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Abstract 

Recently, Augmented Regular Expressions (AREs) have 
been proposed as a formalism to describe and recognize 
a non-trivial class of context-sensitive languages (CSLs) 
[ I ,  21. AREs augment the expressive power of Regular Ex- 
pressions (RES) by including a set of constraints, that involve 
the number of instances in a string of the operands of the star 
operations of a RE. Although it has been demonstrated that 
not all the CSLS can be described by AREs, the class of rep- 
resentable objects includes planar shapes with symmetries, 
which is important for  pattern recognition tasks. In this 
paper; a general method to infer ARES from string examples 
is presented. The method consists of a regular grammati- 
cal inference step, aimed at obtaining a regular superset of 
the target language, followed by a constraint induction pro- 
cess, which reduces the extension of the inferred language 
attempting to discover the maximal number of context rela- 
tions. Hence, this approach avoids the dificulty of learning 
context-sensitive grammars. 

I. Introduction 

In order to extend the potential of application of the 
syntactic approach to pattern recognition, the efficient use 
of models capable of describing context-sensitive languages 
(CSLs) is needed. Moreover, learning such models from 
examples is interesting both for theoretical and practical 
purposes. Context-sensitive grammars [3] are not a good 
choice, since their parsing is computationally expensive and 
there is a lack of methods to learn them. Augmented Tran- 
sition Networks (ATNs) are powerful models that have been 
used in natural language processing, but which are very dif- 
ficult to infer [4]. Pattern languages permit the repetition of 
variable substrings along the strings of a language, and there 
are methods to infer them from examples [SI, but their ex- 
pressive power is clearly insufficient even to describe simple 
context-sensitive structures such as rectangles. 

The problem of learning formal languages is tradition- 
ally referred to as grammatical inference (GI). The most 
part of GI research has beeqdevoted to the theory and meth- 
ods for learning regular languages (or finite-state automata) 
[6,7]. In addition, some GI methods have been suggested to 
learn proper subclasses of context-free languages (CFLs), 
such as the even linear languages [SI, or general context- 
free grammars from positive structural examples [9]. How- 
ever, there is a need for GI methods capable of inferring 
CSLs, specially for pattern recognition tasks in computer vi- 
sion, where objects usually contain structural relationships 
that are not describable by CKs.  Unfortunately, work on 
CSL learning is extremely scarce in the literature. Recently, 
Takada has shown that a hierarchy of language families that 
are properly contained in the family of CSLs can be learned 
using regular GI algorithms [lo]. 

More recently, Augmented Regular Expressions (AREs) 
have been proposed by us as a formalism to describe and rec- 
ognize a class of CSLs, that covers planar shapes with sym- 
metries [ 1,2]. An ARE E?. is formed by a regular expression 
(RE) R, in which the stars are replaced by natural-valued 
variables. called star variables, and these are related through 
a finite number of constraints (linear equations). Hence, RES 
are reduced to AREs with zero constraints among the star 
variables. A general approach to infer AREs from string 
examples is proposed here, that is based on a regular GI step 
followed by an inductive process which tries to discover the 
maximal number of context constraints. 

2. Augmented Regular Expressions (AREs) 

Let C = { a l ,  ..., a,} be an alphabet and let X denote 
the empty string. The regular expressions (RES) over C and 
the languages that they describe are defined recursively as 
follows: 0 and X are RES that describe the empty set and 
the set {A},  respectively; for each ai E C (1 5 i 5 m), 
ai is an RE that describes the set {ai}; if P and Q are RES 
describing the languages L p  and LQ,  respectively, then (P+ 
Q ) ,  ( P Q ) ,  and (P*)  are RES that describe the languages 

1015-4651196 $5.00 0 1996 IEEE 
Proceedings of ICPR '96 

745 



L p  U LQ, L p  LQ and LE;, respectively. By convention, the 
precedence of the operations in decreasing order is * (star), 
(concatenation), + (union). This precedence together with 
the associativity of the concatenation and union operations 
allows to omit many parentheses in writing an RE. The 
language described by an RE R is denoted L(R).  Two RES 
P and Q are said to be equivalent, denoted by P = Q,  if they 
describe the same language. RES and finite-state automata 
(FSA) are alternative representations of the class of regular 
languages, and there are algorithms to find an RE equivalent 
to a given FSA and viceversa [l I]. 

Let R beagivenmincluding ns  star symbols (ns 2 0). 
The see of star variables associated with R is an ordered 
set of natural-valued variables V = { V I ,  ..., vn,), which are 
associated one-to-one with the star symbols that appear in R 
in a left-to-right scan. For vi , vj E V, we say that vi contains 
vj iff the operand of the star associated with vi in R includes 
the star corresponding to vj ; and we say vi directly-contains 
V j  iff vi contains wj and there is no vk E T/ such that vi 
contains V k  and V k  contains vj . The star tree I = (N, E ,  r )  
associated with R is a general tree in which the root node r 
is a special symbol, the set of nodes is N = V U  ( r } ,  and the 
set of edges E is defined by the containment relationships of 
the star variables: (i) VV; E V : ( d V k  E V, V k  contains 
v i )  ==-+ (T ,  vi) E E ;  (ii) Vvi, vj E V, i # j : vi directly- 
contains v j  - ( v i ,  wj) E E. An algorithm to build the 
szar tree I has been reported [l], with a time complexity of 
O(lRI . h(R)),  where h(R) is the depth of non-removable 
parentheses in R. 

A star variable v can take as value any natural num- 
ber, whose meaning is the number of consecutive times 
(cycles) the operand of the corresponding star (an RE) is 
instantiated while matching a given string. In such a case, 
we say that the star variable is instantiated. Given a cer- 
tain string s belonging to the language described by the 
EPE R from which V has been defined, a data structure 
S I s ( V )  = { S I s ( v l ) ,  ... SIs (vns ) } ,  called the set of star in- 
stances (of the star variables in V for s), can be built during 
the process of parsing s by R. Each member of the set 
SI, (a/) is a list of lists containing the instances of a partic- 
ularstarvariable: V i  E [l..ns] : SI,(vi) = ( d j  ... Z $ i s t s ( i ) )  
where nZists(i) 2 0, andVi E [l..ns] V j  E [l..nlists(i)] : 
Z: = (e;, ... ei(,,,,,,(i,j))) where neZems(i,j) 2 1. 

The star instances stored in SI, (V) are organized ac- 
cording to the containment relationships described by 7 .  
To this end, each list Zj is associated with two pointersfa- 
therJist( l j )  andfatherdem( 1; ) that identify the instance of 
the father star variable from which the instances of wi in I; 
are derived. A1I the star variables that are brothers in the star 
tree I will have the same structure of instances, provided 
that a special value, say - 1,  is stored whenever a star vari- 
able is not instantiated during a cycle of an instance of its 
father. Fig.1 shows an example of the set of star instances 

resulting from the parse of a string by an RE. Two efficient 
algorithms for unambiguous* RE parsing that construct the 
star instances structure have been reported [ 11. 

I 

I 
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I 
V 

I 

Fig. 1 An example of star instances data structure. 

Given a star tree 7 ,  a set of star instances SI, ( V )  for a 
certain string s, and two nodes v i ,  vj E V ,  we say that vi is 
a degenerated ancestor of wj (for s) iff vi is an ancestor of 
vj in I and for each instance of vi in SI ,  ( v i )  all the values 
of the instances of vj in SI, (wj ) that are derived from it 
are constant. By definition, the root T is a non-degenerated 
ancestor of any other node vj . Let vi E V U { T } ,  v j  E V ;  
we say that vi is the housing ancestor of vj (for s )  iff vi is 
the nearest non-degenerated ancestor of vj (for s). When a 
node is not housed by its father, then its redundant instances 
can be collapsed into the same list structure of its father, 
and this step may be done several times until the housing 
ancestor is reached. 

An Augmented Regular Expression (or ARE) is a four- 
tupla (R ,  V, 7, L) ,  where R is a regular expression over 
an alphabet C, V, is its associated set of star variables, I 
is its associate6 star tree, and L is a set of independent 
linear relations { E l ,  ..., I,,}, that partition the set V into 
two subsets Vind ,  Vdep of independent and dependent star 
variables, respectively: this is, for 1 5 i C nc, 

I; is V? = a~~wf~"..+a;jv~~~+..+a~(n~)v~~+a~~, 

where ni and ne are the number of independent and de- 
pendent star variables, respectively, ns = ne + ni, and the 

*An RE R is ambiguous if there exists a string s E L(R) for which 
more than one parse of s by R can be made. 
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coefficients aij are always rational numbers. 
Given a set of star instances SIs ( V ) ,  a star tree 7,  and 

a set of linear equations L,  let rewrite each constraint Pi E C 
by removing all the terms of independent variables with 
coefficient zero in the right hand sides of the equations,i.e. Zi 
isvfeP = ailv:*..Sa;k~v:i+aio,for P 5 i 5 nc,suchthat 
V j  E [ I ,  ki] : aij # 0. Let U, E V be the deepest common 
ancestor in I of the nodes { v ~ : ~ ~  ~ vi , . . . , vii]. Then, we say 
that SI,  ( V )  satisfy a constraint li E L iff 

i> the housing ancestors (for s )  of the nodes 
{un!ep, vi, .,., viz) are either U, or an ancestor of U,, 
or they satisfy a strict equality constraint, and 

ii) the linear relation li is met by the corresponding in- 
stances of ( v f e p ,  U;, ..., U;,} that are derived for each 
instance of vc. 

The first condition above implies structural similarity of 
instance lists, while the second one requires the satisfaction 
of the equation. The star instances SIs (V) satisfy L iff 
SIs (V)  satisfy each constraint Ei E C, for 1 5 i 5 nc. 

Finally, let R = ( R ,  V, 7, L )  be an ARE over C., the 
language L( R) represented by R is defined as L( R) = { a  E 
Y' I cy E L( R) and there exists aparse of cy by R in which 
SIa,(V) satisfy L}.  

The recognition of a string s as belonging to a language 
E ( @  can be clearly divided in two steps: parsing s by R, 
and if success, checking the satisfaction of constraints L 
by the star instances SI, (VI that result from the parse. If 
R is unambiguous, a unique parse and set of star instances 
SIs (V)  ispossibleforeach s E L(R) ,  andthereforeasingle 
satisfaction problem must be analysed to test whether s E 
L(l?). An algorithm for constraint testing has been reported 
[2], thairunsinO(1Ci .Re ight (T) .  IV[.I(SI,(V))), where 

I ( S I s ( V ) )  = max neZems(i,j) is the maximal 

number of instances of a star variable yielded by parsing s. 
AREs permit to describe a class of context-sensitive 

languages by defining a set of constraints that reduce the ex- 
tension of the underlying regular language. A very simple 
example is the language of rectangles described by the ARE 

= ( R I , K , T ,  L I ) ,  with R*(K/*)  = aav*bbv2aav3bb"4 
and L1 = (213 = v l ,  v4 = U*}. However, quite more com- 
plex languages with an arbitrary level of star embedment 
in the RE can be described as well by the ARE formalism. 
It has been demonstrated that not all the CSLs can be de- 
scribed by an ARE [2]. On the other hand, AREs cover all 
the pattern languages, but the size of an ARE describing a 
pattern language over C is exponential in 1x1 [2]. 

n l is  t s  (i) 

i=I,IVI 
j = 1  

3. Inference of AREs from string examples 

Now, let us consider the problem of learning aREs 
from examples. This is, given a sample (Sf, S-)  of an 

unknown language L ,  infer an ARE R = (R ,  V, 7, C) such 
that Ss 2 L(R)  and S- n L(@ = 0, and l? is determined 
through some heuristic bias. A possible approach is to split 
the process in two main stages: inferring the underlying 
RE R, and afterwards, inducing the constraints C. A nice 
property of this approach is that if the target RE RT is 
identified in the first stage, then the target unknown ARE 
&p (with L(&)  = L )  can be identified in the second stage 
(in the limit) by inducing the maximal number of constraints 
satisfied by the positive examples. 

On the other hand, in order to infer the RE R correctly, 
we should be able to partition the negative sample S- (if any) 
in the two subsets S; and (S-  -S; ), characterized by S; n 
L(R) = 0 and (S -  -5';) C L(R).  Supplying theentire S- 
to the regular GI method will typically cause an oveilitting 
of the positive examples. Thus, unless a teacher is available 
to partition the negative examples, or it is guaranteed that 
S- = S;, a heuristic method based only on the positive 
examples should be preferred for the regular inference step. 

Let us illustrate the proposed method using an actual 
example shown in Fig.2. The problem was to learn a recog- 
nizer for the class of contours coming from a frontal view of 
variable-size cylinders with a fixed-size dent at a variable po- 
sition along the axis. It is clear that the associated language is 
context-sensitive, and hence, we cannot expect that a regular 
or a CFL GI algorithm infers a suitable recognizer. Nev- 
ertheless, an adequate description like amcnbdcPamcPbdcn 
should be reachable from a few examples. In the case of 
Fig.2, a sample S = (9, S - )  of 16 positive and 48 neg- 
ative examples was given. corresponding to some variable- 
size instances of the contours shown in the top. Assuming 
S- = S; , the active regular GI method [7] was applied to 
the entire S,  and the DFA displayed in Fig.:! was obtained. 
This DFA accounts for the basic repetitive structure of the 
model, but it over-generalizes a lot, accepting many invalid 
contours without any length restriction. From this DFA, 
an equivalent RE was obtained as base of the ARE (Fig.2). 
Finally, from the analysis of the star instances produced by 
parsing the positive examples by the RE, a set of constraints 
could be induced that, in conjunction with the RE, perfectly 
described the target language. 

The data flow of the process followed to infer an ARE 
from examples is depicted in Fig.3. A wide range of al- 
gorithms is available to perform the regular GI step [6, 71, 
but most of them return an FSA. In these cases, we need to 
find an RE equivalent to the inferred FSA to build the ARE. 
Given an FSA A ,  there can be many equivalent RES R satis- 
fying L(A)  = L(R) ,  and several algorithms are applicable 
to obtain such an RE [ll]. By selecting a specific algo- 
rithm, a mapping + : F S A  -+ RES can be established, i.e. 
a canonical RE R can be chosen for each FSA A, R = $(A). 

The mapping I I ,  that we have selected is based on Ar- 
den's method [l 13, but, in order to facilitate the ARE in- 
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Projective view 

l-7 Primitives 
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(16 ex.) 

S- 
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Regular Expression 

a(a*cc*bdcc*a)*a*cc*bdcc* 

Active Grammatical Inference (AGI) 
method 

Induction of 
constmnts I 

a( a" 'cc'bd ccv3a) V4a's~~'%d~~v7 

v4 = 1 
v5 = vl 
v6 = v3 
V l  = v2 

with [ 
Augmented Regular Expression Deterministic FSA 

Fig. 2 An example of application of the proposed method for inferring AREs. 

duction, an inner modification of the algorithm and a final 
simplifying step have been proposed [2]. Given a DFA, the 
resulting RE is always unambiguous (thus easing the RE 
parsing) and such that the star subexpressions due to loops 
are distinguished from those corresponding to the rest of 
circuits of the automaton. Since loops may represent indef- 
inite length or duration of a basic primitive, this separation 
allows for a later induction of constraints relating the lengths 
or durations of the different parts of a pattern. Moreover, 
by increasing the number of stars in the RE, while preserv- 
ing equivalence and unambiguity, through the use of the 
equivalence rule ( P  t Q)* = (P*Q)*P*, the potential for 
inferring constraints that involve the instances of the star 
operations is also increased. 

Once an RE R is inferred, the star variables V and 
the star tree I associated with R are easily determined [l]. 
Then, the aim is to induce an ARE R = (R ,  V, I, C )  such 
that C contains the maximal number of (linear) constraints 
met by all the provided examples. To this end, the positive 
strings must be parsed by R giving rise to an array of sets of 
star instances ASI, and those regularities that consistently 
appear throughout the star instances must be discovered. 
The complexity of parsing a string s by an RE R is O( Is1 . 
IRI), but if the equivalent DFA A is also available, a more 
efficient parsing technique can be applied [I]. 

For the last step, a constraint induction algorithm has 
been reported [l], that returns a set of linear constraints 

C among the star variables V ,  with a time complexity of 
0(IVl3. I (ASIS+(V)) ) ,  where I (ASIs+(V))  is themax- 
mal number of instances of a star variable yielded by parsing 
the set of strings S+ . This algorithm is based on establishing 
a tree of linear systems according to the housing ancestor 
concept. Each housing ancestor- will have its own parti- 
tion of independent and dependent star variables among its 
houseddescendents. To construct this partition, each ances- 
tor node of I keeps track of its housed descendents that have 
been found independent. All the variables of 7 are visited 
by levels, and for each one (say vj) ,  its housing ancestor (say 
V k )  is determined and a vector of its non-redundant instances 
is formed. Then a matrix is built that contains the instances 
of the independent housed descendents of vk. Next, the 
rank of the matrix is evaluated and any linearly dependent 
column is removed. Finally, it is determined whether the 
vector of actual instances of vJ is linearly dependent on the 
columns of the matrix. If it is, a linear system can be solved 
to find the constraint coefficients, and the new constraint is 
appended to C; otherwise, vj is put in thelist of independent 
housed descendents of wk. 

4. Conclusions 

Augmented Regular Expressions (AREs)  are compact 
(and intelligible) descriptions that represent a non-trivial 
class of context-sensitive languages, including pattern lan- 
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Fig. 3 Block diagram of a general method to learn Augmented Regular Expressionsfrom string examples. 

guages [2], contours of planar shapes with symmetries, and 
other complex patterns. Furthermore, the recognition of a 
string as belonging to the language described by an ARE, 
which is based on parsing by the underlying RE and check- 
ing the constraints, is efficient (to the contrary of parsing by 
a context-sensitive grammar) [ 1, 21. 

A general method to learn AREs from examples has 
been proposed here, which is based on splitting the process in 
two main stages: inferring the underlying RE and inducing 
the maximal number of constraints afterwards. This learn- 
ing strategy is not conceived as an identification method, 
but a heuristic method in which the inferred ARE strongly 
depends on the result of the regular GI algorithm used in 
the former stage. However, if the target RE were identi- 
fied firstly, the target ARE, which includes it, would also be 
identified in the limit, since the constraint induction process 
finds the maximal number of context linear relations met by 
all the examples (i.e. the ARE with the smallest language 
containing the exampIes among the A R E s  that include the 
same RE). On the other hand, if negative examples are sup- 
plied, then the learning method cannot know which of them 
should belong to the underlying regular language and which 
should not, unless an informant classified them in advance. 

Since most of the known regular GI methods yield a 
finite-state automaton (FSA) [6], a specific FSA to RE map- 
ping has been proposed to obtain an equivalent unambiguous 
E [2]. Nevertheless, a method providing directly an RE, 
such as the U ~ W  algorithm [6] ,  would be preferred due to 
the exponential worst-case complexity of the FSA to RE 
transformation. Likewise, the algorithm to be used in the 
regular GI step should return preferrably a small RE rep- 
resenting a high generalization with respect to the sample, 
both to ease the parsing of examples by the RE and to permit 
the discovery of the target context relations. The constraint 
induction could be impeded if the regular language were too 
restricted to the given examples (sample overfitting). 
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