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Abstract 

The computation of linear moment matrices, whose ele- 
ments are defined as zeroth order integration values of an 
image, was recently introduced as a tool to reduce the com- 
putational cost required to obtain the geometric moments of 
an image. The main relevance of these matrices is twofold: 
on one hand, they can be eficiently obtained by means of 
accumulation filters, which only require additions; on the 
other one, their relarion to geometric moments, as well as to 
discrete Fourier spectrum coeficients, allows the exchange 
and interpretation of many results from different areas of 
Image Processing arid Pattem Recognition. 

Taking into account the relevance of these matrices, a new 
recursive property that allows their eflcient computation in 
sliding-window processes is presented here. First, a scalar 
recursive updating rule is formulated. It relates the value of 
each element of a linear moment matrix to those calculated 
in the previous location of the sliding-window. Then, this 
result is reformulated to obtain an explicit matrix formula. 

The obtained recursive updating rule has a straightfor- 
ward application in many different fields involving sliding- 
window processes in order to eflciently obtain local features 
related to geometric moments and discrete Fourier spectrum 
coeflcients. 

1. Introduction 

Efficient comput,ation of local features is a common re- 
quirement i n  many .image processing applications. Typical 
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fields include pattern recognition, edge detection, texture 
segmentation, etc. These local features are frequently ob- 
tained by centering a sliding-window, at any initial pixel 
of the image, and extracting them from the pixels inside it. 
Depending on whom the features belongs to, two possible 
shifting strategies are possible. On one hand, considering 
that they belong to each pixel inside the sliding-window, a 
non-overlapping shifting would define the next pixel to cen- 
ter the window. On the other one, considering the features as 
belonging only to one pixel, which uses to be thecentral one, 
an overlapping process would center the window on a pixel 
next to the initial one. In the first case a reduced number 
of pixels are analized; however, coarser processing results 
are obtained. In the second case a more precise analysis is 
obtained at the expenses of higher computational costs. 

The linear moments of an image are the set of features 
used herein. They were first introduced in [3] and proved 
to be an efficient tool for geometric moment computation. 
Although these moments are related to Fourier spectrum 
as well as to geometric moments, as it has been recently 
proved in [4], their preferable usage will be conditioned 
by their recursive computation in a sliding-window process. 
The main point is that operations using all the pixels in 
an sliding-window are required only once. Then, when the 
window is shiftedone pixel, either along the L or y axis, only 
the new pixels added to the process, called incoming vector 
for short, as well as the ones that go out of the window, the 
outgoing vector, should be considered in the computation. 
Two expressions, relating the elements of the new linear 
moment matrix to the one previously obtained and these two 
vectors, are derived in this work. The first one is an scalar 
recursive updating rule, and the second one corresponds to 
its explicit matrix counterpart. 

This paper is organized as follow. Section I1 introduces 
the concept of linear moment matrix. Its relation to some 
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other well known characteristics, i.e. geometric moments 
and discrete Fourier spectrum coefficients, is referenced. 
Section I11 states the scalar recursive updating rule in a 
sliding-window process, leading to a formulation that can 
be decomposed into three adding terms. Section IV states a 
matrix reformulation of this recursive rule. Computational 
costs derived from the application of both formulations are 
given in Section V. Finally, we conclude in Section VI. 

2. The Linear Moment Matrix 

The linear moment matrix associated with an image 
I[x, y], where x = 1 , . . . , a and y = 1, . . . , b, is defined 
as: 

Izlyl [a,  b] . . . IZIY" [a, b] 

IzmyI[al b] . . . I z m y n  [U, b] 
L := 

where IZkYi [x, y] denotes the resulting image from the ze- 
roth order integration of I[zl y] L times with respect to 2 and 
1 times with respect to y. 

Linear moments were first introduced in [3] where, using 
a rather involved mathematical formulation, they were used 
as an intermediate step to efficiently compute geometric 
moments. In [4], a simpler mathematical development led 
to the same connection, as well as a new connection with 
Fourier coefficients. 

It has been proved that each element of L can be expressed 
in terms of the original image, based on its definition as 
zeroth order integration values at point [a, b] (see [4] for 
details): 

a b  

n - T 
/ / 

( 2 )  
It can also be proved that the linear moments can be 

related to the geometric moments and Fourier coefficients 
in a straightforward way by matrix products. Moreover, 
they can be efficiently obtained by means of accumulative 
filters, that only requires additions (again, see [4] for more 
details). Figure l a  represents this idea, which essentially 
consists on integrating each raw of the image m times using 
filter H,(z) (fig. lb) and integrating the last column of the 
integrated image n times using Hy(x) (fig. IC). 

3. Scalar Recursive Updating Rule 

- It can be seen, directly from figure I ,  that L[L,I] 
can be obtained from previous integrated images, either 

(3) 

a 

Likewise, & - I ~ Z  [x, y] and Izkyi-l [z, y] can be ob- 
tained from the previous integrated images Izk-Zyl [z, y], 
Izk-lyi-I [x, y] and IZkYl-2[2, y]. Then, L [ k ,  i] can be ex- 
pressed as: 

b 1'2 

if 1 integrations with respect to y have already been obtained, 
or: 

i z = l  i l = l  
.. 

if IC integrations with respect to x have already been obtained, 
or: 

b a  

j , = I  i l = l  

if one integration in both directions is carried out. 
If these operations are iteratively repeated and only one- 

direction integrations are considered, it can be checked that 

or 
a il 

ir=l i l - j = l  i l = l  

Both expressions, (8) and (9), will be convenient to obtain a 
recursive updating rule when sliding a window in either the 
positive z or y direction, respectively. 

Let W[i ,  j] be an odd-dimensioned window centered at 
point [z,y], wherei = 1 ,  . . . , w, a n d j  = 1 , . . . , Wb.  

The linear moment matrix associated with this region, using 
(8) or (9) is: 
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- 

L[m,nl P 
Fig. 1 Determination of the elements of L, directly from the original image, using only accumulation$lters. 

or 

(11) 
respectively. The linear moment matrix obtained when slid- 
ing the window W[i, j] one pixel along the positive 3: direc- 
tion is: 

L"+'[k, 13 = 

when sliding it along the y axis. 

express it using onlly three adding terms: 
A simple algebraic manipulation of (12) allows us to 

L"+'[k,I] =: 

where 

with k = 1, . . . , m, and I,o~I [z + y ,  y - y] being the last 
component of vector I[i, y - y] ,  i ranging from (z - Y) 
to (z + y) ,  integrated 1 times. 

The boundary values L"+'[O, / ] , I  = 1 ,  , . . , n, are: 

, . . . , n .  

A similar development leads the following expression for 

W a  wb L'+'[0,1] := I,0Y'[2+ , , ( y +  1 ) +  -1, 1 = 1 
2 

(16) 

L q k ,  I]: 

i , = l i t - l = l  i 2 = l  ' ~ - ' 
with I I 1, . . . , n and boundary values 
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Expressions (14) and (17), that we call scalar updating 
rule can also be expressed directly in terms of Lz and Lz+', 
or LY and LY+', as shown in the next section. 

4. An Explicit Matrix Reformulation 

Let L[k]  denote the kth row vector of matrix L and vi" an 
I-dimensional vector whose elements are the last component 
of the outgoing vector integrated up to order 1. Likewise, 
the corresponding integrated values of the incoming vector 
are denoted by vp+'. 

Then, (14) can be expressed as: 

0 
1 

0 I 0 

. . .  

0 

... 
0 0  
1 0  !I( L"+l[ I ]  

L"+'[2] 

Lx+'[m] 1- 
Hence, the updating rule can be reformulated as follows: 

Lz+' = U, . L" - U,. b' .vi" + U, . d' .v;+', (21) 

where U is an m x m lower triangular matrix, whose el- 
ements are all l ,  and d is an m-dimensional vector whose 
first component is 1 and all others are 0. 

A similar reasoning, when the window is shifted along 
the y-direction, leads to: 

5, Computational Cost 

We will first evaluate the computational cost of the 
scalar updating rule (14). Each shifting in the positive 2 
direction will require n boundary values, Lzsl [0,1], 1 = 
1 ,  . . . , n ,  which involves n zeroth order integrations of a 
tu,-dimensional vector. Each integration requires (tu, - 1) 
additions. Thus. the total number of additions required to 
obtain the whole boundary values is n(w,  - 1). Moreover, 
n zeroth order integrations are required from the outgoing 

- vector, leading to n(w,  - 1 )  more additions. Since matrix 

L has m x n elements, each one obtained by means of 2 
additions and 1 multiplication, the.required number of ad- 
ditions and multiplications are 2n(w, - 1 )  + 2mn and mn, 
respectively. 

A similar reasoning applied to (17) leads to 2 m ( w  - 
1 )  + 2mn additions and m n  multiplications. 

The number of additions required to obtain the initial 
linear moment matrix is mW,(Wb - 1) + mn(tu, - l ) ,  as 
stated in [4]. 

Taking into account the whole image, I[x, y] where 2 = 
1, . . . , a and y = 1 , . . . , 6, the total number of additions and 
multiplications are: 

4 6  - 1)[2n(w, - 1) + 2mnI t  

( a  - 1)[2m(wb - 1 )  + 2mn]+ 

[mw,(wb - 1) + mn(w,  - I)] 

and (ab - l ) m n ,  respectively. 
Now, the computational cost of the explicit matrix re- 

formulation, (21), is evaluated. In this case, the required 
number of additions and multiplications is: 

2n(w, - I) + 2mn + ( m  - I)(m 1 
- 2) 

L 

and mn, respectively. Table I compiles all these complexity 
results. 

Although the computational cost is higher when using 
the matrix formulation, it could be convenient for specific 
vectorial implementations. 

Finally, note that the computational cost of the global re- 
cursive calculation of the linear moment matrix is O(abm2), 
in front of the global cost required to obtain it directly, which 
is O(abm3). It clearly comes up the advantage of the recur- 
sive implementation. 

6. Conclusions 

Most image analysis techniques use a window over a re- 
gion to derive a description vector. Examples of this can 
be found within many texture segmentation algorithms [ 1, 
51, optic flow computation [2], etc. The considered window 
may be placed at different positions in an image to detect 
regions with similar description vectors. Many approaches 
use a sliding odd-dimensioned window. This approach has 
been recognized to be computationally expensive since a 
description vector is obtained for each pixel of the image. 
Alternatively, other approaches simply use perfectly aligned 
windows to reduce computational overhead. The obtained 
results are obviously worse than those using the former ap- 
proach, since all pixels inside one of those window are as- 
sumed to have the same description vector. 
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I 
L-i nitialmatrix 
x_rc:cursive-formuIation 
y-rcxursive-formulation 
Global cost of the 
recursive formulation 

~ I ia t r ixformula t ion  

Additions Multiplications 
mwa(wb - I )  + mn(w,  - 1) 
2n(w,  - 1) + 2mn 
2m(wa - 1) + 2mn 
2a(b - l)(w, - 1). + 2(u - l ) ( W b  - l)m+ 
+2mn(2ab + W ,  - 3) + mui,(wb - 1) 

2n(w,  - 1) + 2mn + m ( ~ - ' )  

mn 
mn 
mn(ab - 1) 

mn 

Geometric moments and discrete Fourier spectrum coef- 
ficients, which have been typically used as description vec- 
tors, can be easily obtained from linear moments through 
simple matrix calculations. Thus, it seems reasonable not 
only focus on their efficient computation - as described in 
[4]-,  but also on their direct use as descriptors - as assumed 
here. 

If linear moments are used as descriptors, it is shown 
that the performance of the sliding-window approach can be 
greatly improved. 'The key point of this improvement has 
been to realize that the formulation of the linear moment 
matrix, in terms of only one-direction integrations, leads to 
an efficient recursivle updating rule. 

matrix formulation 
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