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Abstract

We propose an approach to interleave surface reconstruc-
tion from multiple images and feature extraction. It uses an
object-centered representation that is optimized to conform
to the surface shape. It also extracts typical features such
as crest lines and uses them to guide the optimization.
We present results using aerial images and terrain data.

1 Introduction

In previous work, we have developed surface recon-
struction methods that use an object-centered representation
(a triangulated mesh) to recover geometry and reflectance
properties from multiple images [4]. These methods use a
snake-like optimization process [5] that iteratively modifies
the mesh in order to minimize an objective function. Fea-
ture extraction can then be treated as a separate process. For
example, features can be extracted manually and optimized
as linear snakes. The features, in turn, can be used to further
refine the mesh by retriangulating and reoptimizing. Man-
ual extraction, however, can be strenuous and inaccurate.
We thus need an automated tool to extract relevant features
from the mesh. To enforce the consistency of terrain and
features, we propose to incorporate the feature extraction in
the whole iterative optimization process. In this way, the
terrain model and the feature data are more likely to be in
agreement.
In this paper, we focus on crest lines : they provide us with
a satisfactory geometrical representation of important phys-
ical properties such as ridge lines and valleys in the case of
aerial images, or orbits and other typical characteristics in
the case of face images.
Crest line extraction has been thoroughly studied [9, 6] and
carried out recently on various kinds of data, especially med-
ical 3D data [8, 7]. One of the main characteristics of those

features is that they use local information to yield a global
description of the surface which is very stable and can be
used for registration, surface modeling or recognition pur-
poses [1].
Since crest lines are defined using directional derivatives of
the maximum curvature of the surface at each point, it is
crucial to be able to compute reliably the differential prop-
erties of a surface represented by a triangulation. Extracting
such features, however, is difficult because triangulations
are discrete approximations of the surface that do not nat-
urally lend themselves to the computation of differential
properties, especially not away from the vertices. This is a
problem because features such as crest lines do not neces-
sarily go through the vertices. In general, they traverse the
triangulation facets between vertices.
To overcome this problem, our algorithm :

� fits a quadric to the neighborhood of each vertex of
the mesh.

� computes the principal curvatures and the principal
curvature directions of the surface at each vertex, as
well as the derivative of the maximum curvature in
the maximum curvature direction.

� extracts the zero-crossings of this derivative and
tracks them over the whole mesh.

Once these features have been reliably detected, they can
be used to improve the representation of the underlying sur-
face, by either deforming the mesh so that its edges coincide
with the crest lines, or by refining the triangulation in their
vicinity. The mesh can then be reoptimized and these steps
iterated.
This article is thus organized as follows.
In Section 2, we briefly describe our surface reconstruction
method from multiple images.
Section 3 explains the computation of the differential prop-
erties of a surface represented by a triangulated mesh and
focuses on the crest line extraction algorithm.



Section 4 shows some results obtained by this algorithm us-
ing real imagery.
Section 5 discusses the ways of combining feature extraction
and surface reconstruction presented above.

2 Surface optimization with a snake-like
method

We recover a model shape by minimizing an objective
function E(S) that embodies the image-based information.
It is the sum of a stereo term and a shape-from-shading term
[4]. In this paper, however, we only consider the stereo term,
which is very appropriate to highly-textured images like ter-
rain images. On the other hand, the shape-from-shading
term is most useful when dealing with areas with constant
or slowly varying albedo.
Since we are dealing with calibrated stereo pairs, we can
compute the stereo term by comparing the intensities of the
projections in each image of some points regularly sampled
on a facet of the mesh. Thus, Optimizing the mesh with
respect to the stereo energy tends to minimize this term.

In all cases, E(S) typically is a highly nonconvex func-
tion, and therefore difficult to optimize. However, it can
effectively be minimized [5] by :

� introducing a quadratic regularization term ED =
1=2StKSS where KS is a sparse stiffness matrix,

� defining the total energy ET = ED(S) + E(S) =
1=2StKSS + E(S) ,

� embedding the curve in a viscous medium and itera-
tively solving the dynamics equation @ET

@S
+� dS

dt
= 0,

where � is the viscosity of the medium.

Because ED is quadratic, the dynamics equation can be
rewritten as
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In practice, � is computed automatically at the start of the
optimization procedure so that a prespecified average vertex
motion amplitude is achieved. The optimization proceeds
as long as the total energy decreases. When it increases, the
algorithm backtracks and increases �, thereby decreasing
the step size. In effect, this optimization method performs
implicit Euler steps with respect to the regularization term
[5] and is therefore more effective at propagating smooth-
ness constraints across the surface than an explicit method
such as conjugate gradient.

3 Crest line extraction on a triangulated mesh

3.1 Definition

We want to find a geometrical representation of some
physical features such as ridges, river beds, valleys and de-
sign an algorithm which can extract them automatically. A
natural idea would be to calculate the local curvatures of the
surface at each vertex of the mesh and select the points where
the maximum curvature is either high or locally maximum.
However, since those features may cross the facets between
vertices, simply extracting the vertices that are maxima of
curvature would not yield the appropriate results.
To overcome this problem, we have defined a crest point as
a zero-crossing of the derivative of the maximum curvature
in the maximum curvature direction [7]. We can attach to
each point of the surface two principal curvatures and two
principal curvature directions. If k1 and ~t1 denote respec-
tively the maximum curvature and the maximum curvature
direction, a crest point is thus defined by the equation :

< ~
rk1; ~t1 >= 0

where < :; : > denotes the inner product and ~
r is the

gradient operator.
A crest line is the locus of these zero-crossings. The notion
of crest point uses a third order derivative of the surface, and
is therefore very sensitive to noise. We thus need to smooth
the surface before starting any computation.

3.2 Curvature estimation

We compute the curvatures at each vertex of the mesh
by fitting a quadric to the neighborhood of this vertex with
a least-square method using the points of the neighborhood
and the normals to the surface at these points. The size of
the neighborhood used for quadric-fitting is an important pa-
rameter of the crest line extraction program. Increasing the
neighborhood is equivalent to further smoothing the surface.
We compute the first and the second fundamental forms at-
tached to that quadric.
In the quadric-fitting approximation, the altitude z of vertex
V (x; y; z) is expressed as a function z(x; y) of the x and y
coordinates such that

z(x; y) = ax2 + bxy + cy2 + dx+ ey + f

The tangent plane to the surface at pointV = (x; y; z(x; y))
is defined by the two vectors

~v1 =
@V

@x
= (1; 0; 2ax+ by + d)

and

~v2 =
@V

@y
= (0; 1; 2cy + bx+ e)



The normal to the tangent plane is defined as

~n = ~v1 ^ ~v2

The matrix of the first fundamental form is thus [2] :

F 1 =

�
< ~v1; ~v1 > < ~v1; ~v2 >
< ~v1; ~v2 > < ~v2; ~v2 >

�

The matrix of the second fundamental form is :
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The matrix of the Weingarten endomorphism is

W = �F�1
1 F 2

The eigenvalues and the eigenvectors of W are respectively
the principal curvatures k1 and k2 and the principal curvature
directions ~t1 and ~t2 of the surface at vertex V .
In order to ensure the consistency of the orientation of the
principal frame (~n; ~t1; ~t2), we enforce:

det(~n; ~t1; ~t2) > 0

Among the six neighbors of vertex V , we choose the vertex

V1 which maximizes <
��!

V V1; ~t1 >. Then, we estimate
the derivative of the maximum curvature in the maximum
curvature direction (denoted as dk1) by finite differences,
and set:

dk1(V ) = k1(V1)� k1(V )

3.3 Zero-crossing extraction

The extraction of the zero-crossings of dk1 is performed
using a tracking algorithm inspired by the Marching Lines
algorithm [10]. Here, we are dealing with regular hexagonal
triangulations. On each facet F of the mesh, we apply the
following algorithm :

� for each vertex V of F , determine the sign of the
derivative dk1(V ).

� if, for two neighborsV1 and V2, dk1(V1):dk1(V2) < 0,
there is a crest point on the edge (V1V2). Interpolate
linearly dk1 along the edge (V1V2) and find the loca-
tion of the zero-crossing of dk1.

� another zero-crossing must appear on one of the two
other edges of the facet. Locate it on the appropriate
edge.

� draw a segment across the facet.

By applying this scheme to all the facets of the mesh, we
can draw lines on the triangulation. They are guaranteed to
be continuous, and either form a loop on the surface or cross
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Figure 1. The zero-crossing extraction algo-
rithm

the whole surface from one boundary to the other.
Fig. 1 shows the tracking of the crest points over three
facets. The + and - signs on the vertices indicate the signs
of dk1.
The algorithm links all the zero-crossings of dk1 that can

be found on adjacent edges. The crest line is thus composed
of maxima and minima of the maximum curvature. A sim-
ple thresholding on the value of the interpolated maximum
curvature of each zero-crossing, compared to the maximum
value of this curvature on the whole surface, enables us to
get rid of most of the spurious points.

3.4 Experimental results

We have tested our algorithm on several meshes repre-
senting terrain models. Fig. 2 shows the crest lines extracted
from the mesh at a rather coarse scale (255 vertices and 448
facets). The neighborhood is taken to be equal to 2, i.e.
the 6 neighbors of a vertex and all the neighbors of these
neighbors are used for the quadric approximation ; this value
for the neighborhood is experimentally a good trade-off be-
tween the smoothing of the surface and the accuracy of the
results. But different thresholds on the maximum curvature
value can be applied. The threshold has been set to 30% of
the maximum value of the maximum curvature on the whole
mesh. A high threshold (e.g. 50 %) would discard every
feature except the main crest line on the top of the cliff.

Fig. 3 shows the results obtained on a mesh represent-
ing a terrain with two series of outcrops with two different
thresholds (respectively 30 % and 50 %) and two different
neighborhoods (repectively 2 and 3) . This scene is much
more complex than the previous one, especially around the
bumps on the left part. A larger smoothing (right image)
yields more continuous and significant lines but can tend to
move them to wrong locations. This is the scale-space effect
described in [11].

Fig. 4 shows the extraction of a river bed. It is of course
very hard to choose the right parameters of the algorithm so
that only the river bed would be detected. Restricting our
search to a neighborhood surrounding the valley, we could
extract it quite efficiently.

A critical point of this approach is the level of refinement
of the triangulation we use. At a coarse scale, we are able to



Figure 2. Extraction of a ridge and two valleys
shown on a Gouraud shaded rendering of a
terrain model

Figure 3. Outcrops

Figure 4. Extraction of a river bed

extract roughly some crest lines, which can help describe the
surface in terms of global features. At a higher resolution,
the local information can be too noisy to create significant
lines. For instance, if the terrain shows an alignment of
bumps, a coarse scale enables us to detect a line along this
alignment, so that we can refine the mesh around this line,
but if we look at the terrain at a finer scale, the bumps will
prevent us from extracting a continuous line.

4 Using crest lines to improve the model

The next step is to use the information we have extracted
on the mesh to derive a more accurate description of the
surface in the areas where the differential information is
meaningful, i.e in the river beds, the valleys, on the crests,
etc... We first propose the following algorithm :

� extract some crest lines on a mesh.

� for each detected zero-crossing, find the closest vertex
to this zero-crossing.

� move this vertex towards this zero-crossing so that
the edges of the mesh coincide with the crest lines.

� optimize the new mesh using the algorithm of Section
2.

� restart the process with the new mesh.

Incorporating the differential information in the reconstruc-
tion process ensures that the model fits to the data (through
the stereo term) and is consistent with the geometrical fea-
tures extracted.
Fig. 5 shows the result using the mesh of Fig. 2, and super-
poses the main crest line obtained from the original mesh
and the line obtained after 10 iterations of our algorithm.
The edges of the mesh tend to coincide with the crest line
obtained after 10 iterations. The new facets are crossed by
the crest line extracted at the first iteration.

Figure 5. A mesh after optimization with in-
corporating feature extraction

We can then further refine the mesh in the areas that
contain typical features. For that purpose, we apply the
following algorithm:



� start from a regular coarse mesh which has already
been optimized by the method described in Section 2.

� extract the main crest lines on this mesh.

� define a neighborhood around these lines.

� move the vertices of the mesh so that the edges coin-
cide with the crest line.

� uniformly refine the mesh inside these neighborhoods
with a uniform subdivision of the facets.

� reoptimize the finer mesh.

Fig. 6 shows the result of this local refinement around the
crest line.

Figure 6. A mesh with the refinement of the
neighborhood of the crest line

If we reapply the crest line extraction on the new area,
the continuity of the line can be lost because the local in-
formation is too noisy. However, we would like to preserve
the continuity of this line while taking advantage of more
accurate information about the surface. A way of overcom-
ing this problem would be to consider the crest line, whose
initial shape is determined by the coarsest scale, as a snake
which then can evolve under the following constraints:

� the crest line extracted at scale st must remain “close”
enough to the line extracted at scale st�1.

� the crest line must remain on the terrain.

� the crest line must remain fairly smooth.

We have implemented a constrained optimization algo-
rithm [3] that can simultaneously optimize the mesh and the
ridge line and that we intend to customize for this purpose
in future work.

5 Conclusion

In this work, we have provided a tool for automatic ex-
traction of features of interest from the differential geome-
try point of view, like ridge lines, rivers, valleys. We have
shown how we could insert this extraction in the terrain
model optimization process in order to guide the surface
reconstruction.
In future work, we intend to :

� apply finite element methods in the optimization
scheme in order to be able to deal with irregular
meshes introduced by a Delaunay triangulation.

� test a constrained optimization algorithm to simulta-
neously optimize the mesh and the ridge line.

The ultimate purpose of this research is to develop a global
and semantic description of the surface from stereo images
using local information. The extraction of typical features
such as crest lines from image representations like triangu-
lated meshes and their incorporation in the reconstruction
process are therefore significant steps in image analysis and
understanding, and crucial milestones for surface modeling.
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