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On parameter estimation in deformable models
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DTU Building 321, DK-2800 Lyngby, Denmark
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Abstract [2, 3, 5, 7] selects the model parameters based on empirical
observations. [10] gives guidelines for choosing the optimal
Deformable templates have been intensively studied inparameters in the prior model based on bounds for the pa-
image analysis through the last decade, but despite its sig-rameters. Only [9] uses an unsupervised method based on a
nificance estimation of model parameters has receliittd minimax criterion to determine the regularization parameter
attention. We present a method for supervised and unsuperwhich gives the relative influence of the prior and observa-
vised model parameter estimation using a general Bayesiantion part, respectively. We present a new method for super-
formulation of deformable templates. In the supervised es-vised and unsupervised selection of all model parameters
timation the parameters are estimated using a likelihood in a deformable model. This method also gives the oppor-
and a least squares criterion given a training set. For most tunity for simulating the prior model for most deformable
deformable template models the supervised estimation proimodels. Section 2 contains a general Bayesian formulation
vides the opportunity for simulation of the prior model. The of deformable models. Then the method for supervised and
unsupervised method is based on a modified version of theunsupervised model parameter estimation is presented, fol-
EM algorithm. Experimental results for a deformable tem- lowed by experimental results and a conclusion.
plate used for textile inspection are presented.

2. Deformable models

1. Introduction A structure is modelled by a template that is uniquely de-

The general idea of deformable models is that a structureS¢'oed by aset of template parameters (vy, vs, ...., vp).

embedded in the image can be considered as a deformatioh®t £2 denote the parameter spacewfgsmg Bayes the- .
of a given template. The deformable model is a Bayesianorem deformable models can be described by the posterior

combination of two parts. One part which represents the probability P(v]y) of a realization of the template parame-

prior knowledge about the structure, i.e. the deformable tersv given an imagey. The posterior probability’(v|y)

template, and a second part which represent the interac!S defined as:
tions with the observations (the image), the observation P(v)P
, _ (v)P(ylv)
model. Deformable templates can roughly be separated into P(vly) 1)

o P(v)P
2 groups: Free form and Parametric. Free form deformable 2wen P(0)P(ylv)

templates have no explicit global structure because the prior
only contains local continuity and smoothness constrains
[3, 8,9, 10]. In parametric deformable models prior knowl-
edge of the global structure is included using a parameter-
ized template of a specific structure [2, 5, 6, 7, 11].

Another characteristic of deformable models is that a
number of model parameters, which gives the relative in-2 1 The prior model
fluence of different terms in the model, have to be selected.
Though all deformable models contains model parametersThe prior model represents the prior knowledge of the tem-
the selection of these model parameters has received verplate parameter distribution. Typical the prior model con-
little attention. [8, 11] don’t comment on the selection and sists of a number terms which represent different types of

whereP(v) is the prior model and®(y|v) is the obser-
vation model. [3, 8, 9, 10, 11] talks about energy and not
about probabilities, but basically the formulations are anal-
ogous.



prior knowledge. Let the prior probability be Gibbs dis- whereZ,(3) = Zveﬂ exp{—%[(y, v, 3)} is the nor-

tributed and given by: malizing constant\ € Ty is the regularization parame-
1 ter that determines the relative influence of the prior and
Pv) = exp{—U(v,a)} (2) the observation modelj(y,v,3) : ¥ — R is the en-
Zp(a) ergy function representing the interaction betwgesndv
whereZ, (a) = Y yeq exp{—U(v, @)} is the normal- ~ andg = (6, ..., %) € I'p are the observation parameters
izing constant{/(v) : © — R is the energy function rep- which gives the relative influence of the different types of
resenting the prior knowledge ard= (a1, ..., ;) € T information.
are the prior parameters which gives the relative influence
of the different terms. 3. Supervised model parameter estimation
Theorem L Let U (v, a) = v’ A(a)v + b(a)v + ¢(ax) Assume a training set ofy template parameter sets

depending only oy and . If A(ex) is symmetric and v, ..,V corresponding to some structure within an im-
positive semi-definite and(c«) belongs to the subspace agey are known.
defined by a linear mapping wit () then P(v) €

N(p(a), B(er)) and: 3.1.The prior model

_ 1 1
P(v) = Vo' \Jder 3 () x 3) Inthe case where the assumptionin theorem 1 is fulfilled the
exp{—1(v — p(a))B(a) " (v — p(a))} prior parameters can be estimated by using theorem 1 and
the maximum likelihood (ML) estimator, which is defined
wherep(a) = —%(a)b(a) andX (a) ™! = 2A(a). as:
Proof:U(v, o) = $(v — p(a)) ()" v — p(ax)) = & = argmax L(a, Vy,..., V) (5)
() o — W)y + $pE(a)"ip e @
() = =B(a)b(a) andB(a)~! = 24(a). O where it is assumed tha ¢ T,. If V,,.. .V, are

stochastic independent and the covariance is rank sufficient
If the prior (3) is rank deficient the conditional distri- then is the likelihood function directly given as:
butionsp(v \ v,|v,) for v, C v will be rank sufficient.
Theorem 1 implies that all; € v has a prior distribution,
i.e. P(v) should be a function of alt; € v. If this is not

9
L(6,V1,..,Vy)=P(Vy,..,Vy) = [[ P(Vk) (6)
fulfilled then is the subsat, C v, which have a prior dis- k=t

tribution, used instead af. The assumption abolt(v, «) whereP(Vy, ..., V,) is the simultaneous density func-
made in theorem 1 covers almost all deformable templatesijon for the prior distributior? (V') given by (3). If the co-
presented in the literature and all cited here. variance is rank deficient, i.eank(X) = p — r forr > 0,

In the case where it can be justified thatv, o) ful- it is necessary to condition on at leastariables to obtain

fill the assumption made in Fheoren:} 1athe meglax) can  fy|| rank. In this case e.g. the pseudo-likelihood [1] can be
also be found as the solution #%* = 0 and the  ysed as an approximation to the true likelihood:

. . . 2
inverse covarianc& (a)~! as the Hessiar!- 2% —

3 (a)~t. This method can be a fast alternative for deter- PL(&, V1, V) = P(Vi,.., V) (7)

mining p(er) and = (a) =t if U (v, «) is not directly in the EML

formo’ A(a)v + b(a)v + c(a) = H H P(ViilVi\ Vi)
k=1i=1

2.2.The observation model If v4,.,V, are not stochastic independent then

] ] N ] P(V4,...,V,) must be rewritten using conditional prob-
The observation model gives the probability for a given apilities and Bayes theorem. When the prior parameters are
realization ofv corresponds to the observatiogsc ¥ estimated it is possible to simulate the prior model by sam-

- the image. In many cases the interaction correspondsyjing in the unconditional or conditional prior distribution.
to image intensity [2, 5, 6, 11] and/or edge information

[3, 7, 8,9, 10, 11] but in principle all kind of information
can be combined e.g. texture or colour. Let the observation
model be Gibbs distributed:: Due to the image information i (y|v) is it impossible

1 1 to make any distribution assumption abd®te|y). This
P(ylv) = Z@(ﬂ)”p{_xf(y’”’ﬁ)} 4) make it impossible to use the ML estimator for estimation

3.2.The posterior model




of the observation and regularization parameters, because ib. Experimental results

is infeasible to calculate the normalizing constant even for

small2. A likelihood approximation with the normalizing A deformable template is used for localization of the hor-
constant removed from?(v|y) or a criterion equivalent to  izontal yarns in a system for automated visual inspection
the minimax criterion proposed by [9] can't be used either, of textile [5]. The system should be used for inspection of
because”(v|y) without the normalizing constant in many above 35 different types of textile and new types are devel-
case would not be convex withjii'x, I'3). The observation  oped frequently, soitis necessary thata non-expert can train
and regularization parameters are instead estimated as ththe system, i.e. select the model parametars\, 3).
parameters which minimize the least squares error (LSE) The horizontal yarn k is modelled a®, =

between the training set paramet®fs, .., V, and the esti-  (vj 1, vk 1, vk 2, ..., vk p)’, Wherey,, ; is the vertical position
mated parametes, , ..., ¥,: of yarnk in the vertical spacg between the vertical yarns.
The horizontal position of the vertical spages assumed
1 < known, because it is easily located as a local maxima in a

A % e 3 . o . / . o . . . . . .
(A, P) = arg T%lp_q Z(VZ —%)C(Vi-9) (8) vertical projection of the image [5]. The distance between
’ =1 each vertical spacgis assumed to be constant.

whereC is diagonal matrix whereach parameter can The.po.sterior propab@lity of the deformable model used
be assigned an estimation weight (in most caseis cho-  for textile inspection is given by [S]:
sen equal to the identity matriX) and %; is the maxi- 1
mum a posteriori (MAP) estimate of parameter sete- P(oglvg-1,4) = =——————
fined asé; = argmaxy, P(v;]y). Many different tech- » ZO(Q)ZP(Q)Z
nics have been applied for MAP estimation as deterministic exp{_o;} R U’W‘l)z (10)
[3, 7, 8, 9, 11], stochastic [2, 6] and heuristic optimization P Z;)jzl(”kyj T Vk=14 7 d)
algorithms [5]. =5 2j=1 L(vk 3, 5)}
If the assumption in theorem 1 is not fulfilled the model i .
parameterga, \, 3) can still be estimated by expanding (8) Where the two first termé/ (v, @) = a1 3 55 (ve,; —
to: vk j-1)” + a2y i (vk; — vk—1; — d)* correspond to
the prior model. The first term favours strictly horizon-
1 & tal threads. The second term describes that the thread

(&2, 8) = arg cinxmﬂp_q Z(Vi —9)’C(Vi=#;) (9  ,, should be pced in a predefined distande R,
Y =1 from v,_,. The third term inP(vy|vg_1,y) is the ob-
servation model wheré(vy ;, j) is the negative horizon-
tal mean at the vertical positios, ; of the pixels in the
vertical space j.a = (a1, a2) € Ri are the prior pa-
rameters and € R, is the regularization parameter. Let
U(v,a) = a1 (Nvg) (Nog)+az (v —(vi—1+d)) (v, —
(vk-1 + d)) = a0, N'Nvg + as(viTvg — 2(vg_1 +
4. Unsupervised model parameter estimation vk +(vk-1+d)'(vx-1+d) = v} (a1 N'N +asI)vy —
2005(vg—1 + d)vy, + (vp—1 + d)'(vi—1 + d) where
The unsupervised model parameter estimation is based on

If log P(vly) is a linear function of(a, A, 3) then
(9) have to be solved with respect to the constramtf
SV i+ Y\, B = constant to limit the number of
solutions to one.

a modified version of the Expectation-Maximization (EM) 01 ? S
algorithm [4]: N=| (11)
1. Start with the observations an initial estimate® of 0 0 ' 1
v and aguesga® A, 8°) for (c, A, B). L1 0
2. Estimates'™! by w!*! = argmaxy P(vly). N'N = _'1 2 0 (12)
3. Use the algorithm for supervised model parameter esti- 00 1
mation (Section 3) to estimagé ‘! \t+1, BHI) tak-
ing &' as training set. From above it's seen that the prior model fulfill the as-
_ . . . sumption in theorem 1 (which was obvious because the
4. Goto 2 for a number of iterations or untik’, \*, 8°) prior only consists of quadratic terms). By theorem 1

has approximately converged. P(vglvg_1) € N(py (), () where:



parameters were then used to locate the yarns in the 5 sam-
ples with very good results leading to an average increase
(@) = X()2as (v 1 + d) on only 6% in the LSE (8) compared to the LSE obtained

-1 _ . . .. .
(o)™ = with the individual estimated parameters. The method for
207 + 20z —20 0 (13) supervised parameter estimation have also been tested on
—20 dog + 202 0 other types of textile with good results.
0 0 20[1 + 20[2 0 TEX“\‘E

5.1.Estimation of model parameters

Assume a training set afs0 yarnsVy, ..., V5 is man- 150F
ual marked in a image by an operator, see subset in fig-
ure 2 and 1. It can be shown that the ranksbf! is full
Y(a1,as) € R, but the prior probabilities are not inde-
pendent. Because the prior probapis a Markov Random
field and by using Bayes theorem the likelihood is given by:

w

<]

=]
T
I

Vertical position (pixel)

350 = e

L(a,V1,...,V150) P

=PV, .., Vis) ol |
= P(V1)P(Va, ..., Vi50|V1) (14)
= P(Vl)P(l‘goﬂvl)P(VSa ~~~aV150|V2) 5OC)t),—Eu;T\léioo | 250 3(|))0 350 400 450
Horizontal position (pixel
= P(Vl) k=2 P(Vk |Vk—1) Simulated textile, a1:1‘04p75. a2 :(2,0172, P(2) = 0.0259
where P(ViVis) _ e —. L
1 1 _ _
Jan? \/mexp{ 0~5(Vk E(Q)QQZ(Vk—l + oL

D)2 (a) Y (Vi — B(a)202(Vi_1+ D))} andP(V )
is constant because; is estimated using an ad hoc
procedure.

Prior parametersy; = 1.0476 andas = 0.0172 are
then estimated for the known yarns corresponding to fig- s
ure 1. Simulations of the prior model are then performed £
by sampling in the Gaussian distributiti{ e, (a), (), wof
see figure 1. If the simulated horizontal yarns are com-
pared to the real yarns this seems to verify that the prior
model with the estimated parameters is a good model of the
yarns. The regularization parameter= 0.3652 is then 00—
estimated using the LSE (8) with = I and a heuristic Horizonal positon (pixe)

MAP-estimation algorithm [5]. The yarns in the image in

figure 2 is located using the estimated parameters with very

good results, see figure 2. To examine the variation of the , .
estimated parameters within the same textile sample, two Figure 1. Manually _marked ho“?ontal
parameter sets have been estimated on two different pieces Yarns (top) and simulated horizontal

of one sample. This was done for two different samples  yarns (bottom)

and the mean variation ofa;, a» and A was 1.9%, 5.2%

and 9.5%, respectively. The parameter variation between

samples depends on the amount of variations and defects The unsupervised method performs well, but it is a lit-
within the samples used for estimation. This is so signifi- tle bit sensitive to the initial guesgx”, \°, 3°) because
cant that the estimated parameters often can be used to dist tends to get caught in local maxima if the regulariza-
criminate between god and bad samples. Using 5 represention parameter is chosen very large or small. This sensi-
tative samples were the parameters estimated with the meativity is a well known problem for the EM algorithm. For
a; = 1.0214, a5 = 0.0202 and A = 0.4145 and the stan- 6 randomly chosefia?, %,60) € [0.2; 2] under the con-
dard deviation 0.2009, 0.0066 and 0.0717, respectively. Thestraina$ < % andod < % were the parameters corre-

150 - i

)

=3

=]
A

N

a

=]
T
I

cal position (pixel)

400 =

450 - B




sponding to the yarns in figure 2 estimated with the mean 6. Conclusion

a; = 1.3429, a5 = 0.0059 and A = 0.5050 and the stan-

dard deviation 0.1708, 0.0001 and 0.1005. The algorithmA method for supervised and unsupervised estimation of
converged within 10 iterations. If the estimated parametersmodel parameters in deformable templates have been pre-
are compared with the previous estimated parameter theréented.  Experimental results are successful and indi-
exists some differences, but still the LSE is only increased cates that the methods are robust, though the unsupervised
by 14 % compared to the LSE for the individual estimated method is a little sensitive to the initial parameter configu-
parameters, and the yarns are still located very well, seerations. The opportunity for simulations of the prior model
figure 2. Similar results for the unsupervised parameter es-S€ems to be a good tool for verification of the model. The
timation are obtained for other textile samples and types.presented methods also contains interesting perspectives re-
garding using the estimated parameters as features for de-
scription of the located structure and regarding automated
model selection using an information criterion.
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Figure 2. Textile with manually marked
horizontal yarns (top), yarns located using
supervised estimated parameters (center)
and yarns located using unsupervised es-
timated parameters (bottom).



