
Low Cost Architecture for Structure Measure Distance Computation

J.Aranda1, J.Climent1, A.Grau1, A.Sanfeliu2

1 Automatic Control and Computer Engineering Department.
2 Institut de Robòtica i Informàtica Industrial.
Universitat Politecnica de Catalunya (UPC).

Abstract

Huge and expensive computation resources are usually
required to perform graph labelling at high speed. This
fact restricts an extensive use of this methodology in
industrial applications such as visual inspection. A new
systolic architecture is presented which computes
structural distances between cliques of different graphs
based on a modified incremental Levenshtein distance
algorithm. The distances obtained are used as a support
function for graph labelling using probabilistic relaxation
techniques. The proposed architecture computes the
distances between k input cliques of an input graph and
one reference clique of a reference graph. It does not
limit the number of cliques nor cliques complexity of the
input graph, so any input graph can be labelled. A low
cost solution has been implemented based on FPGAs.

1. Introduction

The graph matching problem can be accomplished by
optimising an energy function based on an heuristic
defined support function. A new support function has
been presented in [7] which uses the Levenshtein distance
as a structure measure distance between two sequences of
node neighbours. It depends on the current joint
probabilities of the external nodes of both cliques, so it
has to be computed in every iteration of the relaxation
process.

A new algorithm has been proposed in [3] in order to
speed up the computation of the dynamic distance
between cliques. It uses the encoding scheme proposed by
[6]. For every element in the distance matrix, two
incremental costs, instead of one absolute cost, are
computed. One cost is the difference between the matrix
element and its top neighbour, which will be named
incremental vertical cost (ivc). The other one is the
difference between the matrix element and its left
neighbour, and will be named incremental horizontal cost
(ihc). This algorithm constructs then two different
matrices, one for the incremental vertical costs and
another one for the incremental horizontal costs. The

values of the elements of these matrices for a given row i
and a given column j, are determined by the expressions:

MIN[i,j]=min{min{ihc[i,j-1],ivc[i-1,j]}+C,Subα,β [i,j]}
ivc[i,j] = MIN[i,j] - ihc[i-1,j]
ihc[i,j] = MIN[i,j] - ivc[i,j-1]

where C is the programmable insertion and deletion costs,
which have been considered equal for hardware
simplicity. ihc[i,0] = C and ivc[0,j] = C. Subα,β is the
matrix of substitution costs between sequences α and β.

The distance between two non-cyclic sequences is
determined then by both the formulae:

[] []∑∑
=

=

=

=

+⋅=+⋅=
mj

j

ni

i

jnihcCnmiivcCmd
11

,,),(βα

Let CF
λ be a reference clique with a central node vλ and

m external nodes represented by the node sequence VF
λ .

Let CA
γ be an input clique with a central node vγ and n

external nodes represented by the node sequence VA
γ . The

reference sequence, VF
λ , is a cyclic sequence. Hence, the

dynamic distance dd between an input clique CA
γ and a

reference clique CF
λ is determined by the expression:

(){ }1..0;)(, −== mrVVdmind r
FAd
λγ

where ()r

FV λ is the r-th rotation of the reference sequence.

2. Proposed architecture

Related architectures can be found in [4][5] and [2]
which perform Levenshtein distance between strings.
These solutions do not treat the problem of programmable
external costs nor the matching of cyclic sequences. They
also restrict the maximum length of input strings. The
proposed architecture overcomes all these drawbacks.

The block diagram of a single processing element is
presented in fig. 1. At the same time the incremental costs,
ihc and ivc, are input to the processing element, the
corresponding substitution cost is also input. The
processing element calculates new incremental costs
based on the results of the algorithm presented in the
introduction. The incremental vertical cost is then
transmitted to the adjacent processor to the right, while
the incremental horizontal cost is transmitted down. It can

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 6, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

be seen that each element of the edit distance matrix
depends only on elements above it and to its left. Then, all
elements along a 45° diagonal can be calculated
simultaneously.

0 1

min min

_

C

_
+C

R
EG

R
EG

D

sub[i,j] CLK

ini_out

ivc_out

ihc_out

ivc_in

ihc_in

ini_in

Figure 1. Processing Element

The block diagram of the array architecture to compute
the distance between one non-cyclic reference sequence
and k input sequences is shown in fig. 2. With such a path
configuration, each processing element performs
computations along its column in the edit distance matrix.
The edit distance matrix for comparing a reference
sequence of length m has m such columns. Therefore, m
processing elements are needed to compute the
incremental costs at every cycle. The output of the last
column processing element is accumulated in order to
compute the edit distance. The width of the accumulator
depends on the maximum value that the edit distance can
take, and therefore, depends on the edit costs and on the
number and length of the input sequences. For this reason,
the accumulator is not a part of the architecture and is
provided externally.

A single phase is needed to control all data flow. At
every new clock cycle, substitution costs corresponding to
a new 45° diagonal of the cost matrix are input to the
array. At the same time, incremental costs computed by
each processing element are latched into the
corresponding horizontal and vertical registers and the
incremental vertical cost coming from the last processing
element is added to the accumulator. The accumulator
must be initialised with the value m*C.

Once the pipeline array is charged (after the first m
cycles) a new structure measure distance is computed
every ni cycles (i=1..k). As k input reference sequences
(with different substitution matrices values) are being
compared, an initialisation signal is required every time a
new substitution matrix value is input to the first
processing element. This signal is propagated by the
system clock and it sets the ihc initial costs (C) and the
accumulator initial value (m*C). Fig. 2 shows the state of
the system during the i-th clock cycle.

For parallel matching of cyclic sequences, m processor
arrays like the one in fig. 2 have been used. Each array of
processing elements, will compute the distance between
the input references and a concrete rotation ()r

FV λ of the

reference sequence. This array will be identified with the
number of the respective rotation, r (r=0..m-1). Since the
reference sequence ()r

FV λ is obtained just rotating λ
FV r

times, the substitution cost matrix
()rFA VV

Sub
λγ ,

 will be

obtained rotating columns of
λγ
FA VV

Sub
,

 r times too:

() [] []1)mod)1((,,
,,

+−+= mrcolrowSubcolrowSub
FA

r
FA

VVVV
λγλγ

Last expression shows that the substitution cost to be
input to the first processing element of each array r,
during the i-th cycle of operation, is the r+1 column of
the i-th row of the unrotated substitution cost matrix:

() [] [] []1,1)mod(,1,
,,,

+=+= riSubmriSubiSub
FAFA

r
FA

VVVVVV
λγλγλγ

Fig. 2 also shows that the j-th processor in each array r,
during the i-th cycle, needs the substitution cost given by
expression:

() [] []1)mod)1((,1,1
,,

+−++−=+− mrjjiSubjjiSub
FA

r
FA

VVVV
λγλγ

which coincides with substitution cost needed by (j-1)th
processor in array (r+1)mod m, during the (i-1)th cycle:

() [] () []jjiSubjjiSub r
FA

r
FA VVVV

,11,1)1()1(
,,

1 +−=−+−−−+ λγλγ

Thus only one row of the substitution matrix have to
be input into the proposed architecture at every clock
cycle. Substitution costs are then propagated at every new
clock cycle through the architecture from processor j of
array r towards processor j+1 of array (r-1)mod m.

ini_in[1]

ihc[i-1,1]

ihc[i,1]

ivc[i,1]

ini_out[1]

sub[i,1]

ini_in[2]

ihc[i-2,2]

ihc[i-1,2]

ivc[i-1,2]

ini_out[2]

sub[i-1,2]

ini_in[m]

ihc[i-m,m]

ihc[i-m+1,m]
ivc[i-m+1,m]

ini_out[m]

sub[i-m+1,m]

...
del

A
cc

u
m

u
la

to
r

Data

Preset

Edit
Distance

ivc[i-1,1] ivc[i-m+1,m-1]ivc[i,0]

Figure 2. Array of processing elements

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 6, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

3. Architecture implementation and results

Field-programmable gate arrays (FPGA) has been used
to implement the proposed architecture. These devices
permit to be reprogrammed in just a few milliseconds.
This capability permits the ins and del costs to get a
constant but programmable value C. Also, processor
arrays of variable length can be fitted in the same device.

The major constrain for on-chip implementation are
substitution costs, which are inputs to the proposed
architecture. A new row of substitution cost matrix is
needed by the arrays of processors at every new clock
cycle. In order to limit I/O requirements, substitution cost
has been limited to the [0..7] rang. Thus only 3 pins are
necessary for each array. The only outputs wanted from
the arrays are the incremental distance values (4 bits) that
have to feed the external accumulators.

For a low cost and fast implementation an ALTERA
EPF81500A device from family Flex 8000 has been
chosen. Processing elements and their interconnection has
been programmed using AHDL Development Software
[1]. This device permits allocation for up to 49 processing
elements (7 arrays) what is enough for most of graph
labelling applications. This limits the actual
implementation to reference cliques of 7 external nodes.
For longer reference sequences to be matched a
cascadable strategy can easily be performed just
appending more than one device before the accumulator.
Another solution could be the use of a higher density
device of family Flex 10K with a capacity for 196
processing elements (14 arrays) and also cascadable.

Time constrains have been analysed in order to
evaluate critical paths and minimum clock cycle period.
Analysis of critical paths between processing elements
has resulted in a maximum delay of 14 nsec for the worst
case. However, automatic time analysis tools recommend
a maximum clock frequency for the presented
implementation of 23.80 MHz. Only one single phase is
needed to control the overall process what minimises the
use of limited fast interconnect lines.

Max+Plus II Simulator has been used for device
functional operation and timing simulation. Fig. 3 shows
the incremental distance values (outputs) between two

input cliques (1
AV and 2

AV) and all the possible rotations of

a reference clique a
FV . External substitution matrices

(input) used for this example are also shown in fig. 3. The
C value has been set to 4 in the exemple.

4. Conclusions

This paper introduces the problem of high speed
structure measure distance computation for graph
labelling applications. A new systolic architecture is
presented which permits to work with externally
calculated substitution costs. Only one row of substitution
cost matrix is needed by the architecture at every new
clock cycle. The proposed architecture computes the
distances between k input cliques of an input graph and
one reference clique of a reference graph. It consists on m
cascadable array of m processing elements, being m the
number of external nodes of the reference clique. The
distance for k input cliques with ni external nodes is
computed in m+Σni clock cycles (i=1..k). Therefore, the
architecture does not limit the number of cliques or
cliques complexity of the input graph.

References

[1] ALTERA Max+PlusII. Programmable Logic Development
System. AHDL. Altera Co. 1995.
[2] H.D. Cheng, and K.S. Fu. “VLSI Architectures for String
Matching and Pattern Matching”. Pattern Recognition, vol.20,
n.1, pp. 125-141. 1987.
[3] J.Climent, A.Grau, J.Aranda and A.Sanfeliu. “Clique-to-
Clique Distance Computation Using a Specific Architecture”.
Proc. SSPR’98. To be edited.
[4] R.J. Lipton, and D. Lopresti. “A Systolic Array for Rapid
String Comparison”. Chapel Hill Conf. on VLSI, H. Fuchs, ed.,
Rockville, Md.: Computer Science Press, pp. 363-376. 1985.
[5] D. Lopestri. “P-NAC: A Systolic array for comparing nucleic
acid sequences”. Computer, vol.20, pp. 98-99. 1987.
[6] R.Sastry, N. Ranganathan, and K. Remedios. "CASM: A
VLSI Chip for Approximate String Matching”. IEEE Trans.
Pattern Anal. Mach. Intell. Vol.17, N.8, pp. 824-830. 1995.
[7] F. Serratosa and A. Sanfeliu. “Function-Described Graphs
Applied to 3D Object Representation”. Image Analysis and
Processing, 9th ICIAP, Florence, pp. 701-708, 1997.



















=
















=

576

307

774

674
545

555

454

,

,

2

1

a
FA

a
FA

VV

VV

Sub

Sub

Figure 3. Substitution matrices (inputs) and incremental distance values (outputs) time evolution.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on November 6, 2009 at 17:24 from IEEE Xplore. Restrictions apply.

