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Abstract 
We show that the convergence of measures for object 

size to their “true values” can be analyzed by looking at 
the pixels (or voxels) on the border of the object. This 
leads to results for a proper choice for the samplin 
density of the asymptotic form CV = d p  = k - Q - ( N + l ) i g  
where Q is the sampling density (pixels per object 
“diameter”) and N is the number of spatial dimensions. 

Introduction 

For a relatively long time it was thought that the 
Nyquist sampling theorem was the definitive statement 
conceming the proper choice of sampling frequency or 
sampling density for multi-dimensional signal (image) 
processing [l-51. With publications in the 1980’s, 
however, it became clear that the issue was somewhat 
more complex [6-91. When the goal is image filtering, 
then the use of the Nyquist criterion is highly 
appropriate. When the goal is image measurement, 
another criterion must be used to choose the proper 
sampling density. 

The act of sampling - cutting up an image into rows 
and columns in 2D and rows, columns, and planes in 3D 
- is a source of spatial “quantization” noise which is 
pivotal when the goal is image measurement. This 
quantization occurs, however, not in the signal 
amplitude, the dependent variable, but in the spatial 
coordinates, the independent variables. There are a 
number of ways to assess the influence of this type of 
noise on image measurements. In general we seek 
measurement formulas that, despite the various noise 
sources, provide reasonable estimates of the analog 
quantities given the digital representation. In this 
context a “reasonable” estimate means one that is 
unbiased (accurate) and whose variance goes to zero 
(precise) as the sampling density increases. 

While the goal of finding an unbiased estimate for a 
class of objects is laudable, it is not always possible. 
(What is the “true value” of the volume of an orange?) 

As a result the coefficient-of-variation, CV, (defined 
below) is frequently used to characterize the quality of 
an estimator. In this paper we will provide a simple 
argument that shows how to choose the sampling 
density by studying the behavior of the CV as the 
sampling density Q increases. 

The Model 

The relationship between the spatial quantization 
noise and measurement accuracy and precision can be 
illustrated with the relatively simple problem of 
measuring the area of a two dimensional object. It has 
been known for many years [lo] that the best measure 
of the area of an “analog” object given its digital 
representation is to simply count the pixels associated 
with the object. The use of the term “best estimate” 
means that this area estimate is unbiased and the 
variance of the are estimate goes to zero as the 
sampling density increases. We assume, here, that the 
pixels belonging to the object have been labeled thus 
producing a binary representation of the object. The 
issue of using the actual gray values of the object pixels 
to estimate the object area will not be covered here but 
can be found in [ I  I]. 

Let us look at a simple example. When a randomly 
placed (circular) object is digitized, one possible 
realization is shown in Figure 1. The equation for 
generating the object is ( x -  e,)* + (y - ey)2  I R2 
where R is the radius, The terms e, and e y  are 
identically-distributed, independent random variables 
with a uniform distribution over the interval (-1/2, +ID). 
They represent the random placement of the object with 
respect to the periodic (unit) sampling grid. 

In the realization shown in Figure 1 the area would 
be estimated at 84 pixels but a slight shift of the circle 
with respect to the grid could change that, for example, 
to 81 or 83 or 86. The sampling density of this figure 
can be expressed as about 10 pixels per diameter. To 
appreciate what effect the finite sampling density has 
on the area estimate let us look at the coeficient-of- 
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variation of the estimate, the CV = d p  where 0 is the 
standard deviation of the area estimate of the area and 
p is the average area estimate over an ensemble of 
realizations. 

Figure 1: Given small variations in the center position 
( e ,  ey) of the circle, pixels that are colored black will 
always remain part of the object and pixels that are 
colored white will always remain part of the background. 
Pixels that are shown in light gray may change from object 
to background or vice-versa depending on the specific 
realization of the circle center (ex, ey) with respect to the 
digitizing grid. 

If we denote the diameter of the circular object by D 
and the size of a pixel as s x s, then the sampling 
density is Q = D/s. The area of the circle, A i ,  that is 
always black (in Figure 1) independent of ( e x ,  e,,) is 
given by: 

a AI = -(D - 2 ~ ) ~  
4 

The number of pixels associated with this is: 

The area of the region, A b ,  that is light gray (in 
Figure 1) is given by: 

7r a 2 A, = --(D + 2 ~ ) ~  - -(D - 2s) 
4 (3)  

and the number of pixels, Nb,  associated with this 
region is: 

The area of the circle is estimated by counting 
pixels and the corrtribution from the black region is 
clearly NI. The total number will be N T  = N I  + n 
where n is a random variable. Let us make a simplifying 
assumption: Let us assume that each of the pixels in the 
light gray region can be part of the object with 
probability p and part of the background with probability 
(1 - p) and that the decision for each pixel is 
independent of the other neighboring pixels in the light 
gray region. This, of course, describes a binomial 
distribution for the pixels in that region. In fact this 
assumption is not true and the behavior of neighboring 
pixels. over small distances, is somewhat correlated. 
But let us see how far we can go with this model. Under 
this assumption: 

and 

We have made use of the assumption that N I  is 
deterministic-the pixels are always black-and that 
the mean and variamce of the binomial distribution far 
Nb samples with prlobability p are given by N b  p and N b  
p(1 - p ) ,  respectively. 

This immediately leads to an expression for the CV 
of our estimate as: 

(7) 

We can now stu'dy the convergence of the CV as the 
sampling density increases. As Q increases in this two- 
dimensional image we have: 

Q"2 
iim CV(Q) = k2 7 = k2Q-3/2 
Q-- Q 

This type of argument can easily be extended to the 
three-dimensional case where the results are: 
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and 

Q lim CV(Q) = k3 7 = k Q 2  
Q+-= Q 

Finally, for the N-dimensional case, using the 
formulas for the volume and surface area of an N- 
dimensional sphere, we have: 

The conclusion is clear. As the sampling density Q 
increases the precision of our estimates improves as a 
power of Q. While the independent binomial behavior 
cannot be strictly true, the arguments presented do show 
the type of convergence that can be expected and how 
that varies with Q. 

These results have also been found experimentally 
in a number of publications [9-151. An example in 
shown in Figure 2. The measurement is the volume of 
spheres that have been randomly placed on a sampling 
grid. The quality of the estimator (voxel counting) is 
assessed by examining the CV. 
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Figure 2: For each sampling density value 0 (expressed 
in voxels per diameter), 16 spheres were generated with 
randomly placed centers (ex, e,,, ez). The volume was 
measured by counting voxels and the CV(Q = o(Q)/p(O) 
calculated accordingly. 

It is clear from Figure 2 that, as the sampling 
density increases by one order of magnitude from Q=2 
to Q=20 samples per diameter, the CV decreases by two 
orders of magnitude. This illustrates the relation 
between CV and Q described in equation (10). 

Single-Pixel Behavior 

We can take this analysis a step further by 
comparing equation (5) to the known property that pixel 
counting leads to an unbiased estimate of the area [lo]. 
Because the bias is zero this means that: 

which yields a value for p given by: 

1 1  
p = - - -  

2 2Q 

The explanation for this result is as follows. For a 
circle with a finite radius and using a finite sampling 
density, the probability, that a given border pixel will 
be labeled as part of the object, depends on the 
“coverage” of that pixel. This is illustrated in Figure 3. 
If the coverage is more than 50% of the pixel area then 
the pixel will be labeled as object; if less than 50% 
then the pixel will be labeled as background. 

-s/2 s/2 

Figure 3: The dark shaded area represents that portion 
of the circle with radius R that covers a given pixel when 
the boundary goes through the center of the pixel, (0,O). 
The straight line is the tangent line to the curve at the pixel 
cent er. 

As the sampling density Q increases, then for a 
circle-or any curve with bounded curvature-we can 
approximate the curve within a given pixel by a straight 
line. This explains the term (1/2) in equation (13); a 
straight line going through the center of a pixel has half 
the area of the pixel on each side of the line. The term 
(1/2Q) is the correction term associated with the non- 
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zero curvature of the actual border within the pixel. By 
examining the error in the straight-line approximation, 
the area between the circle and the straight line in 
Figure 3, we can compute the (shaded) area that is 
actually covered by the inside of the curve. As the 
sampling density increases, as Q-w and thus s+O, the 
error goes to zero. A plot of error(Q =2R/s )  is shown in 
Figure 4. 

error (Q) 

tQ 
2 4 6 8 10 

Figure 4: As the sampling density increases the area 
between the straight line and the shaded region in Figure 3 
decreases. 

A Taylor series expansion of errar(Q) gives the 
following: 

This shows that the behavior can, indeed, be 
approximated by a term of the form (l/Q). 

Summary 

The question then becomes should we choose the 
sampling density on the basis of the Nyquist sampling 
theorem or on the basis of the required measurement 
precision. The answer lies in the goal of the work. If we 
are interested in image filtering then the Nyquist 
theorem should be used. If, however, we are interested 
in measurements derived from images then the 
sampling frequencies derived from measurement 
specifications-as exemplified in Figure 2 and 
equations (8), (lo), and (11)-should be used. 
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