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Abstract

In the high-level operations of computer vision it is taken
for granted that image features have been reliably detected.
This paper addresses the problem of feature extraction by
scale-space methods. This paper is based on two key ideas:
to investigate the stochastic properties of scale-space repre-
sentations and to investigate the interplay between discrete
and continuous images. These investigations are then used
to predict the stochastic properties of sub-pixel feature de-
tectors.

1 Introduction

Low level image processing is often used to detect and
localise features such as edges and corners. It is also used
to correlate or match small parts of one image with parts
in another. Methods for doing this have been developed
for some time. However, the stochastic analysis of these
algorithms have often been based upon poorly motivated
stochastic models. In particular, the effects of image di-
scretisation, interpolation and scale-space smoothing is of-
ten neglected or not analysed in detail.

In this paper, image acquisition, interpolation and scale-
space smoothing are modelled into some detail. Image ac-
quisition is viewed as a composition of blurring, ideal samp-
ling and added noise, similar to [10]. The discrete signal is
analysed after interpolation. This makes it possible to de-
tect features on a sub-pixel basis. Averaging or scale-space
smoothing is often used to reduce the effects of noise. To un-
derstand feature detection in this framework, one has to ana-
lyse the effect of noise on interpolated and smoothed signals.
In doing so a theory is obtained that connects the discrete
and continuous scale-space theories.
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2 Image acquisition

To model the image acquisition process, the intensity dis-
tribution that would be caught by an ideal camera is first af-
fected by aberrations in the optics of the real camera, e.g.
blurring caused by spherical aberration, coma and astigma-
tism. Other aberrations deform the image, like Petzval field
curvature and distorsion, see [7]. Such distorsion can typi-
cally be handled by geometric considerations in mid-level
vision and will not be commented upon here. One way to
model camera blur is to convolve the ideal intensity distribu-
tion with a kernel corresponding to the smoothing caused by
the camera optics. This process also removes some amount
of the high spatial frequencies.

In a video-camera, the blurred image intensity distribu-
tion is typically measured by a CCD array. One can think
of each pixel intensity as the weighted mean of the inten-
sity distribution in a window around the ideal pixel posi-
tion. Taking the weighted mean around a position is equi-
valent to first convolving with the weighting kernel and then
ideal sampling. Finally, due to quantisation and other errors,
stochastic errors are introduced.

Led by this discussion we will use the following image
acquisition model:

Wideal
blur���

W
sampling���

w0
noise���

v0 � (1)

where upper case letters, W , denote signals with continuous
parameters, whereas lower case letters, w, denote discrete
signals. Here, and often in the sequel, we use the word sig-
nal synonymously with function, and discrete signal syno-
nymously with sequence or function defined on

� n, for some
n. These three steps of blurring, sampling and addition of
noise will now be discussed in a little more detail.

Here blurring is modelled as an abstract operator h, such
that W � h 	 Wideal 
 . We assume that no aliasing effects are
present, when the functionW is sampled at integer positions,
i.e. W � B 	� n 
 , where

B 	�� n 
 ��� W � L2 	� n 
�� suppF W ��	 � 1 � 2 � 1 � 2 
 n ��� (2)
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Figure 1. Illustration of image acquisition.

In the definition of the Fourier transform, we use the formula

F W 	 f 
 �
���

n
W 	 τ 
 e 	 i2π f 
 τdτ � (3)

where f � τ denotes scalar product.
The sampling is assumed to be ideal. Introduce the samp-

ling or discretisation operator, D : B �
l2,

w 	 i � j 
 � 	 DW 
 	 i � j 
 � W 	 i � j 
 � (4)

Note that the sampling operator maps a continuous signal W
onto a discrete signal w.

Finally noise is assumed to be an additive stationary ran-
dom field. Experimentally, it is verified that the errors in in-
dividual pixel intensities often can be modelled as indepen-
dent random variables with similar distribution.

These assumptions will serve as an initial model. Furt-
her improvements can be made by a more detailed camera
acquisition model.

3 Interpolation and smoothing

Scale-space theory and its application to computer vision
is discussed briefly in this section. A more thorough treat-
ment is given in [9]. The idea is to associate to each signal a
family of signals smoothed to different degrees. Each such
signal captures the behaviour of the signal at one scale. The
idea of smoothing is useful to attenuate high-frequency no-
ise without disturbing the low-frequency components of the
signal. There is a trade-off in choosing the smoothing para-
meter. The real strength in using the scale-space approach
is the possibility to study the whole scale-space representa-
tion, This will, however, not be pursued in this paper. The
emphasis will be made on the stochastic properties of each
scale-space representation separately.

In the continuous case, smoothing with the Gaussian ker-
nel

Gb 	 x 
 � 1�
2πb2

e 	� x  2 � 2b2
(5)

is very natural. In fact, under some consistency conditions
(symmetry, semi-group property, non-creation of local ex-
trema), the Gaussian kernel is the only choice that gives a
consistent scale-space theory, cf. [4, 8, 9, 11]. The smoot-
hing operator Sb represents convolution with the Gaussian

kernel Gb. A signal W is represented at scale b by its smoot-
hed version Wb:

Wb � Sb 	 W 
 � Gb � W � (6)

The signal Wb is called the scale-space representation of W ,
at scale b. In the sequel subscripts are used to denote diffe-
rent scales. This scale-space representation has several ad-
vantages. Local structure decreases as scale increases. No
local extrema are created. Another nice feature is that the
smoothed function Wb has continuous derivatives of arbit-
rary order. A third useful property is that the high frequency
components of the noise are attenuated as scale increases.
By using multidimensional Gaussians, there is a natural ge-
neralisation to functions W of several variables. However,
some of the nice properties are lost when doing so.

Scale-space theory in the discrete time case has been in-
vestigated in [9]. It turns out that just by sampling a conti-
nuous scale-space kernel, one obtains a discrete scale-space
kernel. However, in doing so one does not obtain a scale-
space theory with all the nice features of the continuous
scale-space theory. There are difficulties with fine scales. In
particular it is difficult to define higher order derivatives at
fine scale levels. For the same reason it is difficult to define
local extremum and zero crossings for fine scales. The semi-
group property is lost. These questions are discussed in [9].

Interpolation and smoothing

The main idea of our approach is to induce the discrete
signal, the scale spaces, etc. from the associated interpola-
ted quantities. By an interpolation or restoration method we
mean an operator that maps a discrete signal, w, to a continu-
ous one, W . The following types of interpolation operators
IF will be used:

W 	 s 
 ��	 IFw 
 	 s 
 � ∑
i

F 	 s � i 
 w 	 i 
 � (7)

We propose to use ideal low-pass interpolation

I � Isinc

and discretisation D as mappings between the continuous
and discrete signals to solve the restoration and discrete
scale-space problems. In other words we relate the discrete
and continuous signals through the operations of discretisa-
tion and ideal low-pass interpolation. This is illustrated by
the diagram:

W
I�
D

w � (8)

Note that if the camera induced blur cancels the high fre-
quency components in W as in (2), the deterministic resto-
ration W0 � I 	 w0 
 is equal to W .



Using these definitions, the discrete and continuous
scale-space representations can be defined simultaneously
and consistently. We propose the following:

1. If the primary interest is the interpolated continuous
signal, then restore the scale-space smoothed continu-
ous signal Wb from the discrete signal w0 first using
ideal interpolation and then continuous scale-space
smoothing.

2. If the primary interest is a discrete scale-space repre-
sentation, then use the induced representation from the
continuous scale-space, as defined in (8).

The procedure is illustrated by the diagram:

W0
I� � ��� � w0

Sb

���
��� sb

Wb
D� ��� � �

wb

(9)

Thus, from the discrete signal w0, the continuous scale-
space smoothed signalWb is obtained as Wb � Sb 	 I 	 w 
 
 . The
discrete scale-space signal wb � sb 	 w0 
 , is induced from the
continuous scale-space signal, i.e.

wb � sb 	 w0 
 def� D 	 Sb 	 I 	 w0 
 
 
 � (10)

where sb is introduced as the discrete scale-space smoothing
operator. Notice that sb is a convolution with a kernel gb,

gb � D 	 Gb � sinc 
 � (11)

The differences between this approach and others, like the
sampled Gaussian approach, is very small for large scales
but significant for small scales. In fact it can be shown that

� � sinc � Gb
�

Gb � � 22 � 1
b
�

π
Φ 	 � πb

�
2 
 � (12)

where Φ is the normal cumulative distribution function. No-
tice that the right hand side is small when b is large. The
sampled Gaussian approach is also equivalent to using in-
terpolation with the delta distribution followed by Gaussian
smoothing. The main motivation for using ideal low-pass
interpolation is, however, that the approach is well suited for
stochastic analysis as will be shown later. Observe that the
interpolated signal W is smooth. Thererfore, there is no dif-
ficulty in defining higher order derivatives.

This scale-space theory has several theoretical advan-
tages: It works for all scales. The semi-group property,
s � as � b � s � a � b, holds. The coupling to continuous scale-
space theory gives a natural way to interpolate in the discrete
space. There are no difficulties in defining derivatives at ar-
bitrary scales. It is possible to calculate derivatives at ar-
bitrary interpolated positions. Operators which commute in

the continuous theory automatically commute in the discrete
theory. The effect of additive stationary noise can easily be
modelled. It makes it possible to compare the real intensity
distribution with the interpolated distribution. There is, ho-
wever, a price to pay. The discrete scale-space smoothing
operator sb is a convolution with the discrete function

gb � D 	 sinc � Gb 
 �
i.e. sb 	 w 
 � gb � w. In practice this scale-space theory is dif-
ficult to use for small scale parameters, because of the large
tail of the sinc function. However, the function sinc � Gb has
a very small tail for larger scales. In practise one may use
the approximation sinc � Gb � Gb for large scales, according
to (12). This simplifies implementation substantially.

4 The random field model

The discrete image v0 � w0 � e0 is analysed directly or
through scale-space smoothing, as illustrated by the dia-
gram:

W0 � E0
I� � � � � w0 � e0

Sb

���
��� sb

Wb � Eb
D� � ��� �

wb � eb

(13)

Note that all operations are linear. The stochastic and deter-
ministic properties can, therefore, be studied separately and
the final result is obtained by superposition. Thus with an a
priori model onWideal, for example an ideal edge or corner, it
is possible to predict the deterministic parts Wb and wb. The
stochastic properties of the error fields e0, eb, E0 and Eb, will
now be studied.

Stationary random fields

The theory of random fields is a simple and powerful way
to model noise in signals and images. Stationary or wide
sense stationary random fields are particularly easy to use.
Denote by E the expectation value of a random variable.

Definition 4.1. A random field X 	 t 
 with t � � n is cal-
led stationary or wide sense stationary, if its mean m 	 t 
 �
mX 	 t 
 � E � X 	 t 

	 is constant and if its covariance function
rX 	 t1 � t2 
 � E � 	 X 	 t1 
 � m 	 t1 
 
 	 X 	 t2 
 � m 	 t2 
 

	 only depends
on the the difference τ � t1

�
t2.

For stationary fields we will use rX 	 s � t 
 and rX 	 s � t 
 in-
terchangeably as the covariance function. The analogous
definition is used for a stationary field in discrete parame-
ters. The notion of spectral density

RX 	 f 
 � 	 F rX 
 	 f 
 �
�

rX 	 τ 
 e 	 i2π f 
 τdτ (14)



is also important. Again the same definition can be used for
random fields with discrete parameters s � � n, but whereas
the spectral density for random fields with continuous pa-
rameters is defined for all frequencies f , the spectral den-
sity of discrete random fields is only defined on an inter-
val f � � � 1 � 2 � 1 � 2 	 n. Introductions to the theory of random
processes and random fields are given in [1, 5, 6]. In these
books you will find that convolution, discretisation and deri-
vation preserves stationarity. The effect of these operations
on the covariance function is also known:

w � D 	 W 
 � rw � D 	 rW 

Y � h � X � RY � RX �F h � 2

Y � X
� � rY � �

r
� �
X

We will now show that the ideal interpolation I preser-
ves stationarity as well. First we will analyse the one-
dimensional case. To do this we need a lemma concerning
an infinite series:

Lemma 4.1.

∑
i

sinc 	 s � i 
 sinc 	 t � i 
 � sinc 	 s � t 
 � (15)

Proof. See [2]

This lemma will now be used in the proof of the following
theorem, which describes the stochastic properties of the
restored signal at scale zero.

Theorem 4.1. If e 	 i 
 is a stationary discrete stochastic pro-
cess with zero mean and covariance function

re 	 i � j 
 � re 	 i � j 
 �
such that re � l p, for some p � ∞ � then the ideal interpola-
tion at scale zero,

E 	 s 
 � ∑
i

sinc 	 s � i 
 e 	 i 
 � (16)

is a well defined random process, with convergence in
quadratic mean. Moreover, E is stationary with covariance
function

rE 	 τ 
 � I 	 re 
 	 τ 
 � ∑
k

re 	 k 
 sinc 	 τ � k 
 � (17)

Proof. The proof that E is well defined is omitted due to lack
of space, see [2]

It then follows that mE 	 s 
 � E � ∑i sinc 	 s � i 
 e 	 i 

	 �
∑i sinc 	 s � i 
 E � e 	 i 
 	 � 0. To prove that E 	 s 
 is stationary
we need to prove that the covariance rE 	 s � t 
 only depends

on the difference s
�

t. The covariance of E 	 s 
 and E 	 t 
 is
given by

rE 	 s � t 
 � E � E 	 s 
 E 	 t 
 	 �
� ∑

i � j

sinc 	 s � i 
 sinc 	 t � j 
 re 	 i � j 
 �
� ∑

i
k � i 	 j

sinc 	 s � i 
 sinc 	 t � k
�

i 
 re 	 k 
 �

� ∑
k

re 	 k 
 sinc 	 s � t
�

k 
 � I 	 re 
 	 s � t 
 � (18)

where we have used Lemma 4.1 to obtain the last but one
equality. Thus the continuous random process E 	 s 
 is sta-
tionary with covariance function as described.

The corresponding theorem in higher dimensions can be
proved in exactly the same manner.

Thus, all operations in the commutative diagram (13)
preserve stationarity. This simplifies the modelling of errors
in scale-space theory.

It is often convenient to assume that the discrete noise e0
can be modelled as white noise, i.e.

re 	 k 
 �
�

ε2 � if k � 0 ,

0 � if k �� 0 .

It can then be shown that the covariance function of the in-
terpolated and smoothed error field is

rEb
� ε2 sinc � Gb � 2

� (19)

Remark. The restored image intensity distribution Vb is a
sum of a deterministic part Wb and a stationary random field
Eb. Notice that the restoration and the residual are invari-
ant of the position of the discretisation grid. The effect of
discretisation is thus removed.

5 Sub-pixel correlation

Analysis of sub-pixel correlation is another application of
our scale-space theory. Correlation is usually done on pixel
level, where a regions of one image is translated in whole
pixel units and matched to parts of a second image so that
the sum of squared differences are minimised. The stochas-
tic errors of pixel correlation is difficult to analyse, mainly
because the translation between the regions in the two ima-
ges usually is of sub-pixel type.

A substantial improvement is obtained by using scale-
space restoration of continuous images. This makes it pos-
sible to correlate regions in two images with sub-pixel trans-
lations with much higher precision than obtained by ordi-
nary methods. Furthermore, a proper modelling of the resi-
dual field makes it possible to analyse the stochastic proper-
ties of the localisation error. The idea is that, at least locally,
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Figure 2. Regions in two images are corre-
lated with sub-pixel translations using least
squares of the residuals of the restored con-
tinuous scale-space representation at scale
b � 0 � 9.

the images only differ by an unknown translation ρ. Denote
by V � W � E and V̄ � W̄ � Ē the restored intensity fields in
two images for a fixed scale b. The deterministic functions
are identical except for a translation. For a fixed translation
ρ0 � 	 ρ1 � ρ2 
 , we thus have

W 	 t 
 � W̄ 	 t � ρ0 
 � � t �
To determine the translation h with sub-pixel accuracy a le-
ast squares integral is minimised,

F 	 ρ 
 �
�

t � Ω
	 V 	 t 
 � V̄ 	 t � ρ 
 
 2dt �

The result of such a minimisation is shown in Figure 2.
Furthermore, the residual field V 	 t 
 � V̄ 	 t � ρ 
 can be

used to empirically study the stochastic properties of the ca-
mera noise e0.

The quality of the estimated sub-pixel translation,

ρ̂ � argminF 	 ρ 
 �
can be analysed using the statistical model given above. Let
X � ρ̂ � ρ0 be the error in estimated translation. By lineari-
sing the function F it can be shown, see [2, 3], that the pro-
bability distribution of X can be approximated with a normal
distribution with zero mean and covariance matrix given by

C � C � X 	 � A 	 1BA 	 T � (20)

A � 2
�

t1 � Ω
	 VW̄W̄T 
 	 t1 
 dt1 � (21)

B �
�

t1 � Ω
	 	 VW̄ 
 � rE 	 Ē 
 	 t1 
 	 VW̄ 
 	 t1 
 dt1

� (22)

6 Conclusions

In this paper we have modelled the image acquisition pro-
cess, taking into account both the deterministic and stochas-
tic aspects. In particular the discretisation process is mo-
deled in detail. This interplay between the continuous sig-
nal and its discretisation is very fruitful and the increased

knowledge sheds light on scale-space theory, feature detec-
tion and stochastic modelling of errors.

The relation between the continuous signal and its discre-
tisation is used to obtain an alternative scale-space theory for
discrete signals. It is also used to derive methods of resto-
ring the continuous scale-space representation from the di-
screte representation. This enables us to calculate derivati-
ves at any position and of any scale.

Furthermore, the stochastic errors in images are model-
led and new results are given that show how these errors
influence the continuous and discrete scale-space represen-
tations and their derivatives. This information is crucial in
understanding the stochastic behaviour of scale-space repre-
sentations as well as fundamental properties of feature de-
tectors.
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