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Abstract

We present a method allowing a significant speed-up of
the eigen-detection method (detection based on principle
component analysis). We derive a formula for an upper
bound on the class-conditional probability (or, equivalently,
a lower bound on the Mahalanobis distance) on which de-
tection is based. Often, the lower bound of Mahalanobis
distance (MD) reaches a preset threshold after computation
of only a few eigen-projections. In this case the computation
of MD can be immediately terminated. Regardless of the
precise value of MD, the detection hypothesis (object from
class
 is detected) can be rejected. While provably obtain-
ing results identical to the standard technique, we achieved
a two to threefold speed-up in face detection experiments on
images from the CMU database.

1. Introduction

Subspace methods and eigenspace decomposition (prin-
ciple component decomposition) are well-suited for the tar-
get classdetection problem - e.g. the task of locating a
generic human face [7, 5], lips [2, 4], hands and many other
structures [3] in images. In [1], Moghaddam and Pentland
show how eigen-detection can be formulated as a maximum
likelihood problem. Quantities commonly used in eigen-
detection, the distance in feature space and distance from
subspace, are interpreted as components ofP (xj
), i.e. the
conditional probability density ofx, given thatx belongs to

class
 (the class of face, hand, lip images, etc.).1.
In this paper, we make use ofP (xj
), but re-formulate

the eigen-detection task in ahypothesis testingframework:
a subimagex is accepted in class
 (i.e. a face is detected
atx) iff

P (
jx) � t� (1)

where t� is a threshold onP (
jx), the probability of
x being an instance of class
 (P (
jx) is proportional
to P (xj
) if the probability of the non-face class is as-
sumed constant).t� corresponding to a chosen significance
level�.

We will show that to reject the ’subimagex in class
’
hypothesis it is often sufficient to compute only afractionof
the full set of eigen-projections. The proposed improved al-
gorithm produces provably identical results to the standard
method, by establishing an upper bound onP (
jx), de-
notedP "i (
jx), that is iteratively updated after every eigen-
projection2. If

t� � P
"
i (
jx);

which implies
t� � P (
jx);

i.e. the upper bound reaches the pre-selected thresholdt�,
the hypothesis that subimagex belongs to class
 can be re-
jected, without computing the remaining eigen-projections.

1for simplicity, and since all our experiments are performed on facial
images, we will from now on identify the class
 with the class of images
of faces.

2the subscriptimakes explicit the dependence ofP
"
i
(
jx) on the num-

ber of eigen-projections computed



The reduction in eigen-projection computations gained by
the proposed approach depends on the number of eigen-
vectors in the class model and the data in which instances
are searched; For certain thresholdst� and some subimages
only a single eigen-projection was sufficient to reject the
’face (hand, lips) present’ hypothesis. In this case, eigen-
detection and correlation with a single template (the mean
of the training set) are equivalent; the method described be-
low may be therefore used to detect this equivalence and is
suitable for assessing the necessary complexity of a class
model for a given background.

The proposed algorithm is not a new target detection
method, rather it shows how to efficiently implement the
eigen-detection approach, with a performance guaranteed to
be identical to the standard technique of computing a fixed
number of eigen-projections at every chosen location. The
benefit is independent of the practically important issue of
search strategy, ie. the problem of choosing suitable subim-
agesx, i.e. locations, scales, rotation angles etc. at which
the likelihoodP (
jx) is evaluated.

The rest of the paper is organized as follows. In section
2 we defineP "i (
jx)and show it is indeed an upper bound
of P (
)jx). In section 3 we report test results on represen-
tative images - a group photo, a simple background head-
and-shoulders scene and a complex background head-and-
shoulders scene. We summarize the contribution in section
4.

2. Lower bound for the Mahalanobis distance

Given a training setTx = fx1; : : : ;xNT
g of N-

dimensional image vectors the we can estimate the mean
�(Tx) and covariance matrix� of the underlying distribu-
tion. We calculate by eigen-decomposition of� the matrix
of eigenvectors� of� and the diagonal matrix� containing
the corresponding eigenvalues in decreasing order.� is the
basis of the Karhunen-Loeve Transform. We assume that
the class-conditional probability density forx is Gaussian
(which is reasonable for our data [1]):

P (xj
) =
e�

1
2
~xt��1~x

(2�)
N

2 j�j
1
2

=
e�

1
2
y
t��1y

(2�)
N

2

QM

i=1 �
1
2

i

(2)

The distance functionDM = y
t�y =

PN

i=1
y2
i

�i
is called

theMahalanobis distance(MD). The MD is proportional to
the negative logarithm of the class-conditional probability

DM � � logP (xj
) (3)

By keeping only the first M eigenvectors (eigenvector with
the largest eigenvalues) one can obtain aprincipal subspace
of the space of all possible images which captures the major
correlations of the training setTx.

Since the Mahalanobis distance is in a one to one cor-
respondence with the class-conditional probabilityP (xj
)

we can use a lower bound onDM, denotedD#M(x) , in-
stead of an upper bound onP (
jx). It is easy to show
that the Mahalanobis distanceDM of a vectorxk at ev-
ery step of the eigen-projection (k denotes the number of
eigen-components that have already been used in the pro-
jection) becomes minimal if the vector is aligned with the
eigenvectorek+1 that corresponds to the largest eigenvalue
in the space of remaining eigenvectorsf�ig

N

i=k+1. Thus a
lower bound for the Mahalanobis distance given the projec-
tionsyk for k < M onto the firstk principal axisek is given
by

D
#
M(x) =

kX

i=1

y2i
�i

+
�(x)2k
�k+1

� DM(x) (4)

where�(x)2k = �(x)2�
Pk

i=1 y
2
i is the remaining Euclidean

distance of the vectorx afterk projections. The improved
algorithm for computing the eigenspace-projections looks
as follows:

Algorithm 1 Algorithm for eigen-detection

1: �(x)20 = kxk,k = 1

2: D
#
M(x) = �(x)20

3: while NOTD#M(x) � ~t� do
4: if k > max then TARGET DETECTED
5: yk = ekx, �(x)k = �(x)k�1 � kykk

6: D
#
M(x) =

Pk

i=1
y2
i

�i
+ �(x)k

�k+1
.

7: k = k + 1
8: end while

~t� is the threshold forD#M(x) corresponding tot� for
P
"
i (
jx).

3. Experiments

Training data . A model of the face image class used
in our experiments was calculated by principle component
analysis of the covariance matrix of a collection of images
from the publicly available M2VTS database [6]. Selected
images (148 frontal views of 37 individuals, four images per
person) were geometrically and photometrically registered.

Test Images. The test images were taken from the CMU
Database. Since our improvement of the eigen-detection
method does not depend on the search strategy for the cor-
rect scale, rotation and location we simplified the experi-
ments by scaling the test images manually roughly to the
scale of the training data. The detection was then performed
at every location of the test image at a single scale.

Results. Figure 1(a) and figure shows the detection of
faces on one of the test images ”cnn2600” and the corre-



Figure 1. Detection of the face in “cnn2600”
(a) and number of eigenvector projections (b)

sponding map (b) for the number of eigenvector projections
that are needed for the MD lower bound to be greater than
~t�. The grey-level codes the number of projections (black
1-2, 25% gray 3-5, 50% 6-10, 75% 11-19, white 20). At
non-face regions the process is stopped early while in face
regions all eigenspace projections have to be computed. A
histogram for the number of projections is depicted in ta-
ble 1. The number of eigen-images used for representation
devided by the average number of projections defines the
speedup (in this case we are using the first 20 eigen-images).

Figure 2 (b) shows the lower bound for the MD along
a profile axis in the “ds9” image which goes through the
center of two faces (see 2 (a)). The corresponding number
of projections and the MD estimation is shown in Figure 2
(c) and (d) respectively. A scaled estimated MD-curve is
also drawn over (a). At regions with low MD the number of
eigenspace-projections is high.

Image 1-2 3-5 6-10 10-20 � speedup

ds9 0.13 0.64 0.16 0.14 7.9 2.5
cnn2600 0.12 0.62 0.17 0.17 8.0 2.5
cnn2111 0.19 0.64 0.14 0.03 7.2 2.8

Table 1. Histogram for the number of
eigenspace projections

4. Conclusions

We presented a method allowing a significant speed-up
of the eigen-detection method (detection based on principle
component analysis). We derived a formula for an upper
bound on the class-conditional probability (or, equivalently,
a lower bound on the Mahalanobis distance) on which de-
tection is based. While provably obtaining results identical
to the standard technique, we reported in section 3 a two to
threefold speed-up in face detection experiments on images
from the CMU database.

(a) Lower bound for MD
for different size of sub-
space

(b) Number of
Eigenspace projec-
tions
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Figure 2. (a) Lower bound for the Mahalanobis
distance using a different number of eigen-
vector projections, (b) Number of eigenspace
projections, (c) Profile line though “ds9”
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