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Abstract 
Vision is an important sensor used for mobile robot 

navigation. One approach to localization which is based 
on vision is to compute camera egomotion with respect 
to base images. What characterizes this method of lo- 
calazation is that its performance varies greatly in dif- 
ferent positions. Active navigation is an approach to 
path and sensing planning which is  designed to address 
varying performance of  a sensor across the configura- 
tion space. In this paper we describe how to integrate 
a vision-based localization sensor with active naviga- 
tion. W e  explain the localization process, how its per- 
formance varies across the configuration space, and the 
use of this variation by active navigation. 

1 Introduction 
The ability to navigate from one point to another is 

a fundamental requirement for an autonomous mobile 
agent. For mobile robots, odometry is a basic naviga- 
tion tool. However because odometry errors accumu- 
late over time, it is common practice to augment the 
robot with external sensors which are used for naviga- 
tion. Among these, vision is an important sensor. In 
this paper we present the use of a vision sensor within 
the active navigation paradigm. 

One of the ways to use vision as a navigation sensor 
is to compute camera egomotion between images taken 
from the current configuration, and a base image taken 
from a fixed, known configuration. One advantage of 
this method is that it uses a small number of base im- 
ages. However, for a fixed base image, at different po- 
sitions of the robot we expect this positioning method 
to have different levels of success. In some positions 
with respect to base image the method might fail (be- 
cause of occlusions for example), and in other positions 
it will work but with different levels of accuracy. 

This characteristic of the localization sensor moti- 
vates us to use it in conjunction with active naviga- 
tion. Active navigation [l] is an approach to navigation 
which takes into account the varying performance level 

of a positioning sensor across the configuration space. 
In this approach we consider the performance of the 
sensor together with two other important factors: the 
developing uncertainty in position, and the required 
level of localization. We use all these factors to plan 
sensing operations and actions which will enable the 
robot to navigate along its path. 

In the next sectioii we will motivate and describe 
the active navigation paradigm. We then describe our 
vision based localization method and how we estimate 
its different levels of performance at different configu- 
rations. Then we describe how we may optimally plan 
sensing operations along the path. The last section 
concludes the paper. 

2 Active Navigation 
2.1 Background and Motivation 

In previous works [la,  6, 8, 10, 13, 111 it has been 
recognized that the accuracy of the localization ob- 
tained by invoking a sensor, will in general depend on 
the configuration the robot is in. In other words, the 
combination of sensor and environment defines some 
kind of map which describes the quality of localization 
obtained at each configuration by using the sensor. It 
is then natural to try and plan the sensing operations 
to occur while the robot is in areas in which the sensors 
work well: according to the above mentioned map, the 
localization quality in these areas is good. 

Works which have considered this idea may be found 
in [12, 6,  81. In these works the motion planning algo- 
rithm uses the sensor performance map to plan paths. 
In [lo] a related notion is the information content of 
the environment at each Configuration. Another sim- 
ilar idea motivated by visual servoing is described in 

The motion planning approach taken in previous 
works (for example [ la ,  lo]) is to search for a path in 
free space by minimizing a function which takes into 
account both the length of the path and the sensory 
uncertainty along the path. (The sensor performance 
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map has been termed Sensory Uncertainty Field (SUF) 
in [la]). This approach involves some arbitrary deci- 
sion on how to trade off between sensory uncertainty 
and path length. These two different factors are usu- 
ally combined into one objective function by introduc- 
ing an arbitrary scale factor between the two. 

In our ap- 
proach we first consider the “nominal path” the robot 
has planned by using a specific motion planning al- 
gorithm. Had there been no practical problems such 
as odometry errors and inaccurate prior information, 
this “nominal path” is the path the robot would have 
executed. We then consider the localization accuracy 
required along the path. This accuracy is determined 
by the special characteristics of the path and the nio- 
tion planner which generated the path. This required 
localization accuracy, in addition to the sensory uncer- 
tainty field, affect our decisions on where the sensor 
should be invoked in order to update the position of 
the robot. 

To summarize, we may say that previous approaches 
strive for the highest localization accuracy possible and 
compromise on this accuracy in order to account for 
the length of the path. In our approach we strive for 
localization accuracy which is at the level required by 
the nominal path which was generated by the motion 
planner. Actions are needed by the robot in order to 
ensure that at all times the localization accuracy which 
is achieved by the robot is in agreement with the re- 
quired localization accuracy. 

2.2 The Factors Involved 
Let us assume a motion planning algorithm (see for 

example [9]) has planned a path between the source 
configuration and the target configuration. Our robot 
intends to execute this “nominal” path. With the en- 
vironment and the path we associate three factors: the 
uncertainty in configuration, the accuracy required in 
the answer obtained after a position (or configuration) 
update, and the level of accuracy in localization which 
is obtainable by using the sensor in the current config- 
uration. We now elaborate on each of these factors. 

2.3 Uncertainty in Configuration 
As the robot moves it keeps track of its current con- 

figuration. For various reasons (see for example [5]) 
uncertainty in the current configuration develops. We 
model this uncertainty as a probability distribution on 
the configuration space. Let U ( t )  be the probability 
distribution representing the configuration of the robot 
at time t along the nominal path. 

Different models have been suggested for the devel- 
opment of uncertainty in Configuration. For example 
we may use the Gaussian probability distribution to 

We suggest an alternative approach. 

I - \  

Figure 1: U ( t )  - probability distribution of configura- 
tion at  time t along the nominal path 

model the position of the robot. The mean of the dis- 
tribution is the nominal final position. The covariance 
matrix describes dispersion which is proportional to 
the length of the motion command. Its principal eigen- 
vector is in the direction perpendicular to the heading 
direction, and the other eigenvector is in the heading 
direction. Fig. 1 shows an example of the develop- 
ment of uncertainty along the nominal path. A differ- 
ent model based on the triangular distribution may be 
found in [14]. 
2.4 Accuracy Requirement 

We now consider the level of accuracy in position 
that is required from the sensor being used for position 
update. We consider the localization accuracy required 
in the context of performing a nominal path planned by 
a nzotaon planner. 

Let us view the nominal path as a sequence of 
straight line segments between “critical points”. Crit- 
ical points are defined as points in the configuration 
space that the nominal path passes through. The 
points are chosen in a way that guarantees that be- 
tween the critical points the robot may move in simple, 
straight line segments. The choice of critical points is 
dependent on the motion planner. Each motion plan- 
ning algorithm is based on a different idea which in 
turn defines different critical points. 

We use two algorithms for motion planning to il- 
lustrate our definitions: the visibility graph algorithm 
and a cell decomposition algorithm [9]. In the visibility 
graph algorithm, the critical points are the vertices of 
the obstacles. It is guaranteed that from each vertex 
one may see the next vertex that is on the path. Hence 
motion between the critical points is indeed on simple, 
straight line segments. 

In the cell decomposition algorithm, we define the 
critical points as the mid-boundary points between the 
adjacent cells the nominal path passes through. It is 
guaranteed that the line segment between one point to 
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Figure 2: Critical regions in visibility graph and cell 
decomposition algorithms 

the next is wholly contained in one cell. Hence it is 
guaranteed to be legal (i.e. not to collide with obsta- 
cles). 

We may 
extend the critical points to critical regions which con- 
tain more points that satisfy the assumptions on which 
the motion planning algorithm is based. Hence, in 
the visibility graph algorithm, there are other points 
around the vertex from which both the previous and 
the next vertex are visible. In the cell decomposition 
algorithm, there are additional points near the mid- 
boundary point which satisfy the two “algorithmic” 
requirements. Firstly they will lead us from the cur- 
rent cell to the next cell, and secondly we may reach 
them from the current point by moving along a seg- 
ment contained in the current cell. These extensions 

2. 
The nominal path now clearly defines the accuracy 

requirements on localization, needed to guarantee com- 
pletion of the path. Firstly, the robot should arrive 
with high probability in each of the critical regions. 
Secondly, in order to move between the critical regions, 
the robot should in principle just stick to the straight 
line segments connecting these regions. However, un- 
certainty in position may grow as long as the chances 
for collision with an obstacle stay low even with the 
uncertainty in position. 

We stress the following point. The accuracy require- 
ments are different in various regions of the configura- 
tion space, and for various nominal paths. For exam- 
ple, consider a path planned by a cell decomposition 
algorithm. In areas where the cells are large and have 
large boundaries between them, the critical regions are 
large. Hence the localization accuracy required is not 
very high. In other regions near obstacles, where cells 
are bound to be smaller, a higher localization accuracy 
may be required. 

We now note the following observation. 

of critical points to critical regions is illustrated in Fig. 

3 Varying Performance of Vision- 

We now turn to discuss the last factor involved - the 
performance of the sensor. In general the performance 
of the sensor varies across the configuration space and 
hence we can think of a map which associates with 
each configuration the accuracy of the localization re- 
sult obtained by using the sensor at  that configuration. 

To illustrate this point, we will consider localization 
based on computation of camera motion based on sev- 
eral images. We assume that a camera is mounted on 
the robot. A base image is taken at a known config- 
uration of the robot and camera. When localization 
is required, a second image is obtained. Point corre- 
spondences between the two images are found. From 
these correspondences the rotation and the direction of 
translation of the camera (w.r.t the base image config- 
uration) may be found. In order t o  estimate the magni- 
tude of translation, the robot has to make a small move 
and obtain a third image. Since the camera is mounted 
on the robot, and since the base image configuration 
of the robot and camera are known, the current con- 
figuration of the robot may now be deduced. Details 
of this localization algorithm may be found in [3]. 

In [a] we have shown how to predict the uncertainty 
in the direction of translation resulting from this local- 
ization method. In the case of pure translation motion 
it is well known that the segments created by connect- 
ing pairs of corresponding points between the two im- 
ages all lay on lines which meet at  the Focus of Ex- 
pansion (FOE). Thus the direction of translation (or 
FOE) may be found in principle by computing this in- 
tersection point from the given set of corresponding 
pairs. However, when the measured correspondences 
are noised, the lines on which the segments lay will 
not meet at one point. In this case we minimize an ob- 
jective function which approximates a Maximum Like- 
lihood Estimate for the FOE. See [a] for details. 

Let us now consider two different positions with re- 
spect to the base image. Fig. 3 shows the segments 
created by corresponding pairs between the base im- 
age and the images at the two different positions. The 
+ marks the location of the FOE in each case. I t  is 
intuitively clear that if the segments in Fig. 3(a) are 
perturbed a little, the FOE will move more than if the 
segments in part (b) of the figure will be perturbed. 
Thus the FOE computation is less stable in the first 
configuration than in the second. 

To obtain a quantitative measure of the dispersion 
of the FOE due to noise in the corresponding points, we 
used the linear approximation method presented in [TI.  
That work develops a method for computing the covari- 
ance of an estimator which is computed by minimizing 

Based Localization 
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Figure 3: An example of (a) unstable and (b) stable Figure 5: Base image and image after forward 
configurations translation (b) 

Figure 4: Uncertainty in direction of translation, as a 
function of position with respect to the base image. (a) 
Predicted uncertainty. (b) Empirical measure of dis- 
persion. The graph shows the 9O’th percent quantile 
of the 3D angular error distribution at  each configura- 
tion. 

an objective function. We applied that method to the 
objective function we use for computing the FOE. 

As an example we refer to Fig. 4. Here the base 
image was taken from position (0,O). For each new 
position (X, Y ) ,  we have estimated the error in deter- 
mining the direction of translation to the new position. 
The theoretical prediction is shown in the left figure. 
In the right figure we show the empirical results. The 
90’th percent quantile of the angular error in direction, 
is plotted as a function of position with respect to the 
base image. Clearly we can see that the empirical re- 
sults agree with the predicted map. 

As another example, consider the images in Fig. 5 
taken in our lab. Around 30 pairs of corresponding 
points were found. Based on these points, the FOE was 
computed and its dispersion predicted by our method. 
These predictions were then compared to the disper- 
sion of FOE values obtained by minimizing the ob- 
jective function on noised versions of the point corre- 
spondences. Figure 6 shows the actual dispersion of 50 
FOE estimates, and the dispersions described by the 
predicted and empirical covariance matrices. The an- 

Figure 6: Predicted vs. empirical dispersion 

gle between the principal axes of the two ellipses is 11.9 
degrees. The ratios of the lengths of axes are 1.01 and 
1.08. As is evident by these numbers and by looking 
at the figure, the prediction is quite accurate. 

4 Planning Updates Along the Route 
We will now describe an example of using the active 

navigation paradigm and the performance map derived 
above for the vision sensor. Our robot uses the visi- 
bility graph method to plan paths in the work space. 
The planned path in this method passes through the 
vertices of the obstacles. As described previously, the 
accuracy requirement in this case defines critical re- 
gions around these vertices. 

Consider now the position uncertainty but only in 
the direction which is orthogonal to the heading direc- 
tion. Let us assign a single number to measure this 
uncertainty - for example 3 standard deviations. This 
uncertainty grows linearly according to our model. The 
distance from obstacles and the size of the critical re- 
gions define its maximum allowed value. This maxi- 
mum allowed value changes along the route and is ac- 
tually a piecewise constant function. We now compute 
the uncertainty in direction of translation with respect 
to two given base images, by the method described 
above. This allows us to infer the maximal uncertainty 
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in localization that will be obtained in the direction we 
are interested in. See Fig. 7. 

Hcadmg h u m  

I 

E m  baw m g c  

Figure 7: Allowed vs. obtainable uncertainty 

We now let U,, ( t )  denote the maximal uncertainty 
allowed, and U,.(t) denote the uncertainty we will ob- 
tain by using the two base images. Let U ( t )  denote 
the linearly growing uncertainty in position. At all 
times, the uncertainty U ( t )  should be less than U n ( t ) .  
Assume a position update at time t costs C( t ) .  The 
problem is to find times of update tl , t 2 ,  . . , which will 
ensure that 

U ( t )  L U n ( t )  
for t = 1 , 2 , .  . . , T ,  and this with minimal cost of up- 
date operations. Fig. 8 illustrates this problem. This 

Figure 8: Find times for update actions which will en- 
sure completion of the path with minimal cost (see 
text) 

problem may be solved by the dynamic programming 
approach (see for example [4]). Let f ( u ; i , j )  denote 
the cost of reaching from t = i to t = j with initial 
uncertainty U at time t = i .  Let the uncertainty U ( t )  
grow linearly with slope a. If 

for all i 5 t 5 j then the no updates are necessary and 
f(u; i ,  j )  = 0. Otherwise, f(u; i, j )  may be computed 
recursively as 

Using the method of dynamic programming an efficient 
computational scheme may be employed to find the 
optimal times at which updates should be made. 

5 Discussion 
When considering vision as a sensor for mobile robot 

localization, one cannot expect to obtain the same level 
of performance uniformly over the work space. The ac- 
tive navigation paradigm is an approach which is de- 
signed to address this rather common characteristic of 
localization sensors. In this paper we have shown how 
we may use a vision sensor and the active navigation 
approach to plan sensing along the route, in a way 
which will allow a robot to successfully navigate along 
the route, while keeping the sensing cost to a minimum. 

So far we have addressed the uncertainty in the 
direction of translation. There are additional issues 
which affect vision-based localization performance. An 
important example of such an issue is the variance in 
ability to find corresponding points between the im- 
ages. We plan to address this question in future work. 
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