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Abstract 

The chain-code representation of contours is widely used 
in syntactic shape recognition. However the ignorance of 
a starting point makes the time complexity of traditional 
parsers increase in one order. This paper describes a tech- 
nique for  adapting any Cock-Younger-Kasami context-free 
parser in order to use it with cyclic strings. The parsers 
obtained with this technique have the same time and space 
complexity as the original one (usually O(n3)).  

1. Introduction 

The recognition of two-dimensional shapes has been in- 
tensively studied in pattern recognition and computer vision 
in the past and many different approaches have been pro- 
posed. One technique consists in describing the contour of 
the shape by an unidimensional string of primitives. Each 
primitive represents the appropriate local feature of the cor- 
responding object shape. A number of well-known tech- 
niques exists to obtain these representations [l]. 

Due to the cyclic nature of a contour description, it must 
be invariant with respect to the starting point. For instance, 
if we have a set of planar figures and the chosen primitives 
are the symbol a representing a unit length straight segment 
and the symbol b representing a corner, the strings ababaab, 
babaaba and abaabab represent the same shape. 

In order to learn a model, it is useful to write all strings 
representing the shape in a normal form. For instance, 
when identifying isosceles triangles we can assume that the 
strings are written such that the two borders of the same 
length appears first. Then a string represents an isosceles 
triangle if it fits the pattern anbanba* b. 

During the learning phase one can spend some time in 
order to put the strings in the normal form, doing it by hand 
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or by some automatic (and usually expensive) way. How- 
ever, it is very interesting to find a fast way of knowing if 
there exists a cyclic rotation of the string such that it fits the 
model in order to use it at test time. 

Maes [4], has proposed an algorithm to calculate the edit 
distance between two cyclic strings with length n and m 
which works in time O(nm log m). Gregor and Thoma- 
son [2] propose an algorithm with cubic time complexity, 
although it proves to be much faster in practice. 

In this paper, a technique is described for adapting any 
context-free parser based on the Cocke-Younger-Kasami al- 
gorithm in order to use it for cyclic strings without increas- 
ing its time and space complexity. 

2. Mathematical background 

Let C be a finite non-empty set called alphabet. A word 
or string over the alphabet C is a finite E-sequence. A typ- 
ical word can be written as al ... a,, with n 2 0,ai E C. 
We allow n = 0, which gives the null (or empty) word, 
which is denoted by A. n is called the length of s, written 
1x1, and is the number of occurrences of elements of C in x. 
Let C* denote the set of all words and let C+ = E* - {A}. 
If s and y are in E*, then sy denotes a new word called the 
concatenation of x and U. 

A cyclic shift is a mapping U : C* + C*, defined by 
a(al . . . a,) = a2a3 . anal. Let uk denote the composition 
for all IC E N and let go denote the identity. Two strings 
s and y in C are equivalent if s = &(y) for some k E 
N .  Clearly, this defines an equivalence relation in C*. The 
equivalence class of a string s will be denoted with [XI, and 
will be called a cyclic string. Let A c E*, then [A] = 

A phrase-structure grammar is a 4-tuple G = 
( N ,  C, P, S )  where N is a finite non-empty set called the 
non-terminal alphabet, C is a finite non-empty set called 
the terminal alphabet, S E N is the start symbol, and P 
is a finite set of rules (or productions) of the form Q + B, 
whereV = N U C ,  cy E V*NV* andp E V*. 

U,E*[XI. 
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Let a', p' E V*. String a' is said to directly generate /3', 
written Q' =$ p', if there exist a1 ,  CY^, Q, /3 E V", such that 
CL' = a1aa2, p' = a l p a ~  and a -+ /3 E P. We write + 
for the transitive closure of +. The language generated by 
G,writtenL(G),isthesetL(G) = {w E C*IS&-w}.IfG 
and G' are phrase-structure grammars, then G is equivalent 
to G' if L(G) = L(G'). 

A phrase-structure grammar is said to be contexl-free if 
every rule is of the form A -+ a, where A E C and Q E V* . 
A context-free grammar is said to be in Chomsky norma2 
form if all rules are of the form A 3 BC, A -+ a or S -+ A, 
where A, B ,  C E N ,  and a E E. It can be shown that any 
context-free language may be generated by a grammar in 
Chomsky normal form (CNF) [3]. 

+ 

3. The Cocke-Younger-Kasami algorithm 

This  algorithm requires grammars to be in Chomsky nor- 
mal form [3]. The string A is in a language if and only if 
the Chomsky normal form grammar for the language has 
a rule S -+ A, where S is the start symbol. Furthermore, 
the rule S -+ X cannot be used in the derivation of any 
non-null strings. Consequently, without loss of generality, 
we can restrict our attention to non-null input strings and 
A-free grammars in Chomsky normal form. 

The method works as follows. Let G = ( N ,  C, P, S) be 
a Chomsky normal form CFG with no A-production. Let 
w = al . . a, be the input string to be parsed according to 
G. We assume that each ai is in C for 1 5 i 5 n. The 
essence of the algorithm is the construction of a triangular 
parse table T whose elements are denoted ti,j for 1 5 i 5 
n and 1 5 j 5 n - i + 1. Each ti,j is a subset of N .  
Non-terminal A E ti,j A + a i . .  - that is, 
if A derives the j input symbols following position i. In 
particular, the input w is in L(G) if and only if S is in tl,,. 

The algorithm is shown in fig. 1 and works in a time 
O(n')). 

+ 

4. The Cocke-Younger-Kasami algorithm for 
cyclic strings 

Let w = al . - a, be a string, and let G = ( N ,  C, P, S) 
a Chomsky normal form context-free grammar with no A- 
production. We want to know if w E [L(G)],  that is, if ex- 
ists i, such that 1 5 i 5 n and S + a i .  * * anal . . . ai-1 = 
ai-' (w). A brute force approach (running a new parse for 
all i) takes a time 13(n4). 

This complexity can be reduced by using some byprod- 
ucts of the Cocke-Younger-Kasami algorithm. Suppose 
that the parsing table for the string ww is built (it takes 
a time O(n:)). Let 1 5 i <_ n, then, S E ti,n 

+ 

Cocke-Younger-Kasami Algorithm 
INPUT: A Chomsky normal form CFG G = 

( N ,  C, P, S) with no A-production and an input string w = 
a1 . . . a, E C+ 

OUTPUT: The parse table T for w. 
METHOD: 
fori = 1 ton  

forj  = 2 ton  
t i , l  = {AIA -+ ai E P }  

fori = 1 ton - j  + 1 
ti ,j  = {AIA -+ BC E P, B E ti,k, 

E ti+k,j-k, 1 5 IC 5 j }  
end 

Figure 1. The Cocke-Younger-Kasami Algo- 
rithm 

Cocke-Younger-Kasami Algorithm for cyclic strings 
INPUT: A Chomsky normal form CFG G = 

( N ,  C, P, S )  with no A-production and an input string w = 
a1 . . . a, E c+ 

OUTPUT: The parse table T for w. 
METHOD: 
f o r i =  l t o n  

forj = 2 ton 
ti,l = {AIA -+ ai E P }  

f o r i =  l t o n  
t i , j  {AIA -+ BC E P, B E t i , k ,  

c E t(i+lc-l)*nodn+l,j--12,l 5 IC < j >  
end 

Figure 2. The Cocke-Younger-Kasami algo- 
rithm for circular strings 

+ if and only if S + a i .  . . ai+,-l. By construction of 
the string, aj+, = aj 1 5 j 5 n and therefore 

S E ti,, means S =$ a i . .  . anal . . . ai-1 = ai-'(w) and 
then w E [L(G)] . 

ai ' . a,Un+l . . ai+n-l = ai . . anal . * * ai-1. Thus, + 

This technique can be speededup if one notes than: 

No element ti,j such that j > n are needed in order to 
compute the elements ti,,. 

The computation of the elements ti,? with i > n 
can be avoided because - t i , j .  Indeed, 

- for 1 5 i 6 ai+, . . . ai+,+j-1 ai * ' ' ai+j-1 
n - j + l .  

- 

- 

The new algorithm, incorporating the suggestions above, is 
shown in fig. 2. The algorithm essentially fills a square 
parse table instead of a triangular one. Once the table is 
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Figure 3. Chomsky normal form context free 
grammar for the language {anbanba*b(n 2 O } .  

computed we have to go across the top row, ti,n for i = 1 
to n, in order to see if the start symbol is in a cell. 

The technique described here can be applied to all ver- 
sions of the Coke-Younger-Kasami algorithm. For instance, 
the error-correcting parser version due to Tanaka and Fu [5] 
stores in each cell t i , j  an array, indexed by the symbols in 
N ,  containing the weight of the error correcting operation 
needed in order to accept the string ai . . e ai+j-1 from the 
non-terminal symbol. The version for cyclic strings will 
work using the same rules in order to fill in the cells but fill- 
ing a square table and paying attention to reading the con- 
tents of ti,j when the content of the cell ti+n,j is required. 
Once the parse table is filled, the minimum weight of the 
element indexed with S of the arrays in ti,n 1 5 i 5 n is 
returned. 

Similar comments apply to the version for stochastic 
grammars, that stores in each cell an array, indexed by the 
symbols in N ,  containing the probability of producing the 
corresponding string. In this case, once the parse table is 
filled in, one has to evaluate the sum for i = 1 to n of the 
elements S of the arrays ti,n. 

III all these examples the time complexity is O(n’). 

5. Examples 

Let us go back to the example presented in the intro- 
duction. Assume that we have a set of shapes and we 
want to identify the ones that are isosceles triangles. In 
order to describe the different shapes, we use the contour 
chains made of two primitives represented by, the symbol 
a for each straight line of length one, and symbol b for 
each corner. As said in the introduction, all isosceles trian- 
gles are described by a string in the context-free language 
{anbanba*bln 2 0). It can be shown that the Chomsky 
normal form context-free grammar shown in fig. 3 accepts 
exactly this language. 

Usually, the algorithm to extract the contour chains has 
no reason to begin in the first of the two equal borders 

I S 1  I 

F E  F E  F E  
A B,C,F A 3 B,C,F A A B,C,F A 
a b a a  b a a  b a 
- ~ -  

C C C 
E D  E D  E D  

A B,C,F A 3 B,C,F A A B,C,F A 
a b a a  b a a  b a 
- ~ -  

Figure 4. parse table for the string abaabaaba 

of the isosceles triangle. For instance, the same isosceles 
triangle can be represented by the strings aaabaaabaab, 
abaaabaabaa or baabaaabaaa. However, the strings 
aabaabaabaab and abaabaaab does not represent isosceles 
triangles. 

Let us suppose that the input string is w = abaabaaba. 
The parse table that generates w can be seen in fig. 4. Be- 
cause some cells at the top row contain the start symbol 
there exists a shift of the string abaabaaba with belongs 
to the context-free language, that is, the input string repre- 
sents an isosceles triangle. In fact, as the string represents 
a equilateral triangle there exist three different valid shifts 
(i = 3, i = 6 ,  i = 9). 

6. Conclusions 

We have shown that any Cocke-Younger-Kasami-style 
context-free parser can be adapted for cyclic strings without 
increasing the intrinsic complexity of the algorithm. The 
time complexity remains 0(n3) and the space complexity 
O(n2). Applications can be found, for instance in shape 
recognition with contour chains. 
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