use only 
a finite number, N ,  of terms. The coefficients Y, ,~  
are obtained by the standard procedure of minimizing 
the mean square error. As a consequence, the (ap- 
proximate) image reconstructed from these coefficients 
will not match with the original at all the individ- 
ual points. For convergence conditions, see [12],[13]. 
smooth in every finite interval [-a,a], and if the integral 

The error in the representation at scale (610, u ~ o ) ,  
at any point (x,y), is given by 

. 

err(x, Y ,  ulot 6 2 0 )  = f(x, Y)-fapproz(x, Y ) ,  

where the error is explicitly shown as dependent on 010 
and 6 2 0 .  Let this error be denoted by err,-,. In fact, 
minimization of the Mean-square error is responsible 
for the inadequate representation of high frequency 
components in an infinite expansion of the signal. The 
point-by-point error is an indication of the extent of 
the loss of frequencies higher than those of the ex- 
pansion. As a consequence, an expansion of err using 
6 1  and 02 smaller than b10 and 0 2 0  respectively can 
take into account the frequencies not found in fapproz. 
Let the error err(x,  y, u11, 6 2 1 )  in the representation 
at scale ( 0 1 1 ,  ~ l ) ,  at any point (x,y), be denoted by 
errl. Then 

err1 = err0 - errapproz(x, Y ,  rii, ~ i ) ,  (z,Y) E R2. 

(2, Y) E R~ 
(6) 

(7) 

By combining the above equations, it can be shown 
that 

f ( z , y )  = fapproz(x, Y) + errapprox(X,y, ~ 1 0 , 6 2 0 )  + 
err,pproz(x, y, u l l ,  a 2 1 )  + ... + residual error 

(8) 
The residual error is the final error which for 

all practical purposes is beyond the spectral reach 
of the u’s chosen in the multiple channels. By 
virtue of the multi-stage decomposition, the spec- 
trum of fapproz(~ ,y )  does not include that of 
errapprox(t,y, u10, cr~,-,), which in turn does not con- 
tain that of erropprom(t, y, ull, u21), and so on. This 
is equivalent to applying a sieve (the Hermite poly- 
nomials), at every level, that retain specific spectral 
information controlled by the scale parameter. The 
results of reconstruction are given in Fig.1. 

3 Properties of the New Vector 

There are many interesting properties of the new 
wavelet transform. However, in view of the constraints 
on space, details cannot given here. Refer to [llb]. For 
instance, zero-crossing contours in the image at vari- 
ous scales can be obtained directly from the coefficient 
matrices by exploiting the recursive relation among 
the Hermite polynomials. The other properties are : 
(i) The representation is stable with respect to coeffi- 
cient perturbations ; (ii) The size of the phase-space 
resolution space is variable ; and (iii) The layered rep- 
resentations are independent. 

4 Conclusions 

Wavelet Transform 

An elegant method, using generalized Hermite 
polynomials and parametrized by a ’scale factor’ 
(which leads to ’Vector Wavelets’), for representing 
images in terms of a matrix of coefficients has been 
proposed. The novelty of the results lies in the fact 
that the traditional assumption of finite support in the 
spatial or frequency domain has been dispensed with, 
while specifying an upper bound on the uncertainty in 
spatial-spectral localization. 
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