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Abstract

We describe a multi-feature hierarchical algo-
rithm to e�ciently match N objects (templates)
with an image using distance transforms (DTs).
The matching is under translation, but it can
cover more general transformations by generating
the various transformed templates explicitly. The
novel part of the algorithm is that, in addition to
a coarse-to-�ne search over the translation pa-
rameters, the N templates are grouped o�-line
into a template hierarchy based on their similar-
ity. This way, multiple templates can be matched
simultaneously at the coarse levels of the search,
resulting in various speed-up factors. Further-
more, in matching, features are distinguished by
type and separate DT's are computed for each
type (e.g. based on edge orientations). These
concepts are illustrated in the application of traf-
�c sign detection.

1 Introduction

Matching is a central problem in pattern recog-
nition and computer vision. A common applica-
tion is object detection and tracking. The vari-
ous matching methods that have been proposed
can be distinguished by what type of features are
used [12]. At the one end there are pixel-based
methods, which �t models directly to (�ltered)
image pixels. At the other end there are sym-
bolic matching methods which operate on a few
high-level features (e.g. parts of objects and their
relations) and apply graph matching methods to
establish correspondence.

In this paper, we consider methods for im-
age matching using distance transforms (DTs).
Matching using DTs involves intermediate-level
features [2] which are extracted locally at various
image locations, e.g. edge points. A DT converts
the binary image, which consists of feature and
non-feature pixels, into a DT image where each
pixel denotes the distance to the nearest feature
pixel. Similarly, the object of interest is repre-
sented by a binary template using the same fea-

ture representation. Matching proceeds by cor-
relating the template against the DT image; the
correlation value is a measure of similarity in im-
age space.

Previous work on DT-based matching [1] [2]
[7] [3] [11] [5] [10] [6] has dealt with the case
of matching one template against an image, al-
lowing certain geometrical transformations (e.g.
translation, rotation, a�ne). Here we consider
a more general case of matching N templates
with an image under translation. Matching of
one template under more general transformations
can be seen as a special case when all the trans-
formed templates are generated explicitly. In ad-
dition to a coarse-to-�ne search over the trans-
lation parameters, the N templates are grouped
o�-line into a template hierarchy based on their
similarity. Multiple templates can be matched
simultaneously at the coarse levels of the search,
resulting in various speed-up factors.

The outline of the paper is as follows. Section
2 reviews previous work on distance transforms,
distance measures and matching strategies. Sec-
tion 3 discusses the proposed extensions to the
DT matching scheme, which involve the use of
multiple features and an e�cent match strategy
by means of a template hierarchy. Section 4 lists
experiments in the application of tra�c sign de-
tection. Finally, we conclude in Section 5.

2 Previous Work

2.1 Distance Transforms

A distance transform (DT) converts a binary im-
age, which consists of feature and non-feature
pixels, into an image where each pixel value de-
notes the distance to the nearest feature pixel.
DTs approximate global distances by propagat-
ing local distances at image pixels. Particular
DT algorithms depend on a variety of factors.
One factor is whether they result in a Euclidean
distance metric or not (EDTs vs. WDT) [8] [13].
Figure 1 illustrates a EDT. WDTs de�ne vari-



ous approximations of the \true" Euclidean dis-
tance measure. One such approximation is the
chamfer-2-3 metric [1] [2] [13], used in our exper-
iments. Another factor is how the distances are
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Figure 1: A binary pattern and its Euclidean Dis-
tance Transform

propagated over the image, whether in a raster
scan or a contour scan fashion. Most algorithms
use a raster scan fashion where the propagation of
distances is in a manner independent of the fea-
ture locations in the image, with a mask of �xed
size and shape. Contour scan algorithms prop-
agate the distances from the feature locations.
Some DT approaches also weigh the distances
from features by their salience, where salient fea-
tures (e.g. edge strength, length, curvature) re-
sult in comparably lower "distance" values [10].
Finally, there are sequential and parallel DT al-
gorithms [4].

2.2 Match Measures and Strategies

Matching with DT is illustrated schematically in
Figure 2. It involves two binary images, a seg-
mented template T and a segmented image I,
which we'll call "feature template" and "feature
image". The "on" pixels denote the presence of
a feature and the "o�" pixels the absence of a
feature in these binary images. What the actual
features are, does not matter for the matching
method. Typically, one uses edge- and corner-
points. The feature template is given o�-line for
a particular application, and the feature image
is derived from the image of interest by feature
extraction.

Matching T and I involves computing the dis-
tance transform of the feature image I. The
template T is transformed (e.g. translated, ro-
tated and scaled) and positioned over the result-
ing DT image of I; the matchingmeasureD(T; I)
is determined by the pixel values of the DT im-
age which lie under the "on" pixels of the tem-
plate. These pixel values form a distribution of
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Figure 2: Matching using a DT

distances of the template features to the near-
est features in the image. The lower these dis-
tances are, the better the match between image
and template at this location. There are a num-
ber of matching measures that can be de�ned on
the distance distribution. One possibility is to
use the average distance to the nearest feature.
This is the chamfer distance.

Dchamfer (T; I) �
1

jT j

X

t2T

dI(t) (1)

where jT j denotes the number of features in T

and dI(t) denotes the distance between feature t
in T and the closest feature in I. The cham-
fer distance consists thus of a correlation be-
tween T and the distance image of I, followed
by a division. Other more robust measures re-
duce the e�ect of missing features (i.e. due to
occlusion or segmentation errors) by using the
average truncated distance or the f-th quantile
value (the Hausdor� distance) [7] [11]. In ap-
plications, a template is considered matched at
locations where the distance measure D(T; I) is
below a user-supplied threshold �

D(T; I) < � (2)

Figure 3 illustrates the matching scheme of
Figure 2 for the typical case of edge features. Fig-
ure 3a-b shows an example image and template.
Figure 3c-d shows the edge detection and DT
transformation of the edge image. The distances
in the DT image are intensity-coded; lighter col-
ors denote increasing distance values.

The advantage of matching a template (Figure
3b) with the DT image (Figure 3d) rather than
with the edge image (Figure 3c) is that the re-
sulting similarity measure will be more smooth
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Figure 3: (a) original image (b) template (c) edge
image (d) DT image

as a function of the template transformation pa-
rameters. This enables the use of various e�-
cent search algorithms to lock onto the correct
solution, as will be discussed shortly. It also al-
lows more variability between a template and an
object of interest in the image. Matching with
the unsegmented (gradient) image, on the other
hand, typically provides strong peak responses
but rapidly declining o�-peak responses.

A number of extensions have been proposed
to the basic DT matching scheme. Some deal
with hierarchical approaches to improve match
e�ciency and use multiple image resolutions [2].
Others use a pruning [3] [7] or a coarse-to-�ne
approach [11] in the parameter space of relevant
template transformations. The latter approaches
take advantage of the smooth similarity measure
associated with DT-based matching; one need
not to match a template for each location, ro-
tation or other transformation. Other extensions
involve the use of a un-directed ("symmetric")
similaritymeasure between image and a template
[7] [5]. In this case, a DT is applied on both
the image and template. Matching takes places
with the feature image and feature template, vice
versa, as seen in Figure 2.

Here is a summary of various aspects covered
in past work on DT-based matching

� features: edge points, corner points

� multi-typing: none

� distance metric: chamfer-2-3, chamfer-3-
4, Euclidean

� computation of DT image: serial vs.
parallel, salience weighing

� match measures: Euclidean vs. robust
measures, directed vs. undirected measures

� matching N templates: none

� global search algorithms: exhaustive vs.
hierarchical (in transformation space, in im-
age resolution)

3 Extensions

3.1 Multiple Feature-Types: Edge
Orientation

So far, no distinction has been made regarding
the type of features. All features would appear
in one feature image (or template), and subse-
quently, in one DT image. If there are several fea-
ture types, and one considers the match of a tem-
plate at a particular location of the DT image,
it is possible that the DT image entries re
ect
shortest distances to features of non-matching
type. The similarity measure would be too op-
timistic, increasing the number of false positives
one can expect from matching.

A simple way to take advantage of possibil-
ity to distinguish feature types is to use sep-
arate feature-images and DT images, for each
type. Thus having M distinct feature types re-
sults in M feature images and M DT images.
Similarly, the \untyped" feature template is sep-
arated in M \typed" feature templates. Match-
ing proceeds as before, but now the match mea-
sure between image and template is the sum of
the match measures between template and DT
image of the same type.

We now consider the frequent case of the use of
edge points as features. For this case, we propose
the use of edge orientation as feature type by
partitioning the unit circle in M bins

f [
i

M
2�;

i+ 1

M
2� ] ji = 0; :::;M � 1 g (3)

Thus a template edge point with edge orientation
 is assigned to the typed template with index

b
 

2�
Mc (4)

We still have to account for measurement error
in the edge orientation and the tolerance we'll
allow between the edge orientation of template
and image points during matching. Let the abso-
lute measurement error in edge orientation of the



template and image points be ��T and ��I , re-
spectively. Let the allowed tolerance on the edge
orientation during matching be ��tol. In order
to account properly for these quantities, a tem-
plate edge point is assigned to a range of typed
templates, namely those with indices

fb
( ���)

2�
Mc; :::; b

( +��)

2�
Mcg (5)

mapped cyclically over the interval 0; :::;M � 1,
with

�� = ��T +��I +��tol (6)

For applications where there is no sign informa-
tion associated with the edge orientation, a tem-
plate edge point is also assigned to the typed tem-
plates one obtains by substituting  + � for  in
Equation (5).

3.2 Matching N Templates:
Template Hierarchy

One often encounters the problem of matching
N templates with an image. If the N templates
bear no relationship to each other, there is little
one can do better than match each of the tem-
plates separately. If there is some structure in the
template distribution, one can do better. The
proposed scheme to match the N related tem-
plates involves the use of a template hierarchy,
in addition to a coarse-to-�ne search over the im-
age. The idea is that at a coarse level of search,
when the image grid size of the search is large,
it would be ine�cient to match each of the N
objects separately, if they are relatively similar
to each other. Instead, one would group similar
templates together and represent them by a pro-
totype template; matching would be done with
this prototype, rather than with the individual
templates, resulting in a (potentially signi�cant)
speed-up. This grouping of templates is done
at various levels, resulting in a hierarchy, where
at the leaf levels there are the N templates one
needs to match with, and on intermediate levels
there are the prototypes.

To make matters more concrete, consider �rst
the case of a coarse-to-�ne search where one
matches a single template under translation. As-
sume there are L levels of search (l = 1; :::; L),
determined by the size �l of the underlying uni-
form grid and the distance threshold �l which
determines when a template matches su�ciently
enough to consider matching on a �ner grid (in
the neighborhood of the promising solution). Let
�tol denote the allowed tolerance on the distance

measure between template and image at a \cor-
rect" location. Let � denote the distance along
the diagonal of a unit grid element. Then by
having

�l = �tol +
1

2
��l (7)

one has the desirable property that, using un-
truncated distance measures such as the chamfer
distance, one can assure that the coarse-to-�ne
approach will not miss a solution. The second
term accounts for the (worst) case that the so-
lution lies at the center of the 4 enclosing grid
points which form a square.

Now consider the case where the above L-level
search is combined with a L-level template hier-
archy. Matching can be seen as traversing the
tree structure of templates. Each node corre-
sponds to matching a (prototype) template p

with the image at node-speci�c locations. For
the locations where the distance measure be-
tween template and image is below user-supplied
threshold �p, one computes new interest locations
for the children nodes (generated by sampling the
local neighborhood with a �ner grid) and adds
the children nodes to the list of nodes to be pro-
cessed. The matching process starts at the root,
the interest locations lie initially on a uniform
grid over relevant regions in the image. The tree
can be traversed in breadth-�rst or depth-�rst
fashion. In the experiments, we use depth-�rst
traversal which has the advantage that one needs
to maintain only L� 1 sets of interest locations.

Let p be the template corresponding to the
node currently processed during the traversal and
let C = ft1; :::; tcg be the set of templates cor-
responding to its children nodes. Let �p be the
maximum distance between p and the elements
of C.

�p = max
ti2C

D(p; ti) (8)

Then by having

�p = �tol + �p +
1

2
��l (9)

one has the desirable property that, using un-
truncated distance measures such as the chamfer
distance, one can assure that the coarse-to-�ne
approach using the template hierarchy will not
miss a solution. The thresholds one obtains by
Equation (9) are quite conservative, in practice
one can use lower thresholds to speed up match-
ing, at the cost of possibly missing a solution (see
Experiments).



4 Experiments

To illustrate the proposed matching method we
apply it to the detection of circular and trian-
gular (up/down) signs, as seen on highways and
secondary roads. For the moment, we do not
consider tra�c signs which appear tilted and/or
skewed in the image; the only shape parameter
considered is scale. Edge points are used as fea-
tures, further di�erentiated by their edge orien-
tation. The edge orientations are discretized in
8 values. We use templates for circles and tri-
angles with radii in the range of 7-18 pixels (the
images are of size 360 by 288 pixels). This leads
to a total of 36 templates, for which a template
tree is speci�ed \manually" as in Figure 4. The
tree has three levels (not counting the root level,
which contains no template). The root node has
six children corresponding to two prototypes for
each of the three main shapes to be matched: cir-
cle, triangle-up, triangle-down. The prototypes
at the �rst level of the hierarchy are simply the
templates with radii equal to the median value of
intervals [7-12] and [13-18], namely 9 and 15. The
prototypes at the second level are the templates
with radii equal to the median value of intervals
[7-9], [10-12], [13-15] and [16-18]. Each template
(or prototype) is partitioned into 8 typed tem-
plates based on edge orientation. The direction
of the edge orientation is speci�ed, we only search
for circles and triangles with a "light-inside-dark-
outside" contour characteristic.
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Figure 4: Template hierarchy

Matching uses a depth-order traversal over
the template tree, in the manner described by

Subsection 3.2. Coarse-to-�ne sampling uses a
grid size of � = 8; 4; 1 for the three levels of
the template tree. We used distance thresholds
�l = 3:5; 1:35;0:6 pixels for the three levels, re-
spectively.

The experiments involved both o�- and online
tests. O�-line, we used a database of 1000 im-
ages, taken during day-time (sunny, rainy) and
night-time. We obtained single-image detection
rates of about 90%, when allowing solutions to
deviate by 2 pixels and by radius 1 from the
values obtained by a human. Typically, there
were 4-6 false positives per image (in a later
pictograph classi�cation phase, more than 95%
of these were rejected using a RBF network).
Figure 5 illustrates the followed hierarchical ap-
proach. The white dots indicate locations where
the match between image and a (prototype) tem-
plate of the template tree was good enough to
consider matching with more speci�c templates
(the children), on a �ner grid. The �nal detec-
tion result is also shown. More detection results
are given in Figure 6, including some false posi-
tives The tra�c signs of the database that were
not detected were had low contrast, were tilted
or skewed. Improvement of the detection rate
can thus be achieved in a relative straightforward
manner, by lowering the edge threshold and by
adding more templates.

Given image width W , image height H, and
K templates, a non-hierarchical matching algo-
rithm would require W �H �K correlations be-
tween template and image. In the presented hi-
erarchical approach both factors W �H and K
are pruned (by a coarse-to-�ne approach in im-
age space and in template space). It is not pos-
sible to provide an analytical expression for the
speed-up, because it depends on the actual im-
age data and template distribution. Typically,
we have observed speed-up factors in the range
of 200-400.

5 Conclusion

In this paper we proposed two extensions to DT-
based matching. The �rst extension dealt with
di�erentiating the features by type (i.e. by edge
orientation) and the second dealt with matching
using a template hierarchy. We observed that
this approach can result in a signi�cant speed-
up when compared to the exhaustive approach,
in the order of two magnitudes. Some interest-
ing problems lie ahead regarding the automatic



generation of the template hierarchy.

(a)

(b)

Figure 5: Tra�c sign detection: (a) day and (b)
night (white dots denote intermediate results; the
locations matched during hierarchical search)

Figure 6: More detection results
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