
Appeared in the Proceedings of the 13th International Conference on Pattern Recognition, Vienna, 1996

Algorithms for Pattern Rejection �

Simon Baker and Shree K. Nayar

Department of Computer Science, Columbia University, New York, USA

Abstract

The e�ciency of pattern recognition is particularly cru-
cial in two situations; whenever there are a large number
of classes to discriminate, and, whenever recognition must
be performed a large number of times. We develop a num-
ber of algorithms to cope with the demands of these di�-
cult conditions. The algorithms achieve high e�ciency by
using pattern rejectors. A pattern rejector is a general-
ization of a classi�er that quickly eliminates a large frac-
tion of the candidate classes or inputs. After applying a
rejector, the recognition algorithms can concentrate their
computational e�orts on verifying the small number of re-
maining possibilities. The generality of our algorithms is
established through a close relationship with the Karhunen-
Lo�eve expansion. We experimented on two representative
applications, namely, object recognition and feature detec-
tion. The results demonstrate substantial e�ciency im-
provements over existing approaches, most notably Fisher's
discriminant analysis.

1 Introduction

The e�ciency of a pattern recognition algorithm be-
comes increasingly important as the number of pattern
classes grows. Object recognition using appearance match-
ing [Murase and Nayar 95] is one example application
where the computational dependence upon the number of
classes (objects) is the key to a real time solution. High
e�ciency also proves critical whenever the recognition al-
gorithm must be applied a large number of times. This is
the case in local feature detection [Nayar et al. 96], where
the feature detector must be applied at every pixel in an
image.

We develop e�cient pattern recognition algorithms to
deal with both of the scenarios described above. The algo-
rithms achieve high performance by using pattern rejectors
[Baker and Nayar 96]. A rejector is an algorithm that very
quickly eliminates a large fraction of the candidate classes
(i.e. objects in recognition) or inputs (i.e. local image
brightness values in feature detection). The theory of pat-
tern rejection, as developed in [Baker and Nayar 96], �rst
de�nes the notion of a rejector and then shows how a col-
lection of simple rejectors can be combined to yield a much
more e�ective composite rejector. By analyzing the perfor-
mance of composite rejectors, a number of design criteria
were derived for the individual component rejectors that
go to form an e�ective composite rejector.

In this paper we propose a collection of general-purpose
algorithms for the implementation of simple rejectors sat-

�This research was supported in parts by ARPA Contract DACA-
76-92-C-007, by DOD/ONR MURI Grant N00014-95-1-0601, and by
an NSF National Young Investigator Award.

isfying the design criteria derived in [Baker and Nayar 96].
Using our algorithms in the individual rejectors of a com-
posite rejector then allows the construction of e�cient pat-
tern recognition algorithms. The derivation of our algo-
rithms is based upon a single assumption about the under-
lying pattern classes, namely, the class assumption. The
generality of the class assumption (and hence the algo-
rithms) is established through a close connection with the
Karhunen-Lo�eve (K-L) expansion [Fukunaga 90].

We demonstrate the performance of our algorithms by
experimenting on two applications: object recognition us-
ing appearance matching [Murase and Nayar 95] and local
feature detection [Nayar et al. 96]. We �rst construct a
composite rejector for a widely-used image database of 20
objects. Each object appears in a large number of poses
and constitutes a single pattern class. The �nal compos-
ite rejector is able to completely (and without error) dis-
criminate between all 20 objects with an e�ciency that is
a signi�cant improvement over currently used techniques.
We compare the composite rejector with Fisher's discrimi-
nant analysis and show our algorithm to be both substan-
tially more e�cient as well as more accurate. Next, we
constructed a composite rejector for the task of feature
detection. The result is a very e�cient method of prepro-
cessing an image to identify pixels that truly deserve the
application of a full-
edged feature detector, such as the
one proposed in [Nayar et al. 96].

2 Background: Pattern Rejection

We begin by brie
y summarizing pattern rejection as
developed in [Baker and Nayar 96]. After stating the as-
sumptions and de�nitions, we present the design criteria
for the individual component rejectors of a composite re-
jector.

2.1 Assumptions and De�nitions

A pattern recognition problem is based upon a �nite set
of measurements of an underlying physical process. Hence
we assume the existence of a classi�cation space, S = <d,
where d is the number of measurements. Elements, x 2 S;
will be referred to as measurement vectors or for conve-
nience vectors. Next, we assume the existence of a �nite
collection, W1;W2; : : : ;Wn � S of (pattern) classes. The
classes themselves are de�ned by the application in ques-
tion and so we assume that they are given to us a priori.

De�nition 1 A classi�er (or recognizer) is an algorithm,
�; that given an input, x 2 S, returns the class label, i, for
which x 2Wi.

A rejector is a generalization of a classi�er in the sense
that it returns a set of class labels. This set must contain
the correct class label of the input, but it may also contain
others:

869

De�nition 2 A rejector is an algorithm, , that given an
input, x 2 S; returns a set of class labels, (x), such that
x 2Wi) i 2 (x) (or equivalently i 62 (x)) x 62Wi).

The name rejector is derived from the equivalent de�ni-
tion; if i is not in the output of the rejector, we can safely
reject the possibility that x 2 Wi: We then introduce the
rejection domain of Wi as the set of all x 2 S for which
i 62 (x). That is, the rejection domain is the set of all x
for which we can reject the hypothesis that x 2Wi:

De�nition 3 If is a rejector and Wi is a class, then the

rejection domain, R i , of rejector, , for class Wi is the set
of all x 2 S for which i 62 (x):

In follows from De�nitions 3 & 2 than is a rejector if

and only if 8i R i \Wi = ;. The e�ectiveness of a rejector
is de�ned to be the expected fraction of classes that are
not rejected by it. Therefore, a small numeric value of the
e�ectiveness corresponds to an \e�ective" rejector:

De�nition 4 If is a rejector, the e�ectiveness of is

E�() = 1
nE[j (x)j] =

1
n

Pn
i=1 P [x 2 R

i]

Applying a rejector does not guarantee that we will be
able to solve the pattern recognition problem uniquely;
there may be more than one class in the output of the
rejector. Any ambiguity is dealt with by adding a veri�ca-
tion stage:

De�nition 5 A veri�er for a class, Wi, is a boolean algo-
rithm that, given an input, x 2 S, returns the result True
if x 2 Wi and False otherwise.

We form a rejection-based classi�er by �rst applying a
rejector and then applying a veri�er for each class with
a label in the output of the rejector. Combining the re-
sults we can immediately classify the input. The overall
e�ciency of a rejection-based classi�er depends upon both
the e�ciency and e�ectiveness of the rejector.

The output of a rejector is a subset of classes and so a
smaller instance of the original classi�cation problem. Re-
cursively applying another rejector, tuned to the reduced
subset of classes, may eliminate more of the classes as can-
didates and so improve the e�ectiveness of the combined
rejectors. This is the notion of a composite rejector:

De�nition 6 A composite rejector, 	, is a collection of
rejectors, 	 = f { : { 2 =g; where = is an index set for 	;
and such that: (a) there is a rejector in 	 designed for the
complete set of classes, and (b) for any rejector, { 2 	,
and any x 2 S, either {(x) = 1 or there is a rejector in 	
designed for {(x).

A composite rejector has the structure of a directed
acyclic graph. Each rejector, { 2 	; together with the
subset of classes for which it was designed, corresponds to
a node in the graph. Then, the application of the compos-
ite rejector to a novel measurement vector corresponds to
a path through the graph. At each node in the path, the
corresponding rejector is applied and its output determines
the next rejector to apply and hence the edge that should
be taken to leave the node.

2.2 Rejector Design Criteria

1. For a rejection-based classi�er to be e�cient overall,
we require the composite rejector to be both e�cient
and e�ective.

2. To maximize the e�ectiveness of a composite rejector,
we should design each component rejector to be as ef-
fective as possible. This is achieved by choosing the
rejection domains to be as large as possible. However,
there is a trade-o� between maximizing the size of the

rejection domains, ensuring R i \Wi = ; for correct-
ness, and using simple decision boundaries for high
e�ciency.

3. To avoid an exponential explosion in the size of the
composite rejector the following design criteria should
be adhered to: (a) avoid rejectors with large number of
outputs, (b) balance rejector output cardinalities, and
(c) minimize the overlap between rejector outputs.

3 A General-Purpose Rejection Technique

Before presenting our algorithms in detail, we �rst de-
scribe the general principle upon which they are based.
In what follows, we will write the Euclidean inner (dot)
product of two vectors as hx; yi. The induced Euclidean
norm we denote by kxk2 = hx; xi1=2: We also assume
that the norm of a vector does not e�ect classi�cation
and so restrict attention to the surface of the unit ball,
B = fx 2 S : kxk2 = 1g.

3.1 The Class Assumption

Designing a rejector is equivalent to deciding upon the
rejection domains. Further, for correctness we require that

R

i \ Wi = ;: Therefore, the choice of the rejection do-

mains must depend heavily on the nature of the underly-
ing classes. In order to make progress we need to assume
something about the classes:

The Class Assumption For each class Wi; there exists
a vector, ci 2 S; a linear subspace, Li � S; and a threshold,
�i � 0; such that 8x 2 Wi; dist(x; ci+Li) � �i: Further we
assume: (a) dim(Li)� d; and (b) �i � 1:

The class assumption (see Figure 1) is very general and
allows various \shapes" of classes including disconnected
multi-cluster distributions. All that is required is that each
class be roughly low dimensional. In fact, the class as-
sumption is approximately equivalent to assuming that the
Karhunen-Lo�eve K-L expansion results in a compact and
accurate representation of the class. Suppose that Mk

i is
the subspace spanned by the k most important K-L eigen-
vectors, and �i are the decaying K-L eigenvalues, then we
have:

Ex2Wi
(dist(x;Ey2Wi

(y) +Mk
i)

2) =

dX

s=k+1

�s � 0: (1)

Setting ci = Ex2Wi
(x), and Li = Mk

i , we see that the
di�erence between the class assumption and the K-L ex-
pansion is one of expected versus maximum value. Then,
the widespread use of the K-L expansion allows us to argue
that the class assumption can be expected to hold exten-
sively.

870

δ

B

O

e

r
i

i

i

c

W

δ
i

e1

2

Figure 1: An illustration of the class assumption for a low di-
mensional example, S = <3. The subspace, Li; is the 2 dimen-
sional subspace spanned by the vectors, fe1; e2g. Every vector
in Wi can be approximated to within error, �i; by the linear
combination of ci and a vector in Li.

3.2 Rejection Vectors

Given that the class assumption holds, we now explain
the basis of our algorithms. We begin by de�ning the no-
tion of a rejection vector:

De�nition 7 Suppose the class assumption holds for the
classes, W1;W2; : : : ;Wn: Then, a rejection vector is a unit
vector, r 2 B, for which r ?

Ln
i=1 Li.

If r is a rejection vector, it follows immediately from the
class assumption, orthogonality, and the Cauchy-Schwarz
inequality, that:

x 2 Wi) jhr; xi � hr; ciij � �i (2)

Equation (2) means that the rejection vector projects each
class, Wi, onto approximately a single point, hr; cii. So
long as the points, hr; cii, are well separated, not many of
the intervals [hr; cii � �i; hr; cii + �i] will overlap, and we
can use equation (2) to discriminate between the classes.

In Figure 2 we illustrate equation (2) by plotting the
projection, hr; xi, against the likelihood of that projection
occurring for a randomly selected measurement vector, x,
of a �xed class. Equation (2) means that each class is pro-
jected onto almost a point, and so we expect to see very
peaked distributions in the �gure. Any pair of classes with
distributions that do not overlap can be discriminated us-
ing this projection. In this particular example, we cannot
discriminate between every pair of classes, but we can al-
ways reject at least 2 classes. For example, if hr; xi = 0:1
we can only safely eliminate classes 13 and 18. In general
there is no guarantee that we will be able to �nd a rejec-
tion vector that completely separates a given pair of classes.
Note, however, that a rejector is only required to eliminate
a large fraction of the classes, not necessarily every last
one. In practice, we found that this technique allows us
to reject su�ciently many classes to achieve a substantial
e�ciency improvement.

4 Algorithms for Pattern Rejection

To implement the technique just described, we must per-
form six tasks: (1) verify the class assumption, (2) select

0

200

400

600

800

1000

1200

1400

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

"object_1"
"object_5"

"object_13"
"object_18"
"object_19"

1

5

19

18
13

〈r,x〉

Probability
Density

Figure 2: An illustration of equation (2) for 5 classes taken
from the object recognition application in Section 5.1. On the
abscissa we plot the projection of the measurement vector with
the rejection vector. On the ordinate we plot an estimate of
the probability that a vector from a particular class will yield
that projection. We plot �ve lines, one for each of the classes.
As can be seen, the distributions are peaked in accordance with
the class assumption holding. We can use the projection with
the rejection vector to discriminate between any pair of classes
whose distributions do not overlap. For instance, if hr; xi = 0:25
we can reject classes 1, 5, 13 & 19.

the rejection vector, (3) estimate the thresholds, (4) con-
struct the component rejectors, (5) provide an algorithm
with which to apply the component rejectors, and, (6) con-
struct the composite rejector. We discuss each task in turn
and present an algorithm to accomplish it. The algorithms
assume that we have available a set of training samples:

fy1i ; y
2
i ; : : : ; y

m(i)
i 2Wi : i = 1; : : : ; ng:

4.1 Veri�cation of the Class Assumption

We use the K-L expansion to verify the class assumption
and to �nd appropriate values for Li and ci. For each
class,Wi; we put ci to be the mean class vector, and set Li
to be the subspace spanned by the K-L eigenvectors with
corresponding eigenvalues above a threshold, t:

Algorithm 1: Estimation of Li and ci

1. Set ci =
1

m(i)

Pm(i)
j=1 y

j
i

2. Compute the eigenvectors, eji ; and their corresponding

eigenvalues, �ji , of the covariance matrix, de�ned by:

Mi =
1

m(i)

Pm(i)
j=1 y

j
i (y

j
i)
T

(If m(i) � d; the Singular Value Decomposition
(SVD) should be used [Murakami and Kumar 82].)

3. Set Li to be the subspace spanned by feji : �
j
i > tg.

The choice of an appropriate value for the threshold, t, is
application dependent. We suggest trying several di�erent
alternatives until an acceptable value is found. For many
applications, a guideline �gure would be one that results
in the use of around 5-10 eigenvectors per class.

4.2 Choice of the Rejection Vector

The rejection vector is only constrained by De�nition 7
to be a unit vector orthogonal to

Ln
i=1 Li. Therefore we

871

have a lot of freedom in its selection. Our aim should be
to choose the rejection vector to maximize the e�ectiveness
of the resulting rejector. Since an e�ective rejection vector
will be one that widely distributes the centers of the projec-
tions of the classes, hr; cii, we choose the rejection vector to
maximize the spread of these points. If variance is used as
the measure of spread, the optimal rejection vector is the
�rst K-L eigenvector of the mean class vectors projected
into the subspace (

Ln
i=1 Li)

?. This is the rejection vector
that we use:

Algorithm 2: Choice of the Rejection Vector

1. Construct an orthonormal basis for
Ln

i=1 Li by ap-
plying Gram-Schmidt orthonormalization to the basis
vectors of the subspaces, Li, computed in Algorithm 1.
Suppose the result is ffj : j = 1; : : : ; pg.

2. Project each mean class vector, ci; into (
Ln

i=1 Li)
?

using: c?i = ci �
Pp
j=1hci; fjifj .

3. Apply the K-L expansion to fc?i : i = 1; : : : ; ng. Set
the rejection vector, r, to be the (normalized) eigen-
vector with the largest eigenvalue.

4.3 Estimation of the Thresholds

The only property the thresholds must satisfy for the
rejector to operate correctly is equation (2), which is redis-
played here:

x 2 Wi) jhr; xi � hr; ciij � �i (3)

However, the smaller the thresholds are the more e�ec-
tive the rejectors will be. Therefore we need to chose the
thresholds carefully. There are various methods that could
be used to do this. Here we present the method which
we used in our object recognition example in Section 5.1.
(Other methods, including the technique used for our fea-
ture detection experiments in Section 5.2, are provided in
[Baker and Nayar 95].) It was found empirically (see Fig-
ure 2) that the projected class distributions for all the ob-
jects closely resemble normal distributions. We chose a
con�dence level of 99:9%, and set �i to be 3:5 times the
standard deviation of the distribution:

Algorithm 3: Selection of the Thresholds

1. Set �i = 3:5� [1
m(i)

Pm(i)
j=1 jhr; y

j
i i � hr; ciij2]1=2

4.4 Construction of the Rejector

One of the design criteria in Section 2.2 was that each
component rejector should have a small number of out-
puts. We achieve this by partitioning [�1; 1] into buck-
ets, b1; : : : ; bm, where 8j; bj = [cutj�1; cutj], cut0 = �1;
and cutm = 1. (See Figure 3 for an illustration.) The
bucket end-points, cutj ; are referred to as a cut-point. Once
we have decided upon the buckets, we associate with each
bucket a set of classes. The set of classes contains those for
which the class projection intersects the bucket:

classes(bj) = fi : bj \ [hr; cii � �i; hr; cii+ �i] 6= ;g (4)

It follows from equations (3) & (4) that:

x 2 Wi and hr; xi 2 bj) i 2 classes(bj) (5)

δ2 δ2

〈r,c 〉2

δ3

〈r,c 〉3

〈r,c 〉1

δ1δ1

δ4δ4

〈r,c 〉4

δ5 δ5

〈r,c 〉5

〈r,x〉

b1 b2 b3

classes () = {5}b1
classes () = {1,4}b2

classes () = {2,3}b3

cut0 cut1 cut2 cut3

-1.0 1.0

δ3

Figure 3: The interval [�1; 1] is partitioned into buckets, sep-
arated by cut-points. Each bucket is associated with a set of
classes; those whose projection intersects the bucket. The re-
jector is de�ned to return the set of classes of the bucket, into
which the measurement vector is projected.

So long as equation (3) holds, de�ning (x) = classes(bj);
where hr; xi 2 bj ; is then a valid de�nition of a rejector; i.e.
x 2 Wi) i 2 (x) is true.

The reason for introducing buckets is so that we may
carefully select them to follow the design guidelines in Sec-
tion 2.2. In the following algorithm, step 1(c) aims to mini-
mize the intersection between the output subsets, and step
1(d) aims to maximize the balance between output subsets.

Algorithm 4: Construction of the Rejector

1. Select the set of cut-points, J :

(a) Set, J = f�1; 1g, and, M = fhr; cii � �i : i =
1; 2; : : : ; ng [fhr; cii+ �i : i = 1; 2; : : : ; ng.

(b) Sort the set M , and for each consecutive pair of
numbers in M , store their mean in the set M 0.

(c) For each point, x 2 M 0, in turn, insert x into J
if and only if: 8i; x 62 [hr; cii � �i; hr; cii+ �i]

(d) If jJ j = 2, add to J the point in M 0 which max-
imizes: min(jfi : y < hr; cii � �igj; jfi : y >
hr; cii+ �igj)

2. Create the buckets:

(a) Sort the set of cut-points, J .

(b) For each pair of neighboring points in J ,
(cutj�1 < cutj 2 J), create a bucket, bj =
[cutj�1; cutj].

(c) For each bj compute classes(bj) using equa-
tion (4).

(d) Store the buckets together with their associated
classes, in an array in increasing cut-point order.

4.5 Application of the Rejector

The data stored by a rejector consists of two parts: the
rejection vector, r, and the array computed in step 2(d)
of Algorithm 4. Given a novel measurement vector, x, we
apply the rejector using:

Algorithm 5: Application of the Rejector

1. Compute the projection, hx; ri.

2. Perform a binary search on the array of buckets to �nd
the bucket, bj , containing hx; ri.

3. Return classes(bj):

872

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20
Figure 4: The 20 objects (classes) used in the recognition ex-
periment. There are 72 images of each object with neighboring
image pairs separated by 5� of pose. The data set is that used
in [Murase and Nayar 95].

4.6 Construction of a Composite Rejector

Component rejectors may be reached by more than one
path in the composite rejector. So that it can check for du-
plicates in step 2(b), we assume that Algorithm 6 maintains
a hash table of the component rejectors it has constructed.

Algorithm 6: Construction of a Composite Rejector

1. Construct a simple rejector for the current set of nodes
using Algorithms 1, 2, 3, & 4.

2. For each bucket, bj , of the rejector just constructed:

(a) If jclasses(bj)j = 1; or if no classes can be rejected
(classes(bj) equals the current set of classes) cre-
ate a leaf node; i.e. a rejector which immediately
returns classes(bj).

(b) If a component rejector has already been created
for classes(bj), just add a link to that rejector.

(c) Otherwise recursively call Algorithm 6 with
classes(bj) as the current set of nodes. Then, add
a link from the current rejector to the component
rejector created in step 1 of the recursive call.

5 Example Applications

Our objective is to demonstrate the generality and e�-
ciency of our rejection algorithms. As examples, we have
chosen two problems in computational vision, namely, 3-D
object recognition and feature detection. These problems
were selected as they can, under certain assumptions, be
cast as classical pattern recognition problems. Further-
more, both problems often need to be solved with high
e�ciency.

5.1 3D Object Recognition

We follow the appearance matching approach, �rst de-
scribed in [Murase and Nayar 95]. Object recognition is
reduced to pattern recognition by �rst segmenting the ob-
ject and then scale normalizing it to an image of size
128� 128 pixels. The image is then treated as a 16,384 di-
mensional measurement vector in the classi�cation space,
S = <16;384, by reading the pixels in a raster scan fashion.

{20}

{18} {17}

{10}

{8} {16}

{12} {11} {15} {13}

{15}

{7}

{8}

{4} {2}

{15}

{9} {7}

{13}

{13}

{14}

{9}

{13}

{18}

{1}

{5}{19}

{6} {3} {6}{19}

{14}

{1-19}

{1-20}

{2,4,7-18}

{2,4,7-9,11-16}

{2,4,7-9,14,15}

{8,11-13,15,16}

{11-13,15}

{11,12} {13,15}

{2,4,7,8,15}
{7,9,14,15}

{2,4,7,8}

{7,9}

{2,4,7,8,13}

{1-9,13,14,18,19}

{1,5,7,9,
13,14,19}

{1,5,7,9,
14,19}

{1,3,5-7,9,
13,14,18,19}

{1,3,5,6,13,
18,19}

{1,3,5,6,19}

{6,19}

{5,19}

{1,5,7,
9,19}

{1,5,9,19}

{1,5,19}

{1,5,13,18,19}

{3,6,19}

{1,2,4,5,7-9
13,14}

Figure 5: A representation of the composite rejector. Each
interior node denotes a single rejector, and is labeled with the
set of objects that it is designed to act on. At each node, only
one dot product and a binary search need to be performed.
(See Algorithm 5.) Each leaf denotes a possible output of the
composite rejector.

Finally, the vector is intensity normalized to lie on the unit
sphere, B.

The data set that we used (see Figure 4) consists of 20
objects (classes). It contains 72 images of each object sepa-
rated by 5o intervals of pose. The images were divided into
a training set and a test set each comprising 36 images of
every object. The training set is then treated as the sam-
ples of the classes and used to implement the composite
rejector, a representation of which is presented in Figure
5. As it happens, every leaf of the composite rejector con-
tains a single class, and hence the composite rejector can
fully discriminate between the 20 objects. (We would have
regarded the rejector as successful even if each leaf had
contained 2-3 objects.)

We found that the composite rejector responded 100%
correctly for both the training and test sets. Based on
the assumption that each image in the data set is equally
likely to appear, we calculated the average number of re-
jectors used in the composite rejector to be just 6.43.
Since the time taken at each node is essentially the cost
of one inner product (convolution), the e�ciency compares
very favorably with the results obtained by Murase and
Nayar [Murase and Nayar 95]. Their implementation re-
quired 20 inner products, followed by a sophisticated search
procedure.

Using the same image database, we compared the per-
formance of the composite rejector against that of Fisher's
discriminant analysis [Fisher 36]. Again, we followed the
same test procedure, namely, setting aside half of the data,
and using the other half to construct the classi�er. We
constructed Fisher spaces [Duda and Hart 73] of di�erent
dimensionality. In Fisher space the classes consist of tight
clusters, which we modeled as multivariate normal distri-
butions. We computed the mean and covariance matrix of
each of these distributions. Then, each novel measurement
vector was classi�ed by �nding its closest cluster, i.e. the

873

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16

"fda_mah"
"fda_l2"

Dimension of the Fisher space

% Correctly
 classifed

Mahalanobis
 Distance

Euclidean
 Distance

Figure 6: Results of applying Fisher's discriminant analysis to
the data set in Figure 4. On the abscissa we plot the dimension
of the Fisher space used, and on the ordinate the percentage of
test images correctly classi�ed. The peak performance is just
under 97%, and to obtain this level of accuracy 11 discriminant
vectors are needed. In contrast, the composite rejector gives
perfect (100%) classi�cation with just 6.43 rejection vectors.

cluster whose mean is closest to the vector. We used both
the Mahalanobis and Euclidean distances.

Figure 6 shows the results for the combined performance
on the training and test sets. Even for the Mahalanobis
distance, the classi�cation results are not perfect. In fact,
after around dimension 11, the accuracy remains approxi-
mately constant and just below 97%. This compares poorly
with the 100% classi�cation obtained by the composite re-
jector, using an average of just 6.43 rejection vectors.

5.2 Local Feature Detection

We constructed a composite rejector for a feature detec-
tor of the type proposed in [Nayar et al. 96]. (The algo-
rithms used in this case are slightly di�erent to those pre-
sented in Section 4. The reason for the di�erence is that
here there is only one pattern class corresponding to the
one feature being detected. The details of the algorithms
used may be found in [Baker and Nayar 95].) The output
of the composite rejector is used as input to the feature
detector, and consists of pixels at which further processing
is deemed worthwhile. Although the technique is applica-
ble to general parametric features, we only have space to
display our results (see Figure 7) for edge detection.

6 Discussion

There is a relationship between our algorithm for choos-
ing the rejection vector in Section 4.2 and Fisher's dis-
criminant analysis [Duda and Hart 73]. In particular, Al-
gorithm 2 tends to choose a vector that maximizes between-
class scatter, while keeping within-class scatter �xed at a
low level. The di�erence between our algorithm and dis-
criminant analysis is that discriminant analysis is presented
as a single level of processing. On the other hand, the com-
posite rejector has a hierarchical structure, which leads to
superior performance. In particular, the relative perfor-
mance is accounted for by the fact that each rejector in the

Figure 7: The edge rejector applied to 3 noisy synthetic images.
The top row shows the noisy images whose pixels the rejector
is applied to. The image on the left has added Gaussian noise
of standard deviation 1 grey level, the middle image has noise
of 2 grey levels, and the rightmost image has noise of 4 grey
levels. The bottom row shows the output images produced by
the edge rejector. Each output image consists of rejected pixels
(marked black) and candidate pixels (marked white). In the
least noisy image an average (computed over the whole image) of
1.61 rejectors were used. For the more noisy images, an average
of 1.82 rejectors and 2.34 rejectors were used, respectively.

composite rejector is individually constructed for a subset
of classes which is as small as possible. Since all the Fisher
vectors are computed for the entire collection of classes,
their discriminatory power is not as great.

References

[Baker and Nayar 96] S. Baker and S.K. Nayar, \Pattern
Rejection," In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, San Fran-
cisco, 1996.

[Baker and Nayar 95] S. Baker and S.K. Nayar, \A Theory
of Pattern Rejection," Columbia University Technical
Report, CUCS-013-95, 1995.

[Duda and Hart 73] R.O. Duda and P.E. Hart, Pattern
Classi�cation and Scene Analysis, John Wiley & Sons,
1973.

[Fisher 36] R.A. Fisher, \The use of multiple measure-
ments in taxonomic problems," Annals of Eugenics,
7:179{188, 1939.

[Fukunaga 90] K. Fukunaga, Statistical Pattern Recogni-
tion, Academic Press, 1990.

[Murakami and Kumar 82] H. Murakami and V. Kumar,
\E�cient calculation of primary images from a set of
images," IEEE Transactions on Pattern Analysis and
Machine Intelligence, 4:511{515, 1982.

[Murase and Nayar 95] H. Murase and S.K. Nayar, \Vi-
sual Learning and Recognition of 3D Objects from Ap-
pearance," International Journal of Computer Vision,
14:5{24, 1995.

[Nayar et al. 96] S.K. Nayar, S. Baker, and H. Murase,
\Parametric Feature Detection," In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, San Francisco, 1996.

874

