
Real-Time Single-Workstation Obstacle Avoidance Using Only
Wide-Field Flow Divergence

Ted Camus, David Coombs, Martin Herman, Tsai-Hong Hong
National Institute of Standards and Technology

{ tcamus,dcoombs,mherman,thong] @nist.gov; http://isd.cme.nist.gov/
Intelligent Systems Division, Building 220 Room B-124, Gaithersburg MD 20899

Abstract

A real-time robot vision system is described which
uses only the divergence of the optical $ow field for
both steering control and collision detection. The
robot has wandered about the lab at 20 c d s for as
long as 26 minutes without collision. The entire sys-
tem is implemented on a single ordinary UNIX
workstation without the benefit of real-time operat-
ing system support. Dense opticaljlow data are cal-
culated in real-time across the entire wide-angle
image. The divergence of this optical $ow field is
calculated everywhere and used to control steering
and collision behaviol: Divergence alone has
proven sufJicient for steering past objects and
detecting imminent collision. The m j o r contribu-
tion is the demonstration of a simple, robust, mini-
mal system that uses $ow-derived measures to
control steering and speed to avoid collision in real
time for extended periods. Such a system can be
embedded in a general, multi-level perceptiodcon-
trol system.

1. Introduction
Mobile robots that drive at reasonable speeds (e.g., 20

c d s indoors) must robustly sense and avoid obstacles in
real-time. Image motion provides powerful cues for under-
standing scene structure. Divergence of image flow (the
sum of image flow derivatives in two perpendicular direc-
tions) is theoretically not affected by camera rotation, so it
gives a robust measure of scene structure for a moving ob-
server. The robot system described here uses flow diver-
gence to steer around obstacles while it attempts to achieve
a goal (which for now is simply to drive straight ahead).
When the obstacle avoidance is insufficient to avoid colli-
sion, the divergence data warn the robot of the impending
collision. The robot stops, turns, and resumes wandering
straight ahead in the new direction. These integrated behav-
iors have driven the robot around the lab at 20 c d s for as
long as 26 minutes without collision. Because this wander-
ing behavior is already a real-time capability, there is prom-
ise that future increases in computational power will fuel
development of both increasingly robust basic skills and ad-
ditional behaviors for robots.

The simplicity of the system improves robustness and
makes it easier to extend. The system uses only a single
framegrabber, a single processor, a single image stream, and

a single low-level percept for all control functions. Simple
robust filters are chosen in lieu of complex filters that re-
quire sensitive system modeling and synchronization.
These filters enable the system to ignore momentary noise
and artifacts that result from module interactions, and this
in turn enables modules to cooperate without delicate syn-
chronization.

In addition, the obstacle avoidance system is extensi-
ble. Egocentric hazard maps are derived from divergence
data, goals, and steering history, and a composite hazard
map is used to steer the vehicle. This design supports the
use of multiple cues, which can be incorporated with addi-
tional hazard maps.

Our approach achieves real-time intelligent behavior
by using minimalist visually-derived representations. In
such representations, a minimal amount of information re-
quired to achieve the given task is extracted from the imag-
ery [2][4]. The representations contain only task-relevant
information (i.e., relevant to obstacle avoidance) and the
information is represented in 2-D image coordinates only.
The control algorithms directly use observable image in-
formation represented in the 2-D image sequence: a 3-D re-
construction is not required 1171. It is therefore simpler and
faster. Such an approach is particularly useful in closing
control loops with vision at lower levels of a multi-level
control system[11 (Figure 1).

Figure 1 sketches the obstacle avoidance system. Vid-
eo images are obtained from an on-board uncalibrated cam-
era with a 115" field of view. The robot's view from this
camera is shown in Figure 6(b). The images are subsam-
pled and full flow is computed. Flow divergence is estimat-
ed and spatio-temporal median filters are applied to reduce
momentary fluctuations in the divergence field. Hazard
maps are derived from the divergence field, the previous
steering decision, and the goal direction. A composite haz-
ard map is used to steer the robot around objects as it drives
in the goal direction. Using active gaze control, the camera
is rotationally stabilized to reduce the magnitude of the
flows in the image stream. When the camera points too far
away from the heading, a saccade is made toward the head-
ing. These saccades introduce momentary disturbances of
the flow data, but the temporal median filter effectively
eliminates disruptive effects. When divergence data indi-
cate imminent collision ahead, the robot stops, turns away,
and resumes wandering. The inputs to the body and gaze
controllers consist of driving, steering, and gaze velocities.

U.S. Government Work Not Protected by U.S. Copyright
323

http://isd.cme.nist.gov

2. Real-Time Control System (RCS)
The obstacle avoidance system we describe in this pa-

per is designed in accordance with the Real-Time Control
System (RCS) hierarchical architecture described in [11.
RCS decomposes goals both spatially and temporally to
meet system objectives. It monitors its environment with
sensors and updates models of the states of the system itself
and the world. Figure 1 maps the functionality of the obsta-
cle avoidance system into the first three levels of the RCS
hierarchy.

SP WM BG

SERVO

t I
wide-angle video motors

Figure 1. ObstacIe Avoidance Architecture

RCS is composed of three parallel legs, sensory pro-
cessing (SP), world modeling (WM), and behavior genera-
tion (BG) that interact to control complex systems. The hi-
erarchical levels run in parallel and are labelled, from high-
est to lowest, tribe, group, task, e-move (elemental-move),
prim brimitive) and servo. The BG modules control phys-
ical devices. The WM modules supply information to both
the BG hierarchy and the SP hierarchy. It maintains a data-
base of system variables and filters and analyzes data using
support modules. The SP modules monitor and analyze
sensory information from multiple sources in order to rec-
ognize objects, detect events and filter and integrate infor-
mation. The world model uses this information to maintain
the system’s best estimate of the past and current states of
the world and to predict future states of the world.

3. Full image flow estimation
Robust, real-time optical flow has become a practical

means of robotic perception given new fast algorithms and
increasingly faster scientific workstations. Given that our
entire system (flow, divergence, and body control) is im-
plemented on a sjngle workstation without the benefit of a
real-time operating system, it is important to have suffi-
cient processor idle time available to buffer the overhead of
the operating system, otherwise the image capture frame
rate could vary from frame to frame. Camus [6] describes a
robust, real-time correlation-based optical flow algorithm
which returns dense data even in areas of low texture. This
algorithm is the starting point of our new implementation.

In correlation-based flow such as in [5] the motion for
the pixel at [x,y] in one frame to a successive frame is de-
fined to be the determined motion of the patch P, of
v x v pixels centered at [x,y], out of (2q + 1) x (2q + 1)
possible displacements (where is an arbitrary parameter

dependent on the maximum expected motion in the image).
If $ represents a matching function which returns a value
proportional to the match of two given features (such as the
absolute difference between the two pixels’ intensity val-
ues E , and E, respectively), then the match strength
M(x,y;u,w) for a point [x,y] and displacement (u,w) is cal-
culated by taking the sum of the match values between each
pixel in the displaced patch P, in the first image and the
corresponding pixel in the actual patch in the second im-
age:

V(U> w) M (x , y ; w) (1)

= C $ (~ ~ (i , i> - E2(i + U, i + w > >
(i , j) E P,

The actual motion of the pixel is taken to be that of the
particular displacement, out of (2q + 1) x (2q + 1) possi-
ble displacements, with the maximum neighborhood match
strength (equivalently minimum patch difference); thus
this is called a “winner-take-all” algorithm.

correlation
match

strength

parabolic roof-pc
magnitude
estimate \

:ak
ude
e

L \ J

pixels
per

frame
1/4 U3 1/2

maximum
correlation 2 strength

e quantized magnitudes
adjacent to vector with
max correlation strength

Figure 2: Parabolic and roof estimation methods.
One limitation with the traditional correlation-based

algorithm is that its time complexity grows quadratically
with the maximum possible displacement allowed for the
pixel [5] [7] . Intuitively, as the speed of the object being
tracked doubles, the time taken to search for its motion qua-
druples, because the area over which we have to search is
equal to a circle centered at the pixel with a radius equal to
the maximum speed we wish to detect. However, note the
simple relationship between velocity, distance and time:
vel = (6dist)/(6time). Normally, in order to search for
variable velocities, we keep the inter-frame delay & con-
stant and search over variable distances (pixel shifts):
AV = (Ad)/(&), d < q . However, doing so results in an
algorithm that is quadratic in the range of velocities
present. Alternatively, we can keep the shift distance Fd

324

constant and search over variable time delays:
AV = (W) / (A t) . In this case, we generally prefer to

keep 6d as small as possible in order to avoid the quadratic
increase in search area. This time-space trade-off results in
a very fast algorithm: optical flow can be computed on
32x64 images (subsampled from 256x5 12), calculating 5
speeds per frame, at up to 35 frames per second on a 80
MHz HyperSPARC’ computer.

The above algorithm retums quantized optical flow
values. Although this is sufficient for various robotics vi-
sion tasks [6][10][113, it is not sufficient for our application
since the calculation of divergence requires that the spatial
derivatives of the optical flow can be measured. Because
the quantized optical flow is basically a step function, these
derivatives do not exist. Smoothing the optical flow field
would require extremely large masks and would therefore
likely cover multiple objects simultaneously. This would
be especially problematic since a wide-angle lens is used
and individual objects do not occupy more than a small
fraction of the visual field. Calculating a least-squares best
fit to the correlation surface such as in [3] was ruled out due
to real-time performance requirements.

vectorS adjacent to
direction of best match n direction of best matching

vector along with the two
adjacent magnitude vectors

’ \ flow vector
estimated

vectors adjacent to
direction of best match

Figure 3: Angular estimation of flow vector.

In order to avoid a computationally expensive search
for the true flow, the 2-dimensional search space was de-
composed into two l-dimensional searches, the first esti-
mating the magnitude of the flow vector and the second es-
timating the precise angle of the true flow vector. (The ac-
tual flow is returned as the X and Y components of the
flow. Converting to polar coordinates can be done in the
usual way.) Both the directional component as well as the
magnitude component of the flow are quantized. The first
one-dimensional interpolation is along the magnitude com-
ponent of the flow. The correlation match values for the
best motion of a given pixel along with the match yalues for
the flow vectors of “adjacent” magnitudes in the same di-
rection (i.e., of plus and minus one time delay in frames)

1. Certain commercial equipment, instruments, or materials
are identified in this paper in order to adequately specify the
experimental procedure. Such identification does not imply
recommendation or endorsement by NIST, nor does it imply
that the materials or equipment identified are necessarily best
for the purpose.

are used. Roof interpolation is used to find the total time
delay corresponding to the minimum correlation match
value as shown in Figure 2. Two lines are formed with the
best correlation match strength and the match strengths
corresponding to those two time delays which immediately
bracket the time delay with the best match. Substituting the
steeper of the two slopes for the more gradual of the two re-
sults in a single intersection of the two lines: the abscissa of
this point is taken as the new interpolated magnitude com-
ponent of the flow.

The second interpolation is along the angular compo-
nent of the flow. We wish to calculate the corresponding
match values for flow vectors of neighboring vector direc-
tions but of the same magnitude as just calculated for that
pixel. (Since we only calculate the correlation march values
for eight directions of motion, this means that each neigh-
boring direction is 45 degrees from that motion vector with
the best correlation match.) This interpolation is not trivial
since the magnitude of the motion along the diagonals is
the f i times that of motion along the N E W S directions
for a given velocity (time delay). In order to perform the
second 1-dimensional interpolation it is necessary to esti-
mate the correlation matches values of the neighboring di-
rection at the same magnitude as the best matching flow
vector. Although the roof interpolation was slightly more
effective than parabolic interpolation for finding a real-val-
ued magnitude for a given optical flow vector, it was found
to have the disadvantage of not returning as accurate a cor-
relation match value estimate. A more accurate correlation
match value estimate was instead found by calculating the
coefficients of an interpolating parabola and taking the cor-
relation match value at the same magnitude as found during
the roof interpolation stage. The following formulas for the
parabola coefficients were derived given a parabola
ax2 + b x + c :

a =
(Y 2 -Yo> + (xo - X Z) (Y , - Y ,) / (X , - X I))

- (x0l2 + (xo - x2)((x1)2 - (xo>2) / (x1 - xo) ’

Y1 - Y o - a ((x 1) 2 - (x o) 2)
b =

X I -xo
c = yg - c z (x ~) ~ - bxo .

Once these coefficients are calculated, it is possible to
estimate the correlation match strength at any point (mag-
nitude) in any given direction. In particular, the correlation
match strengths measured at the same magnitude as the
best correlation match for that pixel may be estimated at
those two angles (out of eight measured) which bracket the
best matching motions direction; this allows the simple ad-
ditional one-dimensional interpolation to provide the inter-
polated angle of motion. Figure 3 shows this graphically;
thin lines represent parabolic interpolations of three given
correlation match values.

This double one-dimensional interpolation calculation
cuts the frame rate approximately in half: real-valued opti-
cal flow can be computed on 32x64 images, calculating and

325

such templates may be performed extremely quickly using
a boxjilter as described in [6]. In order to improve the con-
sistency of the divergence estimates, we apply temporal
and spatial median filters to the individual divergence cal-
culations. Figure 4. Flow Divergence Templates

interpolating 5 speeds per frame, at up to 17 frames per sec-
ond on a 80 MHz HyperSPARC computer. In practice, the
flow is run at only about 4 Hz. This consumes from 20-25%
of the processor's total time and allows the entire system to
run easily on a single workstation with a consistent frame
rate and about a 20% processor idle time to buffer unex-
pected operating system events.

4. Divergence for Obstacle Avoidance
Divergence of the flow field is computed in the central

band of the wide-field camera. Divergence can be used to
qualitatively estimate time-to-contact (T,). Both theory and
implementation are discussed here as well as consider-
ations for employing T, qualitatively estimated from di-
vergence for obstacle detection by a moving robot.

The equations for the x and y components of optical
flow (Ox, Or) due to general camera motion (arbitrary
translation and rotation) in a stationary environment are
ox = (l / Z) (- T x + x T z) + x y o x - (1 + x 2) w +yo \

1
(

oy = (1 / z) (- T y + Y T z) + ((1 + y)ox-xyo Y -"az
y z i

2

where Z is the depth of the object in the environment rela-
tive to the camera, (T,, T,, T,) and (ox, a,,, oz) are the
translational and rotational motion of the environment rel-
ative to the camera. The divergence of an optical flow field

ao, ao,
ax ay is defined as: Vo(Ox, 0,) = - + - whenever the

imaged surface is a mostly perpendicular surface or the
gradient of the imaged surface is perpendicular to the trans-
verse velocity (T,, T,) . In our experiments, the values of

(T,, Ty) are qualitatively equal to zero. Divergence can
qualitatively estimate directly Time-to-Contact [8]

(2)
This measurement is particularly useful for obstacle avoid-
ance during visual navigation because divergence is invari-
ant under the rotational motion of the sensor that is inevita-
ble due to imperfect stabilization.Equation (2) suggests that
divergence has only time as its dimension. The values of di-
vergence over any significant area represent the inverse of
the time needed to reach an object at distance 2 with ve-
locity T , in the z direction. Therefore, a family of simple
fixed flow divergence templates can be applied to any im-
age sequence to estimate divergence [15]. Each template is
symmetrically divided into positive and negative halves
(Figure 4). Flow divergence is calculated by convolving
the template with a window in the flow image and comput-
ing the sum of the image flow derivatives in perpendicular
directions. In particular, the convolution of the first two

Vo(Ox, Or> = 2 . T , /Z .

5. Simple Robust Filters
Medians performed on dense two-dimensional data

can use fast running-histogram methods if the dynamic
range of the data and desired resolution of the median can
be specified [12]. That algorithm was intended for finding
the m e median and reduces an O(nm) complexity algo-
rithm to approximately O(n) per pixel for a n x m filter-
ing window where n c m . It can however be generalized
to the separable median [141 reducing its complexity from
O (n) to approximately constant time. This approach as-
sumes that there are only a limited number of bins, which
would not be the case with floating-point data. In that case
one could modify the algorithm to first quantize the data
into 256 bins and then use quicksort-partitioning [16] to
find the true median within the bin which is known to con-
tain it. In our case however, divergence data were quan-
tized to 256 parts in order to reduce data bandwidth so this
extension is not necessary. Although the separable median
is not guaranteed to find the true median, the effects of the
separable median in otherwise reducing noise is almost as
good as the true median [14].

The current system first performs a 11x17 (row times
column) width spatial median filter, with the height of the
filter smaller due to the flat rectangular images used. A sec-
ond filtering is performed, with a dimension of 11 in space
and 11 in time. Since it would be undesirable to have a de-
lay in a real-time system, we simply localize the temporal
median filter such that its leading edge includes the current
data point but no future data points.

The separable median as well as the true median filter
both have the desirable property of preserving horizontally
and vertically aligned edges, which means that unlike
many other averaging or smoothing filters there is no tem-
poral hysteresis. Unlike the true median however, the sep-
arable median has the additional desirable property of pre-
serving comers [14]. Preserving comers is especially valu-
able in time-space or other plots, since an erosion of an
object's full spatial and/or temporal extent could create the
illusion of open space and cause a collision.

6. Driving Control
The robot's task is to avoid obstacles while achieving

mobility goals. In general, such goals might be specified by
coordinates in a map, features that uniquely identify a loca-
tion, or simply features that satisfy a precondition required
for the next subtask (Le. the mobility goal might be posi-
tioning the robot to pick up an object.) Ideally, the robot
would survey the visual data to identify the direction near-
est its desired path that is also a safe direction in which to
travel. In these experiments, the goal is to maneuver with-
out collision using only flow divergence to sense the envi-
ronment. The robot's behavioral goal is simply to drive for-

326

vision -@-e- behavior

imminent
& o r halt signal collision

Figure 5. Body Control Automaton
ward, steering away from obstacles in its path, and to stop
and turn when it senses that collision is imminent.

The robot drives at up to 20 c d s . The steering policy
uses the sensed flow divergences to steer around obstacles
while attempting to steer toward the provided goal direc-
tion. (In these experiments, the goal direction was always
simply straight ahead.) Indication of imminent collision in
the central region of the divergence data causes the robot to
stop, tum away and resume wandering. This sequencing is
implemented with a finite state automaton, with a com-
mand associated with each state (Figure 5). Some state
transitions are triggered by sensed events, and others mere-
ly provide command sequencing.

A view of the robot is provided in Figure 6 (a). It con-
sists of two cameras mounted on a hollow steel cage at-
tached to a TRC Labmate platform. Although both cameras
were used in [8], only the top wide-angle camera is used in
the current system. The robot’s tether, consisting of video
cables, the connection to the gaze motor controller, and a
serial communications line to the Labmate can also be
seen.

The steering policy is implemented using hazard maps
derived from flow divergence, the desired goal direction,
and the target heading, e,, previously selected by the
steering policy. Each hazard map is a 1-dimensional vector
that encodes the “risk” associated with each possible steer-
ing direction.

One hazard map is derived from the divergence data (a
@-element wide vector per sample interval) that indicates
obstacles and also encodes the cost of crossing “ridges” in
the divergence vector, starting from the previously selected
heading. Similarly, another hazard map is derived from the
desired goal direction and the previously selected heading
(accounting for the gaze angle). This map is roughly a
trough centered mid-way between the previously selected
heading and the goal heading, which has the effect of draw-
ing the selected heading back to the goal direction in t h e ab-
sence of obstacles in this path.

These hazard maps are combined into a single hazard
map by adding the component hazard maps. The steering
policy chooses the direction of minimum hazard in the
composite map, with a preference for directions nearest the
previously selected heading in case of a tie. The result in
general is that if any sensing mode shows strong evidence
of danger in some direction, it is unlikely that direction will
be chosen. A composite hazard map is shown in Figure 6(c)

communications
time-out turn done

away

and the resulting path of the robot appears in (d) for the
gauntlet of office chairs seen in (b) from the robot’s view-
point before the trial began.

When a new desired heading is chosen, the robot steers
smoothly to it with saturated negative visual feedback con-
trols [9]. Desired change in heading, A8 , is then calculat-
ed, accounting for the current gaze angle, 8, , with respect
to heading: A0 = 8, i 8,. The steering control policy is
simply a saturated steering velocity proportional to the de-
sired heading: 0 = Saturate(k, . A8 . l /T, ,s) . The gain
k, determines how quickly the steering is servoed to the
desired heading. Time is normalized to seconds by dividing
by the body control cycle time, T , . Thus angular velocity
is expressed in degreesls rather than degreeslcycle. For in-
stance, setting ks = 0.3 will command a velocity that
would reduce the error by 30% in the next control cycle (as-
suming nearly instantaneous acceleration). The angular ve-
locity is saturated at deg/s to limit the peak rotation rate
to reasonable levels.

The robot steering and collision detection improve
when the robot turns relatively slowly for two reasons: (1)
temporal consistency of spatial samples, and (2) accuracy

I ‘ ! X
0.00 200.00

(d)
Figure 6: (a) View of the robot; (b) robot’s view of the
gauntlet of office chairs at the start of the trial; (c) haz-
ard map (with time increasing upward); (d) XY path

trace beginning at (0’0).

321

gaze angle

init 5) halt signal

communications
time-out

Figure 7. Gaze Control Automaton

of motion estimates. Therefore, the behavior and motor
control systems reduce rotation of the cameras. This is ac-
complished by stabilizing the cameras with active motor
commands and by limiting rotation of the body so the gaze
stabilization system is not overstressed. Despite these pre-
cautions, gaze stabilization is imperfect and some data are
contaminated. However, the edge-preserving spatio-tem-
poral median filtering effectively discards intermittent poor
data.

7. Gaze Control
The nonlinear gaze control is a nystagmus, a repetitive

eye motion of slow phase rotations punctuated by quick
phase rapid returns. It is also implemented as a finite state
automaton (Figure 7). The camera is rotated at velocity

d, = -0 to counter the body rotation and stabilize the
camera images. The gaze control also checks the deviation
of the gaze angle, 0, , from the robot’s heading and snaps
the camera back to the heading if the limit is exceeded.

The saccades that perform the quick-phase retum to
realign gaze with the robot’s heading briefly produce ex-
tremely large image flows. These large flows often are en-
countered by the flow estimator. Although the resulting di-
vergence estimates are unusable, the edge-preserving spa-
tio-temporal median filtering effectively discards them,
providing only the divergences observed preceding and
following the saccade.
8. Experiments and Results

Experiments with the obstacle avoidance system were
performed in a laboratory containing office furniture and
robot and computing equipment. Furniture and equipment
lined the walls and there was free space roughly 7 m by 4
m in the center of the lab. Office chairs provided obstacles.
In addition, there was some space leading to doors in two
comers of the lab. In all experiments, a single camera with
a 115’ field of view was used. Only the half height band
in the center of the image was processed. (See Figure 6 for
an example of the robot’s view of the lab.) Three set of ex-
periments where performed. (1) “Crash tests” evaluated the
system’s ability to detect obstacles and warn of imminent
collision. (2) The “gauntlet trials” tested the robot’s ability
to maneuver around obstacles in its environment while
traveling across the lab. (3) Wandering trials tested the ro-
bot’s ability to move about for extended periods of time.

8.1. Crash tests

Initial experiments tested the robot’s ability to detect
obstacles and warn of imminent collision. A row of chairs
was placed across the far end of the lab and the robot drove
straight toward it at fixed speeds. The system detected ob-
jects (at divergence levels above the noise level) at ranges
up to 6 m (the maximum testable distance in the lab) at for-
ward speeds ranging from 0.1 to 0.8 d s . The divergence
signal arising from an object rose reasonably smoothly as
the object was approached, and the object continued to be
visible until the robot approached very near. Based on these
trials, an imminent collision function was derived for robot
speeds up to 0.8 m/s .

8.2. Gauntlet trials

The robot ran a gauntlet of office chairs to demonstrate
the system’s ability to avoid obstacles while traversing the
lab. The lab setup and results are shown in Figure 6. In Fig-
ure 6 (d) each inflection point in the curve represents an
evasive turn. The robot frrst deflected left to avoid the
chairs blocking its path and then continued traversing the
room, deflecting to the right to avoid the opposite row of
chairs. An MPEG of the second half of this sequence, along
with simultaneous flow and divergence estimates, is avail-
able at the first author’s WWW address. In these mals the
robot traveled at 20 cm/s and steered at a maximum rate of
8 deg/s.

Gaze stabilization contributed considerably to the ef-
fectiveness of the system by reducing the magnitude of the
image flows while the robot was steering. In control trials
without gaze stabilization, analysis of the data showed that
image flows observed while the robot was steering routine-
ly exceeded the range of the flow estimation system. The
resulting corrupted data rendered obstacles “invisible” and
the robot consequently failed to see obstacles as it complet-
ed evasive maneuvers. The simple memory of the steering
policy and the spatio-temporal edge-preserving median fil-
tering of divergence served to commit the robot to a single
course around an obstacle until it had cleared.

8.3. Wandering trials

The third experiment was a test of duration. In the
wandering trials, the robot was permitted to wander about
the relatively uncluttered lab one day while the authors pre-
pared a report of the present work. Throughout the day, 13
trials were run and data were collected. In these trials, the
robot was started toward open space from various locations
in the lab. The longest trial lasted 26 minutes. The path of
the robot in the final 8 minutes of this trial is shown in Fig-
ure 8. A moderate length path of about 7 minutes is shown
entirely in Figure 9. The mean trial length was roughly 7.1
minutes and the median length was 6.75 minutes. While the
robot generally drove back and forth along similar paths, it
also often worked its way out of such limit cycles. These
results were achieved with extremely simple behavior con-
trol. More sophisticated behavior control making use of

328

X - Y plot: trial 1, last 8 of 26 minutes of the images used. In addition, our system implements
both wide-angle and narrow-angle camera functions using Y

I

I only one wide-angle camera and a single framegrabber, un-
I I * I I i like the two cameras and video channels used in [SI.

I

I
isom

1 I I I I

-3mw - 2 m ~ -imm om imm m m

Figure 8: Wandering trial XY path.
various mechanisms (e.g., an explicit notion of segmented
objects, adaptation) to derive or interpret hazard maps can
be expected to shorten the time to escape such situations.
The robot also covered a considerable fraction of the lab’s
open space in the longer trials. The failure mode that most
commonly terminated these trials with collision are dis-
cussed in section 9. While this performance falls far short
of the ideal of limitless collision-free (however crude) mo-
bility as a base of competence, it is promising enough to be
considered as a low-level competence in a goal-directed
mobile robot system.

9. Discussion
Some researchers [131 [181 have proposed using diver-

gence or flow derivatives for visual cues, but they do not
provide real-time implementations of these ideas. Nelson
and Aloimonos [151 used directional flow divergence for
stop-and-look obstacle avoidance (not real-time smooth
driving). Their environments were much simpler than ours
and they did not demonstrate extensive robust behavior
over extended periods of time.

Duchon and Warren [lo] demonstrated flow and flow-
derived time-to-contact for free wandering at 5 c d s as
long as 5 minutes. Their most robust steering strategy was
balancing peripheral flows (i.e., “corridor-following”).
However, this strategy is not easily adapted to goal-orient-
ed behavior.

Coombs et ai [8] also used flow to implement “corri-
dor-following’’ and used divergence to detect imminent
collision. Our work achieves similar results using diver-
gence alone and is therefore not limited to “comdor-fol-
lowing.” Our system supports goal-directed behavior while
providing local obstacle avoidance. The method of optical
flow described in this paper has been shown to detect ob-
stacles as far away as 6 meters under good conditions
where the flow returned from the PIPE was practically lim-
ited to a range of about 1 to 2.5 meters due to the difficulty
of detecting edges of far away surfaces. The range of our
system is even more remarkable given the coarse resolution

X - Y plot: trial 0, 7.67 minutes
Y

I

300.00 I, I

-lso.m I I I I I/ A’
I

I 1 I I X

Figure 9: Wandering trial XY path.

System performance depends on many factors. Under-
lying the divergence estimates are image flow measure-
ments. Although divergence is theoretically unaffected by
camera rotation, rotation contributes directly to image
flow. The system calculates image flow using a correlation
method, which, like all techniques, has limited spatiotem-
poral sensitivity. In particular, large flows are underesti-
mated, so fast camera rotation can cormpt the image flow
estimates on which the divergence estimates rely. Similar-
ly, differential measures such as flow and divergence are
inherently susceptible to noise.

Our system relies on gaze stabilization and robust data
filters to cope with these problems. Rotational stabilization
of the camera reduces flow magnitudes to manageable lev-
els. The brief disturbances introduced by saccades that re-
orient the camera to the robot’s heading are ignored by the
spatial and temporal median filters that also suppress noise
(in contrast to a non-robust smoothing filter which would
be affected). This enables the modules to cooperate without
tight coordination.

The primary cause of system failure consists of a col-
lision with an obstacle in one of the lower comers of the
full-sized image. Currently due to real-time requirements
only a central 256-pixel band of the 5 12-pixel height image
is used in calculating flow. Grabbing the bottom 256 rows
of the 5 12 rows available would enable these objects to be
seen. However, lowering the visual band taken from the
full field of view is undesirable since this also lowers the
top edge of the image and thus limits the maximum visual
range of the system. Given that the current image size al-
lows for about a 20% idle time to buffer operating system
(OS) events, it is likely that a system making use of real-
time OS facilities could use this available CPU time to pro-
cess a larger image.

som
I
OW -IYJW -imm -%m

329

It has been argued that there are computational advan-
tages in keeping the search radius of the optical flow algo-
rithm as small as one pixel [6] and keep the frame rate high.
It should be noted that because images are subsampled
from 256x512 pixels to 32x64 pixels in size, a single pixel
shift at the new coarser scale is equal to an 8 pixel shift at
the original resolution. In addition, since sub-pixel flows
are detected, a magnitude of 1/2 pixels per frame corre-
sponds to a 4 pixel shift at the old resolution, 1/4 pixels per
frame corresponds to a 2 pixel shift, etc. Even so, when the
robot is rotating the optical flow velocities can be extreme-
ly high. In this application we can easily modify the search
space so that faster velocities are detected only in the hori-
zontal directions where the greater flows occur. This would
allow faster turning velocities without saturating the flows
but only linearly increase the computational time used.

10. Conclusions
A robot system is presented that uses only real-time

motion divergence to avoid obstacles while driving toward
a specified goal direction (straight ahead in this demonstra-
tion) in a lab containing office furniture and robot and com-
puting equipment. The robot has wandered around the lab
at 20 c d s for as long as 26 minutes without collision. To
our knowledge, this is the first such demonstration of real-
time smooth wandering using only flow divergence.

The paper describes how flow divergence is computed
in real-time to provide the robot’s sense of space and how
steering, collision detection, and camera gaze control coop-
erate to avoid obstacles while the robot attempts to drive in
the specified goal direction. The major contribution is the
demonstration of a simple, robust, minimal system that
uses flow-derived measures to control steering and speed to
avoid collision in real time for extended periods.

Although image motion has long been considered a
fundamental element in the perception of space, attempts to
use it in real-world mobility tasks have always been ham-
pered by problems such as noise, brittleness, and computa-
tional complexity. We demonstrate for the first time that
robust image motion cues can be extracted using a single
ordinary UNIX workstation to safely move about a com-
plex environment in real-time for extended periods. These
results demonstrate that real-time robot vision and control
can be achieved with careful implementations on ordinary
computing platforms and environments. Similarly, an ex-
tensible framework can combine simple robust compo-
nents in a manner than minimizes requirements for tight
synchronization.
11. References
[11 J. Albus. “Outline for a Theory of Intelligence,” IEEE

Transactions on Systems, Man and Cybernetics,
21(3):473-509, 1991.

[2] J. Aloimonos, I. Weiss, and A. Bandyopadhyay, “Ac-
tive Vision,” International Journal of Computer Vision

[3] P. Anandan, “A Computational Framework and an Al-
gorithm for the Measurement of Visual Motion”, Inter-

1: 333-356, 1988.

national Journal of Computer Vision, 2:283-310, 1989
[4] D. Ballad and C . Brown, “Principles of Animate Vi-

sion,’’ CVGIP: I m g e Understanding, 56(1):3-21, 1992.
[5] H. Biilthoff, J. Little, T. Poggio, “A Parallel Algorithm

for Real-time Computation of Optical Flow”, Nature
337(6207):549-553,9 Feb 1989

[6] T. Camus, “Real-Time Quantized Optical Flow”, to ap-
pear in The Journal of Real-Zme Imaging (special issue
on Real-Time Motion Analysis), Academic Press, 1996.

Adaptive Real-Time Tracking”, Mobile Robots VI, Wil-
liam J. Wolfe, Wendall H. Chun ed., Proc. SPIE 1613,
p.268-276, Nov. 1991

[8] D. Coombs, M. Herman, T. Hong, and M. Nashman.
“Real-time Obstacle Avoidance Using Central Flow Di-
vergence and Peripheral Flow,” In Proc. of ICCV 1995,
the F$th International Conference on Computer Vision,
Cambridge, Massachusetts, June, 1995.

1980.

from a Gibsonian Viewpoint,” Proc., SMC 1994, IEEE
International Conference on Systems, Man, and Cyber-
netics. (San Antonio, TX, October 2-5) pp. 2272-2277,
1994.

[1 13 A. Duchon, W. Warren, and L. Kaelbling, “Ecological
Robotics: Controlling Behavior with Optical Flow”, pp.
164- 169, Proceedings of the Seventeenth Annual Con-

ference of the Cognitive Science Society, Pittsburgh, PA
July 22-25, 1995. Johanna D. Moore and Jill Fain Leh-
man, eds. Lawrence Erlbaum Associates, Mahwah, NJ.

[121 T. Huang, G. Yang, G. Tang, “A Fast Two-dimension-
al Median Filtering Algorithm”, IEEE Transactions on
Acoustics, Speech, and Signal Processing, 1: 13-18, Feb
1979

[131 J. Koenderink and A. van Doom., “Optic Flow,’’ Vi-
sion Research, 26(1):161-180, 1986.

[141 P. Naxendra, “A Separable Median Filter for Image
Noise Smoothing”, IEEE Transactions on Pattern Anal-
ysis and MAchine Intelligence, 3(1):20-29, Jan 1981.

[151 R. Nelson and Y. Aloimonos. “Obstacle Avoidance
Using Flow Field Divergence,” IEEE Transactions on
Pattern Analysis and Machine Intelligence,
1 1 (IO): 1 102- 1 106, October 1989.

[61 W.H.Press, S.A. Teukolsky, W.T.Vetterling,B.P.Nan-
nery, Numerical Recipes in C (second edition), Cam-
bridge University Press, 1992

[71 D. Raviv and M. Herman, ‘‘Visual Servoing from 2-D
Image Cues,” In Active Perception, Y Aloimonos, ed.,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 191 -
226, 1993.

[18] M. Tistarelli and G. Sandhi, “On the advantages of
Polar and Log-polar Mapping for Direct Estimation of
Time-to-Impact from Optical Flow,” IEEE-PAMI, April,
1993.

[7] T. Camus, H. Biilthoff, “Space-Time Trade-offs for

[9] R. Dorf. Modern Control Systems, Addison-Wesley,

[IO] A.P. Duchon and W.H. Warren, “Robot Navigation

330

