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Abstract

Stochastic analysis of edge detectors can be made either
by theoretical modeling of the image formation process and
the edge detectors or by empirical stochastic analysis of the
edge locations. In this paper we study and model the image
formation process in detail. In particular, the much neg-
lected discretisation process is modelled and taken into ac-
count. This makes it possible to define and analyse sub-pixel
edge detection. The theoretical results are verified through
stochastic analysis of both simulated and real image data.

1 Introduction

Edge detection algorithms have been studied by many
researchers in computer vision. One frequently used algo-
rithm which is simple to understand is the Hildreth and Marr
edge detector, see [8]. Another popular one is the Canny-
Deriche edge detector based on an optimality condition, sug-
gested in [3] and effectively implemented in [7]. See also
[11] and [12] for an overview ot different edge detectors.
The one we will use for our study is similar to [8].

One drawback of these edge detectors is that their statisti-
cal properties in the presence of noise have not been pro-
perly studied. Canny has calculated the variance of the po-
sition of the detected edge in the one-dimensional case, see
[3], but has not taken into account that the images are di-
screte and how this discrete representation of an edge is ob-
tained from the real world. Another attempt can be found
in [6], where a comparison of different corner detectors are
made. However the analysis is mostly done from simula-
tions and lacks a thorough analysis of the statistics involved.

Our aim is to derive the statistical properties of a simple
edge detector. This means to give not only the estimated
location of the edge but also some accuracy measure. We
will use an edge detector based on the maximal gradient per-
pendicular to the edge. However the actual edge detector�

This work has been supported by the Swedish Research Council for
Engineering Sciences (TFR), project 95-64-222

used is not as important as the techniques used to analyse
it, which can be carried through for other detectors as well.

2 Image acquisition

The following image acquisition model will be used,

Wideal
blur���

W
sampling���

w0
noise���

v0 � (1)

cf. [2], where upper case letters, W , denote signals with con-
tinuous parameters, whereas lower case letters, w, denote
discrete signals. Here, and often in the sequel, we use the
word signal synonymously with function, and discrete sig-
nal synonymously with sequence or function defined on

� n,
for some n. These three steps of blurring, sampling and ad-
dition of noise will now be discussed in a little more detail.

Here blurring is modelled as an abstract operator h, such
that W � h 	 Wideal 
 . We assume that no aliasing effects are
present, when the functionW is sampled at integer positions,
i.e. W � B 	
� n 
 , where

B 	�� n 
 ��� W � L2 	
� n 
�� suppF W ��	 � 1 � 2 � 1 � 2 
 n ��� (2)

In the definition of the Fourier transform, we use the formula

F W 	 f 
 �����
n
W 	 τ 
 e � i2π f � τdτ � (3)

where f � τ denotes scalar product.
The sampling is assumed to be ideal. Introduce the samp-

ling or discretisation operator, D : B �
l2,

w 	 i � j 
 ��	 DW 
 	 i � j 
 � W 	 i � j 
 � (4)

Note that the sampling operator maps a continuous signal W
onto a discrete signal w.

Finally noise is assumed to be an additive stationary ran-
dom field. Experimentally, it is verified that the errors in in-
dividual pixel intensities often can be modelled as indepen-
dent random variables with similar distribution.



3 Interpolation and smoothing

The main idea of our approach is to induce the discrete
signal, the scale spaces, etc. from the associated interpola-
ted quantities. By an interpolation or restoration method we
mean an operator that maps a discrete signal, w, to a continu-
ous one, W . The following types of interpolation operators
IF will be used:

W 	 s 
 ��	 IFw 
 	 s 
 � ∑
i

F 	 s � i 
 w 	 i 
 � (5)

We propose to use ideal low-pass interpolation

I � Isinc

and discretisation D as mappings between the continuous
and discrete signals to solve the restoration and discrete
scale-space problems. In other words we relate the discrete
and continuous signals through the operations of discretisa-
tion and ideal low-pass interpolation. Note that if the camera
induced blur cancels the high frequency components in W as
in (2), the deterministic restorationW0 � I 	 w0 
 is equal toW .

Introduce the smoothing operator Sb representing convo-
lution with the Gaussian kernel

Gb 	 x 
 � Cne ��� x � 2 � 2b2 � (6)

where Cn is a constant chosen so that the L2 norm is one.
Using these definitions, the discrete and continuous scale-
space representations can be defined simultaneously and
consistently, as illustrated by the diagram:

W0 � E0
I� � � � � w0 � e0

Sb

���
��� sb

Wb � Eb
D� � � � �

wb � eb

(7)

Note that all operations are linear. The stochastic and deter-
ministic properties can therefore be studied separately and
the final result is obtained by superposition. Thus with an a
priori model onWideal, for example an ideal edge or corner, it
is possible to predict the deterministic parts Wb and wb. The
stochastic properties of the error fields e0, eb, E0 and Eb, will
now be studied. The theory of random fields is a simple and
powerful way to model noise in signals and images. Statio-
nary random fields are particularly easy to use. Denote by
E the expectation value of a random variable.

Definition 3.1. A random field X 	 t 
 with t ��� n is cal-
led stationary, if its mean m 	 t 
 � mX 	 t 
 � E � X 	 t 
	� is con-
stant and if its covariance function rX 	 t1 � t2 
 � E � 	 X 	 t1 
 �
m 	 t1 
 
 	 X 	 t2 
 � m 	 t2 
 

� only depends on the the difference
τ � t1

�
t2.

For stationary fields we will use rX 	 s � t 
 and rX 	 s � t 
 in-
terchangeably as the covariance function. The analogous
definition is used for a stationary field in discrete parame-
ters. The notion of spectral density

RX 	 f 
 � 	 F rX 
 	 f 
 � � rX 	 τ 
 e � i2π f � τdτ (8)

is also important. Again the same definition can be used for
random fields with discrete parameters s � � n, but whereas
the spectral density for random fields with continuous pa-
rameters is defined for all frequencies, f , the spectral den-
sity of discrete random fields is only defined on an inter-
val f ��� � 1 � 2 � 1 � 2 � n. Introductions to the theory of random
processes and random fields are given in [1, 4, 5]. In these
books you will find that convolution, discretisation and deri-
vation preserves stationarity. The effect of these operations
on the covariance function is also known, see [2]:

w � D 	 W 
 � rw � D 	 rW 
 (9)

Y � h 
 X � RY � RX �F h � 2 (10)

Y � X � � rY � �
r � �X (11)

W � I 	 w 
 � rW � I 	 rw 
 (12)

4 Edge detection

To analyse sub-pixel edge detectors we model the edge
Wideal and the blur operator h. For simplicity, the edge is mo-
delled as an ideal step function, i.e. as the Heaviside function
with height A and the smoothing operator h is modelled as
convolution with kernel h, which is assumed to fulfill (2),
and to be approximately a Gaussian of width a,

ha � Ga
� (13)

The discrete image is then analysed through ideal interpo-
lation and smoothing: Vb � Sb 	 I 	 v0 
 
 � It is quite popular to
define edges as points where the gradient magnitude is max-
imal in the direction of the gradient, i.e.

	 ∇Vb 
 T 	 ∇2Vb 
 ∇Vb � 0 � (14)

cf. [9]. Several simplifications will be made. We will study
the stability of edges with respect to a given search direction
ñ, i.e. edges are defined as points where

	 ñ 
 T 	 ∇2Vb 
 ñ � 0 � (15)

Let the true edge γ be parametrised by curve parameter
τ. Apply the edge detector in search direction ñ from every
point γ 	 τ 
 . The detected edge can then be parametrised as
γ̃ 	 τ 
 � γ 	 τ 
�� z 	 τ 
 ñ, where z describes the deviation of the
detected edge from the true edge.

An ideal edge is modelled as

Wideal 	 x � y 
 � Aθ 	 x 
 � (16)



where θ is the Heaviside function. The deterministic discre-
tised image w0 of this edge is

w0 	 i � j 
 � D 	 h 
 Wideal 
 	 i � j 
 � AΦa 	 i 
 � (17)

where Φa is the one-dimensional normal cumulative distri-
bution function. Below the scale-space interpolation Wb �
Sb 	 I 	 w0 
 
 will be studied.

Wb � Sb 	 h 
 Wideal 
 � ScWideal � (18)

where c ��� a2 � b2. In the two-dimensional case we esti-
mate the edge as the locus of the points where the directio-
nal derivative has a local maxima on a line with direction
ñ. If we approximate Wb as above we find that it is con-
stant along the edge. Consider the derivatives in the direc-
tion ñ ��	 cos 	 α 
 � sin 	 α 
 
 , where α denotes the angular dif-
ference between the search direction ñ and the normal n �	 1 � 0 
 to the edge. Introduce

F 	 s 
 � Wb 	 scos 	 α 
 � ssin 	 α 
 
 �
In the following analysis we will need F and its first three
derivatives:

F 	 s 
 � 	 Wideal 
 Gc 
 	 scos 	 α 
 
 �
F ��	 s 
 � Acos 	 α 
 Gc 	 scos 	 α 
 
 �
F � � 	 s 
 � Acos2 	 α 
 	 � scos 	 α 


c2 
 Gc 	 scos 	 α 
 
 �
F � � � 	 s 
 � Acos3 	 α 
 	 � 1

c2 �
	 scos 	 α 
 
 2

c4 
 Gc 	 scos 	 α 
 
 �
Notice that the first derivative has a maximum for t � 0, in-
dependently of α, since F � � 	 0 
 � 0 and the slope of the se-
cond order derivative at the zero crossing is

F � � � 	 0 
 � � Acos3 	 α 

c3 � 2π

� 0 � (19)

Random part

Assume that discrete white noise e0 is added to the image.
According to (12) and (11), the scale-space interpolated er-
ror field Eb � Gb 
 I 	 e0 
 then is stationary with covariance

rEb
	 τ 
 � sinc 
 Gb � 2

� (20)

For large b this can be approximated by

sinc 
 Gb � 2 � ε2 1
4πb2 e � � τ � 2 � 4b2 � (21)

The covariance function is the covariance between the inten-
sity at two positions 	 x � y 
 and 	 x � τx � y � τy 
 . We also need

the covariance functions of the first three directional deriva-
tives of Eb 	 s � t 
 . Since this random field is approximately
isotropic for large b, it is sufficient to calculate the directio-
nal derivatives in the s-direction. It then follows from (12)
that

rE � �ss
	 ρ 
 � ∂4rE

∂4s
	 s � t 
 � (22)

Calculating the derivatives gives

rE � �ss
	 s � t 
 � ε2e ��� s2 � t2 � � 4b2

π
	 3
16b6

� 3s2

16b8 �
s4

64b10 
 � (23)

The variance is given by

rE � �ss
	 0 � 0 
 � 3ε2

16b6π � (24)

The random fields E �s, E � �ss and E � � �sss have zero mean. Furt-
hermore, E � �ss 	 0 � 0 
 and E � � �sss 	 0 � 0 
 are independent, cf. [1].
The analysis above is only valid when we search in a direc-
tion perpendicular to the edge. If the search direction forms
the angle α with the edge normal, we have to evaluate
rE � �ss

	 s � t 
 and the other directional derivatives in 	 s � t 
 �	 τcos 	 α 
 � τsin 	 α 
 
 , just as in the deterministic case. This
gives the following expressions for the dependencies of the
directional derivatives along the line

rE � �ss
	 τ 
 � ε2e � τ2 � 4b2

π
	 3
16b6

� 3τ2 sin2 α
16b8 � τ4 sin4 α

64b10 
 �
Analysis of two-dimensional edges

The distribution of the edge location can now be calcu-
lated. The second order directional derivative, F � � 	 x 
 , also
depends on the angle α between the search direction and the
edge normal. Close to the edge position, F � � 	 x 
 can be ap-
proximated by the line

y � kx � F � � � 	 0 
 x � � Acos3 	 α 

c3 � 2π

x � (25)

The second order derivative calculated from the noisy image
is again approximated near the zero crossing by a line

V � �b 	 x 
 � Kx � M � (26)

where 	
K � V � � �b 	 0 � 0 
 �
M � V � �b 	 0 � 0 
 (27)
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Figure 1. The figure illustrates some nota-
tions used in the analysis of two-dimensional
edge detection.

are random variables with������� ������
E �K � � W � � �b 	 0 
 � � Acos3 	 α 


c3 � 2π �
E �M � � W � �b 	 0 
 � 0 �
V �M � � rE � �ss

	 0 � 0 
 � ε2 3
16b6π

�
(28)

This line (26) has the zero-crossing

X � � M
K � (29)

which is a random variable. The probability distribution of
X can be approximated by the normal distribution N 	 m � σ 

with

m � � E �M �
E �K � � 0 � σ � V �M �

E �K � 2 � (30)

where Gauss approximation formulas are used together with
the fact that M and K are independent, and E �M � � 0. Com-
bining (28) and (29) gives

V � X � � V �M � � E �K � 2 � ε2 3 	 a2 � b2 
 3
8A2b6 cos6 	 α 
 � (31)

This is the estimated variance of the detected edge. Observe
that the variance decreases with increasing height, A, of the
edge. The variance also increases when α increases, that is
when we do not search perpendicularly to the line.

The detected edge as a random process

Let the true edge γ be parametrised by curve parameter
τ. Apply the edge detector in search direction ñ from every
point γ 	 τ 
 . The detected edge can then be parametrised as
γ̃ 	 τ 
 � γ 	 τ 
�� z 	 τ 
 ñ, where z describes the deviation of the
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Figure 2. Results from edge detection with si-
mulated data. Left: Edge position errors zi 	 τ 

at different positions τ along the edge for four
simulations. Right: Theoretical and estima-
ted covariance functions for the residual error
process.

detected edge from the true edge. The deviation z 	 τ 
 can be
approximated as

z 	 τ 
 � 	 Vb 
 � �ss 	 γ 	 τ 
 
	 Wb 
 � � �sss 	 γ 	 τ 
 
 � (32)

where

	 Wb 
 � � �sss 	 γ 	 τ 
 
 � � Acos3 	 α 

c3 � 2π

�
Then the covariance between the deviations z 	 τ1 
 and z 	 τ2 

is

C � z 	 τ1 
 � z 	 τ1 

� �
C � 	 Vb 
 � �ss 	 γ 	 τ1 
 
 � 	 Vb 
 � �ss 	 γ 	 τ2 
 

� c62π

A2 cos6 α � (33)

where

C � 	 Vb 
 � �ss 	 γ 	 τ1 
 
 � 	 Vb 
 � �ss 	 γ 	 τ2 
 

� �
rE � � �sss

	 	 τ1
� τ2 
 sinα � 	 τ1

� τ2 
 cosα 

Hence, z is a stationary process with covariance function

rz 	 τ 
 � rE � �ss
	 τsin 	 α 
 � τcos 	 α 
 
 � F � � � 	 0 
 �

� 2ε2c6e � τ2�
4b2 �

A2 cos6 α � 3
16b6

� 3 	 τsinα 
 2
16b8 � 	 τsinα 
 4

64b10 � �
Notice that the parameter τ is measured as the arclength
along the line. Since the edge is detected as the solution to
the equation W � �b � 0 � we can regard the edge as a level set
to W � � . This makes it possible to use a more refined analy-
sis than the approximation with the tangent line described
above. This is discussed in detail in [10].



Implementation and experiments

The two-dimensional edge detector described above has
been implemented. Its performance on both simulated and
real images have been investigated. In the simulations the
true edge was well defined. The deviations z were studied
both with respect to different realisations but also as a ran-
dom process along the edge.

The discrete image was disturbed with simulated
Gaussian uncorrelated noise. This image was then used
in the edge detection routines to calculate the edges along
lines roughly perpendicular to the true edge. In these si-
mulations the search line was 0 � 022 radians off the normal.
This was done at several positions along the true edge.
The theoretical and empirical standard deviations agree
well. Figure 2 illustrates four different realisations of the
deviation z in search direction, from the true edge as we
move along the edge. The deviation z 	 τ 
 is a stationary
random processes. Edge position errors at distance τ have
covariance rz 	 τ 
 . The theoretical and empirical covariance
functions agree well, as can be seen in Figure 2.

This has also been verified with real data, see Figure 3.
In the experiment with real data, five images were taken of
the same planar curve. The edge curve was then extracted
from each of the five images and aligned. The residuals zi

in the normal direction with respect to arclength τ is shown
in Figure 3.

Our analysis was based on ideal, straight step disconti-
nuities. In this case the edge detector is unbiased. Bias is
expected for more realistic situations and at edge points with
considerable curvature.
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Figure 3. Five edge residuals zi 	 τ 
 , empirically
estimated after projective alignment of the ex-
tracted contours from five different images of
the same curve.

5 Conclusions

In this paper we have analysed the accuracy of a simple
sub-pixel edge detector. We have shown that the location of
the edge at different positions along the edge can be regarded
as a random process. Furthermore the covariance function
of this random process can be calculated and expressed in
the variance of the noise, the widths of the Gaussian kernels
and the search angle relative to the true normal of the line.
In order to validate the theory, experiments and simulations
both on real and simulated data have been presented. High
agreement with the theoretical model is achieved.

The work can be extended in several directions. In this
paper edges were modelled as straight ideal step edges. It
would be interesting to study the effect (the bias) caused
by other types of edges and the effect of high curvature ed-
ges. The model of image acquisition, interpolation and scale
space smoothing can also be used to analyse other feature
detectors.
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[2] K. Åström and A. Heyden. Stochastic analysis of scale-space
smoothing. In Proc. International Conference on Pattern Re-
cognition, Vienna, Austria, 1996.

[3] F. Canny. A computational approach to edge detection. IEEE
Trans. Pattern Analysis and Machine Intelligence, 8(6):676–
698, 1986.

[4] H. Cramér and M. R. Leadbetter. Stationary and Related
Stochastic Processes. Wiley, New York, 1967.

[5] N. A. C. Cressie. Statistics for Spatial Data. Wiley, New
York, 1991.

[6] E. De Michelli, B. Caprile, P. Ottonello, and V. Torre. Locali-
zation and noise in edge detection. IEEE Trans. Pattern Ana-
lysis and Machine Intelligence, 10:1106–1117, 1989.

[7] R. Deriche. Using Canny’s criteria to derive an optimal edge
detector recursively implemented. Int. Journal of Computer
Vision, 1:167–187, 1987.

[8] E. Hildreth and D. Marr. Theory of edge detection. Procee-
dings of Royal Society of London, 207:187–217, 1980.

[9] T. Lindeberg. Scale-Space Theory in Computer Vision.
Kluwer Academic Publishers, 1994.

[10] G. Lindgren and I. Rychlik. How reliable are contour curves
- confidence sets for level contours. Bernoulli, 1(2), 1995.

[11] V. S. Nalwa and T. O. Binford. On detecting edges. IEEE
Trans. Pattern Analysis and Machine Intelligence, 8:699–
714, 1986.

[12] V. Torre and A. Poggio. On edge detection. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 8:147–163, 1986.


