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Abstract 

We consider the problem of zone class$cation in 
document image processing. Document blocks are la- 
belled as text or non-text using texture features de- 
rived from a feature based interaction map (FBIM), 
a recently introduced general tool for texture analysis 
[3, 41. The zone classijication procedure proposed is 
tested on the comprehensive document image database 
UW-I created at the University of Washington in Seat- 
tle. Different class$cation procedures are considered. 
The performance ranges from 96 % to 98 % using 6 
FBIM texture features only. 

1. Introduction 

Document image understanding involves determin- 
ing the geometric page layout, labeling blocks as text 
or non-text, determining the read order for text blocks, 
recognizing the text of text blocks through an OCR 
system, determining the logical page layout, and for- 
matting the data and information of the document in a 
suitable way for use by a word processing system or by 
an information retrieval system [S]. The zone classifi- 
cation or labeling is an important step in the document 
image understanding process. 

A geometric page layout of a document image page is 
a specification of the geometry of the maximal homoge- 
neous regions and the spatial relations of these regions. 
A region is homogeneous if all its area is of one type: 
text, or figure etc. and each text line of the page lies 
entirely within some text region of the layout. Many of 
the page segmentation algorithms for determining ge- 

*computer and Automation Research Institute, Bu- 
dapest, Kende u-13-17, H-1111 Hungary. E-mail: 
mitya@leader.ipan.sztaki.hu. 

tUniversity of Washington, Seattle, USA. 

1015-4651/96 $5.00 0 1996 IEEE 
Proceedings of ICPR ‘96 

ometric layout have the zone labeling modules embed- 
ded in their systems. Wahl et. al. [14] extract features 
of the blocks including the area of the connected com- 
ponent of the block, the number of black pixels in the 
block on the original document image, the mean hor- 
izontal black run lengths of the original image within 
the blocks, and the height and width of the bounding 
rectangle of the block. Text areas are classified into 
text, horizontal solid black lines: graphic and halftone 
images, and vertical solid black lines. Fisher et. al. [8] 
extract connected component features of the run length 
smoothed image, such as component height, width, as- 
pect ratio, density, perimeter, and area for classifying 
each block as text or non-text. Saitoh and Pavlidis [ll] 
classify each component into text, text or noise, dia- 
gram or table, halftone image, horizontal separator, or 
vertical separator, using block attributes such as block 
height, height to width ratio, and connectivity features 
of the line adjacency graph, and whether there are ver- 
tical or horizontal rulings. Pavlidis and Zhou [lo] label 
each block as text or non-text using features such as 
ratio of the mean length of black intervals to the mean 
length of white intervals, the number of black intervals 
over a certain length, and the total number of intervals. 
Amamoto et. al. [13] decide a block is a text block if 
the length of the longest black run length in the ver- 
tical and horizontal directions is smaller than a given 
threshold. Each block is then assigned a class label 
from the set: text, figure, image, table, and separation 
line. Belaid and Akindele [I] label the blocks’ contents 
as small letter text, medium letter text, large letter 
text, graphics or photographs, based on the connected 
component analysis and rules which are determined be- 
fore hand during a learning stage. Sivaramakrishnan 
et. al. [12] extract features for each zone such as run 
length mean and variance, spatial mean and variance, 
fraction of the total number of black pixels in the zone, 
and the zone width ratio, and use a decision tree clas- 
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sifier to assign a zone class on the basis of its feature 
vector. Jain and Zhong [9] utilize a neural network to 
train a set of masks for discriminating three main tex- 
ture classes: halftone, background, and text and line 
drawing regions. The text and line-drawing regions are 
further discriminated based on connectivity analysis. 

However, except for Sivaramakrishnan et.al. [12] 
who tested their module on a significantly large data 
set (UW-I document image database), there was no 
systematic evaluation of the performance of the zone 
classification modules. In the present study, we also 
use the UW-I database to evaluate the performance of 
the FBIM texture features in document zone classifica- 
tion. The FBIM has been recently introduced in [3, 41 
as a new general tool for texture analysis. As a pi- 
lot proof of the efficiency of this tool, we show that the 
FBIM texture features can be applied to document im- 
age analysis. Our zone classification approach is based 
on textural characteristics only. This imposes certain 
lower limit on the size of the zone but at the same time 
speeds up the procedure as the original resolution of 
the document image can be drastically reduced. 

In section 2 we briefly describe the main aspects of 
the FBIM approach, then introduce those FBIM tex- 
ture features that are proposed for text/non-text sepa- 
ration. The classification procedures, the experimental 
protocol and the results of the tests are presented in 
section 3. 

2. FBIM features for text separation 

A texture feature-based interaction map 13, 41 dis- 
plays the structure of statistical pairwise pixel inter- 
actions evaluated through the spatial dependence of a 
gray-level difference histogram (GLDH) feature. The 
FBIM approach uses the extended GLDH (EGLDH) 
introduced earlier in [2]. This extension was necessary 
to provide, at arbitrary spacings, the angular resolution 
required for accurate anisotropy analysis. The EGLDH 
overcomes the problem of interdependence of the an- 
gle and the magnitude of the spacing vector arising in 
a digital image when the conventional GLDH is used. 
Here, we only give a brief partial description of the 
FBIM approach sufficient for understanding its use in 
zone classification. Other functions and major algo- 
rithms of the method are described elsewhere [3, 41. 

The polar interaction map-the basic entity of the 
method-is an intensity coded polar representation of 
an EGLDH feature, with the columns enumerating the 
magnitude, the rows the angle of the varying spacing 
vector. It is obtained as follows: 

For a discrete set of spacing vectors d;; = (ai, dj), 
Qi E [O,~T], i = O;...rMl, dj E [l,d,,,], 

Figure 1. Computing the FBIM features for dif- 
ferent types of zones. Each row shows a zone 
image, the interaction map, the central part of 
the map, its row projections and the column pro- 
jections of the negated map. Row 1: text. Row 2: 
drawing. Row 3: Imath. Row 4: halftone. Row 5: 
table. 

j = o,... , M2, compute the extended histogram 
H(lc;a,,dj) and an EGLDH feature F(cui, dj), De- 
fine polar feature based interaction map as M,l(i,j) = 
F(ai,&). 

MPl(i,j) is then transformed to the Cartesian coor- 
dinates to obtain the Cartesian (XY) interaction map 
MXy(m, n) which is used in our zone classification pro- 
cedure. 

In this study, we use as the EGLDH feature the me- 
dian of the absolute gray-level differences. Alternative 
EGLDH features can also be applied. They are similar 
to the standard GLDH features proposed in [6]. 

Examples of interaction maps for various types of 
zones are shown in figure 1. In these examples, the size 
of the polar interaction map matrix is 72 x 15, which 
corresponds to the angular resolution of 5 degrees and 
the maximum spacin.g of 15 pixels. The original reso- 
lution of the zone images has been reduced by a factor 
of 8. 

In the text separation procedure, we assume that the 
document image has been partitioned into homogenous 
zones, i.e. blocks of certain type: text, table, math, 
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etc. Our task is to classify the zones into text or non- 
text using the FBIM texture features designed for this 
purpose. This is possible because text has a charac- 
teristic textural structure which exhibits itself in the 
interaction map. The FBIM features proposed are se- 
lective to the typical layout of a text map as a periodic 
arrangement of horizontal lines corresponding to the 
lines of the text. If a zone includes at least two lines of 
text, there are two or more distinct maxima in the row 
projections of the map and no distinct maxima in col- 
umn projections of the negated map. This is because 
texts are normally dense, with a moderate number of 
background-to-background transitions in the vertical 
direction. The letters occupy about half of the zone, 
i.e. the difference in area between the dark and the 
light runs of the projections is relatively low. 

The following FBIM features were used for zone clas- 
sification: 

RMAX = 
1 if MAPRO W has at least 2 maxima 
0 otherwise 

RHT = average height of maxima in MAPROW 

RWD = average width of maxima in MAPROW 

CHT = average height of maxima in MAPCOL 

CWD = average width of maxima in MAPCOL 

Here MAPROW and MAPCOL are the row 
and the column projection arrays, respectively, 
darkarealtotalarea the fraction of the total area of 
MAPROW occupied by the dark runs. (See figure 1.) 
Only distinct maxima are considered. If there is no dis- 
tinct maxima in MAPROW (MAPCOL), by default 
RHT = RWD = 0 (CHT = CWD = 0). 

Texture features can only be defined for those zones 
that are large enough to exhibit textural properties. 
Many of the zones in the UW-I database documents are 
small blocks like page numbers or very short, specific 
texts, e.g. headlines. These zones cannot be treated as 
two-dimensional textures and no characteristic struc- 
ture of the interaction map can be expected for them. 
Such zones were rejected. The zone size rejection cri- 
terion was designed so as to accept only those zones 
that include at least two lines of a large font. A similar 
limit was set for the number of columns. In our tests, 
the minimum zone size was 160 by 80. This reduced 
the number of zones from the original 13831 to 4713. 
Other methods should be applied to classify the small 
zones. 

On the other hand, the FBIM texture features do 
not need the original high resolution of the document 

images. Textural appearance of, say, a table differs 
from that of a text at much lower resolution. For this 
reason, the resolution of the UW-I images was reduced 
by a factor of 8 leading to a significant gain in the 
processing speed. 

3. Classification procedures and tests 

We have computed the proposed texture features 
for all those zones of the UW-I database that are large 
enough to be treated as 2D textures. Several classifi- 
cation algorithms were tested with this set of feature 
values. A binary decision tree classifier assigns an un- 
known unit to one of the classes through a hierarchi- 
cal decision procedure. It has the capability to break 
down a complex decision-making process into a collec- 
tion of simpler decisions at various levels of the tree. 
The classification process can be described by means of 
a tree, in which at least one terminal node is associated 
with each pattern class, and the interior nodes repre- 
sent various collections of mixed classes. In particular, 
the root node represents the entire collection of classes 
into which a unit may be classified [7]. Each nonter- 
minal node is associated with a decision function, and 
generates two child nodes. An input pattern is classi- 
fied through traversing a path from the root node till a 
terminal node. Only the decision functions associated 
with nonterminal nodes along the path are tested. 

There are several techniques available for training 
a binary decision tree classifier. Given a set of train- 
ing instances, each described by n features and labeled 
a class name, the general top-down growing strategy 
works as follows. At each nonterminal node, starting 
from root node, the best decision function is learned 
by using a criterion of optimality and a training sub- 
set the node receives. The learned decision function 
splits the training subset into two subsets generating 
two child nodes. The process is repeated at each newly 
generated child until a stopping condition is satisfied 
and the node is declared as a terminal node. 

The maximum entropy reduction is used as the op- 
timality criterion to find a decision function at each 
nonterminal node. Shannon’s entropy is defined as, 

E = ->3Pildgpi, 

where p, is the probability of class i. At each nonter- 
minal node t, there is a candidate decision function S 
that divides node t into left child tL and right child tR 
such that a proportion pi of the cases in t go into tL 
and a proportion PR go into tR. One could then de- 
fine the goodness of the decision function S to be the 
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decrease in entropy: 

Then choose a decision function that minimizes 
&J?(S, t) over all decision functions S. Let 0 be a pre- 
determined threshold. If nE(S, t) < 8, partitioning is 
halted and the node t is made a terminal node. 

The simplest form for a linear decision rule is a com- 
parison of one measurement component to a threshold. 
This is called a thresholding decision rule. The feature 
space is actually partitioned using hyperplanes each 
perpendicular to a feature axis. Due to its simplic- 
ity, an exhaustive search is performed to find the best 
feature-threshold pair for a nonterminal node at the 
training stage. The Fisher’s linear decision rule method 
computes the direction of the linear decision function 
or hyperplane at a nonterminal node through maximiz- 
ing the ratio of the projected between-class scatter to 
the projected within-class scatter. 

The hold-out method is used for the error estima- 
tion. We divide the data set into N parts, train on 
the first N  - 1 parts, and then test on the Nth part. 
Then train on the N - 1 parts, omitting the N - 1st 
part, and test on the N - 1st part. Continue the train- 
ing and testing, each time omitting one part from the 
decision tree construction procedure and then testing 
on the omitted part. Then combine the results of the 
N tests together to establish an estimate of the error 
rate [7]. In this experiment, the value of N is chosen 
as 3. 

The training and testing data set is drawn from the 
scientific document pages in t.he University of Wash- 
ington document image database. The total number of 
4713 zanes are evaluated. The contingency tables for 
the results of the classification using thresholding de- 
cision rule and Fisher’s linear decision rule are shown 
in Tables 1 and 2. The tables present the numbers of 
zones of a particular class that are identified as mem- 
bers of a different class. The performance of this algo- 
rithm is about 96 %. 

A further preliminary experiment has been carried 
out to clarify whether it is possible to improve the ac- 
curacy by rejecting those zones whose class is judged 
uncertain. In the texture feature space, a distance from 
the center from the ‘text’ cluster was obtained for the 
training samples and then computed for the test sam- 
ples as well. A decision certainty level was specified and 
the samples falling into the range of distances labelled 
as uncertain rejected. This improves the classification 
accuracy at the expense of a small increase in the total 
number of the rejected zones. Typically, additional 4 ‘%  
of the evaluated zones are discarded as uncertain while 
the error rate falls below 2 %. However, more tests are 

Table 1. Contingiency table showing the clas- 
sification results of text and non-text zones 
using the thresholding decision rule. 

Table 2. Cbntingency table showing the clas- 
sification results of text and non-text zones 
using Fisher’s linear decision rule. 

needed to finalize this result. 

4. Conclusion 

We have shown that FBIM texture features can be 
used to discriminate between text and non-text zones 
in document images. The proposed approach is based 
on textural information only. This imposes a lower 
limit on the size of t,he zone but has an advantage of 
much lower resolution being sufficient for operation. 
The performance of ‘our approach has been systemat- 
ically evaluated with. a large reference document im- 
age database. The experimental results are statistically 
significant and can be compared to the performance of 
the alternative approaches once the results of their sys- 
tematic evaluation blecome available. At the moment, 
the only alternative systematic study seems to be that 
of Sivaramakrishnan #et.al. [12] w,ho use a feature vector 
of much higher dimension (67) and report an accuracy 
of 97 %  in zone classification into 9 different classes. 
We are now comparing the results of the two studies 
and exploring the ways of improving the performance 
of our zone classification module. This includes a de- 
tailed error analysis followed by a possible redifinition 
of the features. 
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