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Abstract

We describe a general-purpose method for the accurate
and robust interpretation of a data set of p-dimensional
points by several deformable prototypes. This method is
based on the fusion of two algorithms: a Generalization of
the Iterative Closest Point (GICP) to different types of de-
formations for registration purposes, and a fuzzy clustering
algorithm (FCM).

Our method always converges monotonically to the near-
est local minimum of a mean-square distance metric, and
experiments show that the convergence is fast during the
first few iterations. Therefore, we propose a scheme for
choosing the initial solution to converge to an "interesting"
local minimum. The method presented is very generic and
can be applied:

� to shapes or objects in a p-dimensional space,

� to many shape patterns such as polyhedra, quadrics,
splines,

� to many possible shape deformations such as rigid
displacements, similitudes, affine and homographic
transforms.

Consequently, our method has important applications in
registration with an ideal model prior to shape inspection,
i.e. to interpret 2D or 3D sensed data obtained from cali-
brated or uncalibrated sensors. Experimental results illus-
trate some capabilities of our method.

1. Introduction

Model-based interpretation of output from 2D edge de-
tectors and 3D reconstruction algorithms has received grow-
ing attention over recent years. In particular, data matching
and registration relative to a reference model, produced ei-
ther interactively or automatically is of crucial importance

in computer vision. Recent examples can be found in such
varied topics as 3D medical imaging, aerial site observation,
and range images.

We distinguish two major approaches to 3D registration:
matching in progress approaches such as hypothesis and ver-
ification [6] or Iterative Closest Point methods (ICP) [1], and
accumulation approaches [11] such as generalized Hough
transforms. These methods perform only one shape model
fitting. Few studies based on superquadrics have general-
ized registration to several shapes [7, 4, 10].

For interpretation of 2D data, as opposed to 3D data,
popular approaches in unsupervised pattern recognition are
based on clustering. Thus, patterns are only particular
shapes such as lines and ellipses but several patterns can
be taken into account. Specifically, fuzzy clustering ap-
proaches derived from Fuzzy c-Mean Method (FCM) [2],
and known for their practical efficiency in situations where
a great deal of uncertainty exists, have proved capable of
carrying out geometric clustering [3, 9].

But 2D and 3D problems are the same, so we formalize
and unify the description of this key problem by taking ad-
vantage of two approaches proposed in the computer vision
and pattern recognition context. Thus, in this paper, we
present:

� a Generalization of the ICP algorithm (GICP) to trans-
forms such as similitude and homography in section 2,

� and in section 4, a generalization of the GICP algo-
rithm to take into account several patterns by using the
clustering approach which is summarized in section 3.

Unifying FCM and ICP is very powerful and generic, and
allows a large class of algorithms to be generated that handle
a great number of patterns in a p-dimensional space. Thus,
as an illustration, we present in section 5 results obtained
using the method which explains a data points set as the
overlapping of simple geometric shapes when these shapes
undergounder a simple geometric transform.



2. Generalized Iterative Closest Point method

Besl [1] has introduced an interesting 3D rigid registra-
tion algorithm named Iterative Closest Point (ICP) where
matching is implicitly done in an iterative least square min-
imization of the distance between data and model. The
convergence of the ICP algorithm to a local minimum is
demonstrated, when data are exhaustive and the transform
between data and model is a rigid displacement. But a natu-
ral generalization for rigid transforms to nonrigid ones is to
substitute rigid displacement by another type of transform�

such as a similitude, an affine or homographic transform.
Given a data set of points, we suppose that we know the

shape modeling this set, and the type of the deformation
between data and model. For instance, to interpret a data set
which is the sampling of a parallelogram, we can choose the
unit square, in its centered reference system, as the model
shape which undergo affine deformations. The aim of the
GICP is to obtain the best transform which superposes data
and model shape.

In this paper, we focus on five types of transforms
�

,
but numerous extensions can be developed such as snakes,
splines and physical deformable models. The five chosen
types of transform are:

� translation:
�������
	��
���

,

� rigid displacement, or a rotation and a translation:��������	��������
,

� similitude, or a rigid displacement and a scale factor� : �������
	 � ������� ,

� scales transform, or a rigid displacement and a scale
factor on each axis:

��������	�������� �
with

�
a

diagonal matrix,

� affine transform:
�������
	�!"�
���

,

� homographic transform.

For particular shapes: the unit square, the unit circle and
the unit isosceles triangle in its centered reference system,
it is interesting to bear in mind the class of shapes generated
when these simple shapes undergo one of the previous trans-
forms. With the unit square, all squares, rectangles, paral-
lelograms or quadrilaterals can be interpreted by choosing
the adequate transform, whereas with the unit circle, it is
the set of all circles, ellipses, or conics. Figure 1 shows the
different possibilities in detail. Note that a set of points,
lines or triangles, implicit or parametric curve/surface can
be used as the model of the shape.

2.1. GICP algorithm

We now describe how to find
�

with the GICP algorithm,
when the data is a set # �%$'&($*) 1 +-,-,-+ . of / given points:
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Figure 1. shapes generated by geometric
transforms on three particular objects.

� step 0: Choose the model shape 0 .
�

is initialized
not too far from an interesting solution.

� step g: Compute the closest point
��1$

from the model
shape 0 of each data point

����� $ �
.

� step g’: Compute transform
�

which minimizes
the mean-square distance between sets # � 1$ & and# ����� $ �2& .
� step g”: If the change in mean-square error below

a preset threshold specifying the desired precision,
stop; else go to step g.

The Generalized Iterative Closest Point algorithm needs
to be able to compute analytically the best least square so-
lution for each transform type (step g’), when two sets of /
matched points ( # �%$'& and # ��1$ & ) are given. For each of the
transforms discussed here, an algorithm for finding the best
solution in step g’ exists. If

�
is an affine transform, this

evaluation is just a linear least square problem, but for other
types of transforms, the solution is not so obvious (see [8]
for the displacement case, for example).

The mean-square error minimized by the GICP is:

35476987: �;�=<'� 1$ ��	 .> $?)
1

@ 2 �A����� $ �B<'� 1$ � with
� 1$DC 0 (1)

where
@ ���E<2�F1G�

is the Euclidean distance between the two
points

�
and
� 1

.

2.2. Convergence

The Generalized Iterative Closest Point algorithm always
converges monotonically to a local minimum with respect to
the mean-square objective function (1).

This convergence theorem of the GICP algorithm is ex-
actly the same as the one proposed in [1], in a more generic
framework, since its demonstration does not require trans-
form

�
to be a rigid displacement.

The reason why the algorithm converges is that the two
steps step g and step g’ of the GICP algorithm reduce the



mean distance 3 476987: between corresponding points at each
iteration. Because

� 1$
is the closest point to

����� $ �
, step g

reduces individually each term of sum (1), and thus also the
average distance. step g’ generically reduces the average
distance, because it is a least square minimization. Conse-
quently, as the lower bound of 35476H87: is 0, the algorithm
must converge monotonically to a local minimum value with
respect to 3 476987: .
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Figure 2. GICP Registration with respectively,
the oriented unit square, unit square, square,
rectangle, parallelogram and quadrilateral.
On the above left graph, matches between
model shape and data are drawn.

Figure 2 shows the GICP algorithm results where
�

is,
respectively, a translation, a rigid displacement, a similitude,
a scale transform, an affine transform and a homographic
transform. In this example, the model shape is the unit
square in its canonical reference system. Note that the data
can be truncated without setting the algorithm a problem.

3. Clustering Method

The ICP approach is limited by the fact that only one
shape model can be used at a time. The key idea is then
to add a clustering framework to the GICP algorithm to
obtain a multi-shapes interpretation method. But before
describing this new method in detail (section 4), a clustering

algorithm named Fuzzy c-Means (FCM) and its advantages
are presented.

Many clustering methods are available, but we choose
FCM because it uses fuzzy memberships of a data point
which sum to one across classes. Thus, ambiguous points
do not bias the solution as is the case for hard methods.
For our problem, this property is very important in order to
avoid trivial solutions where the model shape is reduced to
a point or degenerated, and to improve convergence speed.

3.1. Fuzzy Clustering Method

The FCM algorithm, introduced by Bezdek [2], and its
derivatives have been very successfully used in many appli-
cations such as pattern recognition and image segmentation.
Fuzzy clustering is a generalization of partitioning methods
in that the clusters are not sub-sets but fuzzy sub-sets of the
data set of / points in IR N . That is, each data point

��$
has

a membership O $�P between 0 and 1 which is a degree of
sharing for each cluster Q . It is assumed that the member-
ships O $*P are computed so that their sum for each point is
1. This constraint forces the cluster method to explain the
whole data set by R fuzzy sub-sets. Cluster prototype is the
center of gravity

� P
of the cluster. The clustering algorithm

minimizes the following functional:

35S 87T ���7PU< O $*PV�
	
.>
$?)

1

W>
PH)

1

� O $*PX�AY @ 2 ���%$2<'�7PV� (2)

with

W>
PH)

1

O $*P 	 1.

The FCM algorithm is summarized as follows (the con-
vergence to a local minimum of this algorithm is demon-
strated in [2] when Z�[ 1):
� step 0: Fix the number of clusters R , and the fuzzy

exponent Z . Initialize randomly the location of the
cluster centers

�7P
.

� step f: Generate the new partition using the following
equation of the fuzzy memberships:

O $�P�	 1W>
\ )

1

� @ ���%$B<'�]P^�@ ����$9<'� \ � � 2_a` 1

(3)

� step f’: Compute new cluster centers
�7P

using the
following equation:

� P 	
.>
$?)

1

� O $�Pb�AYc��$
.>
$?)

1

� O $�P �AY
(4)

� step f”: If the distance partition is stable, stop; else
go to step f.



3.2. Extensions

In the FCM algorithm, the cluster prototype is only a
point. It seems very interesting for computer vision and
pattern recognition applications to have a more generic pro-
totype, such as a geometrical shape which may be a line, a tri-
angle, a rectangle or an ellipse. FCM derivatives exist which
allow some particular model shapes to be considered: lines
and hyper-planes [2], hyper-ellipsoidal shells [3], spherical
shells [9] by changing the prototype definition. But these
methods are specific only to a particular shape. By intro-
ducing the ICP approach, we overcome this limitation and
propose in the next section a generic algorithm to cluster
geometric shapes which can be applied to a great number of
shapes only by defining a procedure to find the closest point
on the shape to a given point.

4. Unification of GICP and FCM algorithms

We can notice similarities and connections between FCM
and GICP algorithms. First, the two methods minimize
an objective function (1) and (2) by a two-step iterative
algorithm. In particular d9egfUhji 1 and d9egfkhml 1 are the same
computation: the geometric transform between shape and
data. Moreover, the equation is the same with the GICP in
the translation case, and the FCM in one cluster prototype
case. Thus, the key idea is to add the clustering framework to
the GICP algorithm to obtain a Multi-Objects Interpretation
method (MOI).

4.1. Description of the MOI algorithm

The Multi-Object Algorithm without outliers is:

� step 0: Fix the number of clusters R , the exponentZ ( Z 	 1 n 5 in all our tests) and the model shape 0 .
Initialize the transforms

�aP
(see section 4.3).

� step m: Compute the new closest point
��1$�P from the

model shape 0 of each data point
� P ��� $ �

.

� step m’: Generate the new partition using the follow-
ing equation of the fuzzy memberships:

O $*P 	 1W>
\ )

1

� @ �;�aPk����$o�B<'� 1$*P �@ �;� \ ��� $ �B<'� 1$ \ � � 2_a` 1

(5)

� step m”: Compute new best
�pP

which minimizes the� O $*P � Y weighted mean-square error between points� P ��� 1$*P �
and
� $

.

� step m”’: If the distance partition is stable, stop; else
go to step m.

Consequently, the MOI algorithm minimizes the objec-
tive function below:

3 T%qr6 �;�aPU<'� 1$�P < O $*PV�
	
W>
PH)

1

.>
$?)

1

� O $*PX�AY @ 2 �;�aPk���%$o�B<'� 1$*P �
(6)

with

W>
PH)

1

O $*Ps	 1 and
� 1$*P C 0 .

We can view the GICP algorithm as a particular case
of the MOI algorithm, when the cluster is unique ( O $ 1 	
1). And we can interpret the FCM algorithm as another
particular case, when the shape model 0 is reduced to a
point and the transform

�aP
is a translation

�7P
.

4.2. Convergence

The Multi-Object Interpretation algorithm always con-
verges monotonically to a local minimum with respect to the
mean-square objective function (6) ( Zt[ 1).

The outlines of the demonstration are analogous to those
of GICP and FCM. The principle is that each step reduces the
objective function (6). Of course this convergence is only to
a local minimum. Thus, the question arises as to initializing
the MOI algorithm to reach an interesting minimum.

4.3. Initialization

In the GICP and MOI approaches, an initial solution
is assumed to be known because, the obtained solution is
critically dependent in practice on the initial estimation. In
particular, the less the transform is constrained, the nearer
the initialization must be to the correct result.

Consequently, we propose a scheme for the initialization
of
� P

transforms:

� Find the translation
� P

of
� P

by identification to so-
lutions of the FCM algorithm.

� Use inertia matrices of previous fuzzy subsets to com-
pute an initial rotation or an initial affine transform.

Of course, coarse-to-fine approach can be used, such as
find the best displacements, then the best affine transforms,
and finally the best homographic transforms (see figure 2).

We assume the data shapes not to be interlaced in this
scheme. This approach is satisfactory in most of the con-
figurations. But, as it is shown in figure 3, although the
method is able to cope with certain particular and difficult
configurations, when it fails further investigation is required
with regard to initializing the MOI algorithm.

5. Results

In figure 3(a), point sets are synthetic, but noisy and par-
tial. The first set is 3 intersecting ellipses. The second is



Data set Model shape

Figure 3. 2D results of the MOI algorithm.

a parallelogram intersecting an ellipse. The scheme of the
MOI initialization does not always give a good initializa-
tion because the data shapes are interlaced, nevertheless in
this case it is sufficient and the MOI algorithm succeeds.
Figure 3(b) shows that the MOI algorithm can produce in-
teresting solutions although the model shapes do not match
the data, thus it is relatively robust. This property allows
the proposed method to be used to segment data with het-
erogeneous patterns. In this case, the criterion used is the
mean distance between model shapes and data. Figure 4

Figure 4. 3D human head is interpreted as the
superposition of 15 ellipsoids by the MOI al-
gorithm.

shows the application of the MOI algorithm in the simple
case where the model shape is the unit sphere and the trans-
form is affine. Data points are from a human head, courtesy
of P.Fua [5]. Bottom up and down, sides of the skull and
forehead are well recognized. Of course, our method also
serves as a framework for image segmentation in planar,
quadratic or cubic patches.

6. Conclusion

First, we propose a generalization of the ICP method to
several important transforms such as similitudes and homo-
graphic transforms. But, as only one object can be take
into account by the Generalized Iterative Point algorithm,
we propose a new method for Multi Object Interpretation
of a point data set. This method takes advantage of fuzzy

clustering algorithms and the weighted GICP algorithm to
produce robust results from noisy data. The MOI algorithm
is described in a simple manner. Nevertheless, it is very
powerful and generic. Moreover, the MOI algorithm is eas-
ily controlled by a small number of parameters: the most
important of them is the number R of clusters.

Finally, we would like to point out that the proposed ap-
proach where clustering and implicit registration are mixed
is a promising research topic. We believe that the approach
can be successfully applied with snakes, splines and physi-
cal deformable models, etc. The extension to 2D functions
allows image segmentation algorithms to be produced very
directly. Although generalization to p-D projections of q-
D shapes may raise problems of stability, it is nevertheless
an interesting subject with important applications in multi-
object tracking.
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