
The Cocke-Younger-Kasami Algorithm for Cyclic Strings *

Jose Oncina
Depto. de Lenguajes y Sistemas Informfiticos

Universidad de Alicante
E-03080 Alicante (Spain)

e-mail: oncina@dlsi . ua. es

Abstract

The chain-code representation of contours is widely used
in syntactic shape recognition. However the ignorance of
a starting point makes the time complexity of traditional
parsers increase in one order. This paper describes a tech-
nique for adapting any Cock-Younger-Kasami context-free
parser in order to use it with cyclic strings. The parsers
obtained with this technique have the same time and space
complexity as the original one (usually O(n3)).

1. Introduction

The recognition of two-dimensional shapes has been in-
tensively studied in pattern recognition and computer vision
in the past and many different approaches have been pro-
posed. One technique consists in describing the contour of
the shape by an unidimensional string of primitives. Each
primitive represents the appropriate local feature of the cor-
responding object shape. A number of well-known tech-
niques exists to obtain these representations [l].

Due to the cyclic nature of a contour description, it must
be invariant with respect to the starting point. For instance,
if we have a set of planar figures and the chosen primitives
are the symbol a representing a unit length straight segment
and the symbol b representing a corner, the strings ababaab,
babaaba and abaabab represent the same shape.

In order to learn a model, it is useful to write all strings
representing the shape in a normal form. For instance,
when identifying isosceles triangles we can assume that the
strings are written such that the two borders of the same
length appears first. Then a string represents an isosceles
triangle if it fits the pattern anbanba* b.

During the learning phase one can spend some time in
order to put the strings in the normal form, doing it by hand

*This work has been partially supported by the Spanish CICYT under
contract TIC93-0633-CO22

or by some automatic (and usually expensive) way. How-
ever, it is very interesting to find a fast way of knowing if
there exists a cyclic rotation of the string such that it fits the
model in order to use it at test time.

Maes [4], has proposed an algorithm to calculate the edit
distance between two cyclic strings with length n and m
which works in time O(nm log m). Gregor and Thoma-
son [2] propose an algorithm with cubic time complexity,
although it proves to be much faster in practice.

In this paper, a technique is described for adapting any
context-free parser based on the Cocke-Younger-Kasami al-
gorithm in order to use it for cyclic strings without increas-
ing its time and space complexity.

2. Mathematical background

Let C be a finite non-empty set called alphabet. A word
or string over the alphabet C is a finite E-sequence. A typ-
ical word can be written as al ... a,, with n 2 0,ai E C.
We allow n = 0, which gives the null (or empty) word,
which is denoted by A. n is called the length of s, written
1x1, and is the number of occurrences of elements of C in x.
Let C* denote the set of all words and let C+ = E* - {A}.
If s and y are in E*, then sy denotes a new word called the
concatenation of x and U.

A cyclic shift is a mapping U : C* + C*, defined by
a(al . . . a,) = a2a3 . anal. Let uk denote the composition
for all IC E N and let go denote the identity. Two strings
s and y in C are equivalent if s = &(y) for some k E
N . Clearly, this defines an equivalence relation in C*. The
equivalence class of a string s will be denoted with [XI, and
will be called a cyclic string. Let A c E*, then [A] =

A phrase-structure grammar is a 4-tuple G =
(N , C, P, S) where N is a finite non-empty set called the
non-terminal alphabet, C is a finite non-empty set called
the terminal alphabet, S E N is the start symbol, and P
is a finite set of rules (or productions) of the form Q + B,
whereV = N U C , cy E V*NV* andp E V*.

U,E*[XI.

1015-4651/96 $5.00 0 1996 IEEE
Proceedings of ICPR '96

413

Let a', p' E V*. String a' is said to directly generate /3',
written Q' =$ p', if there exist a1 , CY^, Q, /3 E V", such that
CL' = a1aa2, p' = a l p a ~ and a -+ /3 E P. We write +
for the transitive closure of +. The language generated by
G,writtenL(G),isthesetL(G) = {w E C*IS&-w}.IfG
and G' are phrase-structure grammars, then G is equivalent
to G' if L(G) = L(G').

A phrase-structure grammar is said to be contexl-free if
every rule is of the form A -+ a, where A E C and Q E V* .
A context-free grammar is said to be in Chomsky norma2
form if all rules are of the form A 3 BC, A -+ a or S -+ A,
where A, B , C E N , and a E E. It can be shown that any
context-free language may be generated by a grammar in
Chomsky normal form (CNF) [3].

+

3. The Cocke-Younger-Kasami algorithm

This algorithm requires grammars to be in Chomsky nor-
mal form [3]. The string A is in a language if and only if
the Chomsky normal form grammar for the language has
a rule S -+ A, where S is the start symbol. Furthermore,
the rule S -+ X cannot be used in the derivation of any
non-null strings. Consequently, without loss of generality,
we can restrict our attention to non-null input strings and
A-free grammars in Chomsky normal form.

The method works as follows. Let G = (N , C, P, S) be
a Chomsky normal form CFG with no A-production. Let
w = al . . a, be the input string to be parsed according to
G. We assume that each ai is in C for 1 5 i 5 n. The
essence of the algorithm is the construction of a triangular
parse table T whose elements are denoted ti,j for 1 5 i 5
n and 1 5 j 5 n - i + 1. Each ti,j is a subset of N .
Non-terminal A E ti,j A + a i . . - that is,
if A derives the j input symbols following position i. In
particular, the input w is in L(G) if and only if S is in tl,,.

The algorithm is shown in fig. 1 and works in a time
O(n')).

+

4. The Cocke-Younger-Kasami algorithm for
cyclic strings

Let w = al . - a, be a string, and let G = (N , C, P, S)
a Chomsky normal form context-free grammar with no A-
production. We want to know if w E [L(G)], that is, if ex-
ists i, such that 1 5 i 5 n and S + a i . * * anal . . . ai-1 =
ai-' (w). A brute force approach (running a new parse for
all i) takes a time 13(n4).

This complexity can be reduced by using some byprod-
ucts of the Cocke-Younger-Kasami algorithm. Suppose
that the parsing table for the string ww is built (it takes
a time O(n:)). Let 1 5 i <_ n, then, S E ti,n

+

Cocke-Younger-Kasami Algorithm
INPUT: A Chomsky normal form CFG G =

(N , C, P, S) with no A-production and an input string w =
a1 . . . a, E C+

OUTPUT: The parse table T for w.
METHOD:
fori = 1 ton

forj = 2 ton
t i , l = {AIA -+ ai E P }

fori = 1 ton - j + 1
ti ,j = {AIA -+ BC E P, B E ti,k,

E ti+k,j-k, 1 5 IC 5 j }
end

Figure 1. The Cocke-Younger-Kasami Algo-
rithm

Cocke-Younger-Kasami Algorithm for cyclic strings
INPUT: A Chomsky normal form CFG G =

(N , C, P, S) with no A-production and an input string w =
a1 . . . a, E c+

OUTPUT: The parse table T for w.
METHOD:
f o r i = l t o n

forj = 2 ton
ti,l = {AIA -+ ai E P }

f o r i = l t o n
t i , j {AIA -+ BC E P, B E t i , k ,

c E t(i+lc-l)*nodn+l,j--12,l 5 IC < j >
end

Figure 2. The Cocke-Younger-Kasami algo-
rithm for circular strings

+ if and only if S + a i . . . ai+,-l. By construction of
the string, aj+, = aj 1 5 j 5 n and therefore

S E ti,, means S =$ a i . . . anal . . . ai-1 = ai-'(w) and
then w E [L(G)] .

ai ' . a,Un+l . . ai+n-l = ai . . anal . * * ai-1. Thus, +

This technique can be speededup if one notes than:

No element ti,j such that j > n are needed in order to
compute the elements ti,,.

The computation of the elements ti,? with i > n
can be avoided because - t i , j . Indeed,

- for 1 5 i 6 ai+, . . . ai+,+j-1 ai * ' ' ai+j-1
n - j + l .

-

-

The new algorithm, incorporating the suggestions above, is
shown in fig. 2. The algorithm essentially fills a square
parse table instead of a triangular one. Once the table is

414

Figure 3. Chomsky normal form context free
grammar for the language {anbanba*b(n 2 O } .

computed we have to go across the top row, ti,n for i = 1
to n, in order to see if the start symbol is in a cell.

The technique described here can be applied to all ver-
sions of the Coke-Younger-Kasami algorithm. For instance,
the error-correcting parser version due to Tanaka and Fu [5]
stores in each cell t i , j an array, indexed by the symbols in
N , containing the weight of the error correcting operation
needed in order to accept the string ai . . e ai+j-1 from the
non-terminal symbol. The version for cyclic strings will
work using the same rules in order to fill in the cells but fill-
ing a square table and paying attention to reading the con-
tents of ti,j when the content of the cell ti+n,j is required.
Once the parse table is filled, the minimum weight of the
element indexed with S of the arrays in ti,n 1 5 i 5 n is
returned.

Similar comments apply to the version for stochastic
grammars, that stores in each cell an array, indexed by the
symbols in N , containing the probability of producing the
corresponding string. In this case, once the parse table is
filled in, one has to evaluate the sum for i = 1 to n of the
elements S of the arrays ti,n.

III all these examples the time complexity is O(n’).

5. Examples

Let us go back to the example presented in the intro-
duction. Assume that we have a set of shapes and we
want to identify the ones that are isosceles triangles. In
order to describe the different shapes, we use the contour
chains made of two primitives represented by, the symbol
a for each straight line of length one, and symbol b for
each corner. As said in the introduction, all isosceles trian-
gles are described by a string in the context-free language
{anbanba*bln 2 0). It can be shown that the Chomsky
normal form context-free grammar shown in fig. 3 accepts
exactly this language.

Usually, the algorithm to extract the contour chains has
no reason to begin in the first of the two equal borders

I S 1 I

F E F E F E
A B,C,F A 3 B,C,F A A B,C,F A
a b a a b a a b a
- ~ -

C C C
E D E D E D

A B,C,F A 3 B,C,F A A B,C,F A
a b a a b a a b a
- ~ -

Figure 4. parse table for the string abaabaaba

of the isosceles triangle. For instance, the same isosceles
triangle can be represented by the strings aaabaaabaab,
abaaabaabaa or baabaaabaaa. However, the strings
aabaabaabaab and abaabaaab does not represent isosceles
triangles.

Let us suppose that the input string is w = abaabaaba.
The parse table that generates w can be seen in fig. 4. Be-
cause some cells at the top row contain the start symbol
there exists a shift of the string abaabaaba with belongs
to the context-free language, that is, the input string repre-
sents an isosceles triangle. In fact, as the string represents
a equilateral triangle there exist three different valid shifts
(i = 3, i = 6 , i = 9).

6. Conclusions

We have shown that any Cocke-Younger-Kasami-style
context-free parser can be adapted for cyclic strings without
increasing the intrinsic complexity of the algorithm. The
time complexity remains 0(n3) and the space complexity
O(n2). Applications can be found, for instance in shape
recognition with contour chains.

7. Acknowledgments

The author wishes to thank Rafael C. Carrasco, Mike1
L. Forcada, Paco Moreno and Luis E Gomis for their com-
ments.

References

[l] K. Fu and T. Young. Handbook of pattern recognition and
image processing. Academic-Pres s , 19 8 6.

[2] J. Gregor and T. M.G. Dynamic programming alignment of
sequences representing cyclic patterns. IEEE Trans. Pattem
Analysis Mach. Intell., (15), 1993.

Introduction to Fomal Language Theory.
Addison-Wesley Publishing Company, 1978.

[3] M. Harrison.

415

[4] M. Maes. On a cyclic string-to-string correction problem. In-
formation Processing Letters, (35), 1990.

[5] E. Tanaka and K. Fu. Error-correcting parsers for formal
languages. IEEE Transactions on Computers, C-27(7), July
1978.

416

