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Abstract

A major bottleneck in dynamic scene interpretation is the
search that is required through a database to find a model
that best matches the observed data. We show that the prob-
lem can be alleviated if the object model selection is con-
trolled by a scene evolution model. We adopt a grammati-
cal model to characterise objects and events in a dynamic
scene which can be used to generate visual expectations
within a particular context. The object hypotheses can be
accepted without further search of the database provided a
measure of the goodness of fit of the match between the se-
lected model and the visual data falls below a threshold. In
this paper we present experiments for determining the nec-
essary thresholds for the model hypotheses testing using the
recognition method described in [8], as well as for assess-
ing the subsequent performance of the scene interpretation
system with and without the constraining grammar.

1. Introduction

The visual world and associated dynamic events are, in
many scenarios, highly regular. Prior knowledge of that reg-
ularity can reveal expectations which can be used to con-
trol and improve visual data processing. The experiments
presented in this paper show how the speed of processing
of scene interpretation can be enhanced by constraints im-
posed by a grammatical model of scene evolution. The
grammar consist of facts which define the knowledge about
a particular domain and rules which define the transitions
between states within that context. The idea of using gram-
matical models of scene evolution was presented earlier
[1, 5]. In this paper we report on experiments carried out
to confirm the conjectures concerning efficiency gains the
approach affords.

Normally, search is required through an entire model

database to verify an object hypothesis. However, this can
be avoided if the likely model hypotheses can be predicted.
The acceptance of selected hypotheses requires the knowl-
edge of model verification thresholds. Experiments to deter-
mine such thresholds are first presented. We then evaluate
the advocated approach on a series of experiments involving
real time vision processing.

2. Scene Evolution and its grammatical model

The spatial structure of the world has been the main fo-
cus of computer vision research for decades. The world
is also organised temporally, in that the evolutionary struc-
ture of scene events exhibits substantial regularity. Partic-
ular constraints on the temporal structure can be predicted
if the context of the scene is known and understood. The
concept ofbreakfastimmediately conjures up not only a
particular set of objects, such as cup, saucer, sugar bowl,
milk jug, teapot and cereal box, but also particular types of
events, such as placement of a cup on a saucer. We shall
consider a breakfast table scenario as an experimental set-
ting to convey the benefits of exploiting temporal context
in visual processing. Other research has focused on scene
interpretation with spatio-temporal [7] and motion models
[2, 3, 6], but mainly for the purposes of event description
not performance enhancement.

The state of a scene can be eitherstatic or dynamic.
In a dynamic scene objects are in motion and represent
the events that take place in a transition between two static
states. Events can fall into a number of different classes. A
transition from a dynamic state to a static state represents
a placement(or removal) of an object. In our breakfast
scenario pouring and stirring aremotionevents. Another
type of event that is of importance is ageometricevent,
such as the vertical alignment between a teapot and a cup,
representing additional evidence for the hypothesis of tea-
pouring.
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The regularities of dynamic events and objects associ-
ated with a particular scene context can be reflected in a set
of rules and facts which collectively form a grammar [5] of
probable scene evolution. Here’s an example of the rules (in
Backus-Naur form),

<SET_CUPX> := <SET_SAUCER>, <SET_CUP>
<SET_SAUCER> := enter_fov(saucer), place(saucer)
<SET_CUP> := enter_fov(cup),

alignment(cup, saucer), place(cup)

where the lower case items represent terminal symbols that
are facts detected by the low-level visual processing mod-
ules. Each rule represents a sequence of likely events. Once
one event is detected, processing resources can be concen-
trated on the looking out for the next event in the list. In
this way wasted processing can be avoided by ignoring, or
de-prioritising, hypotheses related to less likely events.

3. Object recognition

(a) (b)

(c)

Frame No. 334
Frame STATIC

(Region (Num  4)  (Status STATIC)  (Object milkjug))
(Region (Num  1)  (Status STATIC)  (Object cup_and_saucer))

(Region (Num  5)  (Status STATIC)  (Object plate))
(Region (Num  8)  (Status STATIC)  (Object sugarbowl))

(d)

Figure 1. Processing chain a) One image
in sequence b) Colour difference regions c)
Edges within regions of interest d) Symbolic
interpretation of regions

The object recognition approach used in the present sys-
tem has been reported in detail elsewhere [8]. It uses a
dedicated recognition engine for each type of object that
can be found in a breakfast scenario. In particular we can
cope with plates, saucers, sugar bowls, cups and milk jugs.
The recognition scheme assumes some prior knowledge and
constraints. All objects must be placed on a common, flat
ground plane. The transformation between the camera coor-
dinate system and the ground plane coordinate system must
be known (established through calibration). The recogni-
tion procedure adheres to the processing chain shown in
figure 1.

Regions of interest are determined by comparison of the
current image with a background image of a static tabletop
scene. Any areas which show a significant chromatic dif-
ference [4] are likely to represent new objects or events and
are, therefore, deemed interesting. The outline of objects
within the regions of interest are extracted and compared
with the projection of three-dimensional models onto the
image plane. The model that returns the closest goodness
of fit value is taken as the identity of the current object. A
grammar of facts and state transition rules hypothesises and
prioritises expectations of probable future events from the
database of current objects in the scene.

The standard procedure for finding which model is ap-
propriate to the observations is to invoke all the relevant
hypotheses based on salient features extracted from the vi-
sual data by low-level vision computing. However, such
an approach is often incapable of discriminating between
models in the database adequately and consequently a large
number of hypotheses have to be evaluated. The aim of our
approach is to narrow down the large range of possibilities
by exploiting our prior knowledge of scene evolution and in
this way reduce the complexity of processing.

4. Experimental Setup

In order to demonstrate the computational benefit of an
approach we have performed a number of scene interpre-
tation experiments where the observed scene evolution ad-
hered to a grammatical model to a varying degree. The ex-
periments were performed with a real-time vision system,
on-line with three different grammars.

In order to maintain a constant and stable viewing posi-
tion a JVC TK1070E camera was mounted on a PUMA762
robot arm and trained on the tabletop scene. Processing was
performed on a Silicon Graphics server with live images in-
put from a Sirius image grabber. Although the grabbing and
processing rate of, 1 - 5 frames per second is below frame
rate it is still fast enough for the experiments to be carried
out in real-time.

Two sets of experiments were carried out. To facilitate
a fully automatic operation it was first necessary to deter-
mine suitable hypothesis testing thresholds for each object
model. This was accomplished by placing each of the five
test objects in different positions in the field of view cov-
ering the tabletop scene. At each point the values of the
match between the observed object and every model in the
database were measured and recorded.

The grammar, of rules written in CLIPS, defined theor-
der in which objects were expected to arrive in the scene.
The second set of experiments involved a sequence (the
same each time) of objects being placed in the scene. Three
different grammars were used to generate the expected ob-
jects. One defined the same ordering as the sequence, one a



minor change to the ordering and the third the complete op-
posite sequence. The sequences were also run without using
any grammar. The results recorded in each case were the av-
erage number of model comparisons made and the average
CPU time, for a successful database search and recognition.

5. Results

The results of the experiments are shown in figure 2 and
table 1. Figure 2 shows the graph, for four of the five ob-
jects, of the number of positions in which the goodness of
fit falls within a particular interval, for each of the five mod-
els. The solid line represents the distribution of the match
values for the correct model, whereas the dotted line is the
mixture histogram of match values with all the other mod-
els. From these results, match thresholds for the saucer,
cup andsaucer, milk jug, plate and sugar bowl were de-
rived as 4.10, 2.35, 3.50, 4.60 and 4.00, respectively.
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Figure 2. Determination of match thresholds

Table 1 shows the number of model comparisons and
corresponding cpu times (seconds) for successful recogni-
tion of new objects placed in the scene. The rows show the
results for situations where the deviation of the grammar
defined sequence from the actual sequence was nil, minor
deviation and major deviation, as well as with no predictive
grammar.

When the predicted and actual sequences are the same
only one model need be checked with the corresponding
gain in processing time. As the actual and predicted se-
quences deviate more the performance deteriorates. The
process time for the major deviation is more than twice as
slow as no deviation. This time is, of course, for a database
of five objects and would therefore increase as the size of the

Model comparisons and CPU times
Deviation Models CPU

None 1.0 0.07
Minor 1.75 0.09
Major 3.7 0.17

No grammar 2.8 0.13

Table 1. Results of grammar experiments

database grows whereas the time for nil deviations would
remain constant. Although the situation did not arise in our
experiments, there may be cases where objects are misiden-
tified due to the overlap in goodness of fit values (see figure
2 (d)). Recovery from such errors will be a goal of future
research in this area.

6. Conclusions

We have demonstrated that substantial gains in the the
speed of scene interpretation can be achieved by means of
hypothesis generation based on prior temporal contextual
knowledge of scene evolution, encapsulated by a grammat-
ical model. These results confirm the conjectures made in
an earlier model [1, 5]. They show what an important role
temporal context can play in visual processing, especially in
the case of dynamic scenes with strong temporal ordering of
events.
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