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Abstract

Speech can be represented as a time/frequency distribu-
tion of energy using a multi-band filter bank. A Markov
random field model, which takes into account the possi-
ble time asynchrony across the bands, is estimated for each
segmental units to be recognized. The law of the speech
process is given by a parametric Gibbs distribution and a
maximum likelihood parameter estimation algorithm is de-
veloped. Experiments are conducted on an isolated word
recognition problem. It is shown that similar performances
are obtained with the new model and with standard HMM
techniques in the mono-band case. In the multi-band case, it
is shown that modeling inter-band synchrony is an interest-
ing approach to increase the performance when the number
of bands increases.

1. Introduction

Hidden Markov models (HMM) are extensively used in
speech recognition for the computation of the likelihood of
an observation knowing a sequence of words. Good results
have been achieved with this statistical approach but there
are limitations to this model. In particular, HMMs are not
robust to additive or convolutive noises and distortions such
as reverberation and clipping. Cepstral mean subtraction or
RASTA processing is usually used to compensate for slowly
varying convolutive noise such as telephone line distortions,
but other techniques must be used for additive noise. The
robustness to noise can be increased by a more stable repre-
sentation of the speech signal than the cepstral ones or by a
more accurate statistical model of the signal. Many efforts
have been done to find out speech representations that are
less sensitive to noise and recently a multi-band approach to
speech recognition has been proposed to deal with additive
noises [5].

In the multi-band approach, the signal is divided into
sub-bands and the technique relies on independent model-
ing of each sub-band with HMMs. The partial sub-band

scores are merged at some point in the decoding process.
Regardless of the recombination stage, the model imple-
ments asynchronous modeling of the sub-bands. However,
the independence hypothesis of the sub-bands seems unre-
alistic and the sub-bands are neither totally asynchronous
nor synchronous. Moreover, part of the asynchrony may be
due to the transmission channel and is irrelevant for speech
recognition. Therefore, it may be interesting to add some
interaction between the bands and to model the spectral syn-
chrony. A model based on Markov random fields, in which
modeling of the synchrony between frequency channels was
implemented, was previously proposed [4] and applied to
filter bank output features. The results obtained were not
satisfying since the speech representation was too variable
and also maybe because no real parameter estimation algo-
rithm had been used. We propose to extend this model to
a more standard sub-band approach, with cepstral represen-
tation of the signal in each band, using the maximum like-
lihood estimation algorithm defined in [3]. The motivation
for this work is to investigate more descriptive statistical
models of speech in the t/f domain to increase robustness to
noise.

The paper is organized as follows: we first recall the def-
inition of the parametric random field based model and of
the related parameter estimation algorithms. Experiments
on isolated word recognition with a multi-band approach
are commented in section 3 and some concluding remarks
are finally given.

2. Random field modeling
2.1. Parametric model definition

In the multi-band approach of speech recognition, a hid-
den process (or field) X = {X;:, t € [1,T],k € [1, K]}
is associated with the observation Y = {y:x}, where
Xik € [1,N]if N states HMMs are used in each band.
In the classical model, the law of X is given by the inde-
pendent HMMs and the random variable X, ; only depends
on z;_1 k. It can be shown that this mono-lateral relation



has a bilateral equivalence and, in order to model inter-band
dependencies, the following neighborhood is considered

Vip={(t—1,k),(t+1,k),(,0) VI£k}. (1)

This neighborhood system defines X as a Markov ran-
dom field whose distribution is given, according to the
Hammersley-Clifford theorem [1], by
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where C is the set of all the cliques defined by the neighbor-
hood system and U, (z) is the potential function associated
to the clique ¢. Two types of cliques, namely horizontal and
vertical cliques, are associated to the neighborhood defini-
tion (1) and potential functions must be defined for both
types of cliques.

Previous studies [6, 8] on random field modeling for
speech recognition used the fact that a Markov chain is a
particular Gibbs distribution where the potential function
associated, in band k, to the clique {(t — 1,k), (¢, k)} is
given by
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In this equation, the function d(z;x = j) equals 1 if

x; = j and O otherwise. The parameters afj ), called tran-
sition weights, are given by —In(P*) (3, 5)) if P*) is the
transition matrix of the HMM corresponding to band k. A
barrier energy is used for forbidden transitions, the proba-
bility of such a transition therefore being small enough so
that the transition is never observed.

In full-band HMMs, all the bands are synchronized by
default. It was shown in [7] that the performance is in-
creased when asynchrony between the bands is allowed.
The multi-band model also relies on the asynchrony as-
sumption. The idea of the proposed approach is to model
explicitly the synchrony (or asynchrony) between the bands.
If two bands are considered synchronous when the state
transition occurs at the same instants (i.e. transitioni — j
observed at the same time in the two bands), then a possi-
ble model of the synchrony is given by the clique potential
function

(@1 g =1)0(xer=7) . (3

U;E,Ul) = fru |ze ke — zeg] - (4)

In this equation, the potential is defined for the clique
{(t, k), (t,1)} and it is assumed that the same number of
states is used in each band. If fi,; is given a high value, the
two bands are synchronous since the difference |z; , — 24|
will be small for likely configurations. The parameters f;
are called “synchronization weights”.

According to the previously defined clique potential
functions (3) and (4), the prior probability of a configura-
tion = for a K band model with N states in each band is a
Gibbs distribution whose total energy is
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where
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counts the number of 7 — j transitions in band & and
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is the cumulated “gap” between bands & and /.

If we assume conditional independence of the observa-
tions y, » and a Gaussian law for the probability density
function (pdf) associated to each state in each band, the
likelihood of an observation y knowing X = =z is given
by a Gibbs distribution whose energy, denoted U (y|z), is
the sum over all sites of the opposite of the log-likelihood
of v 1 knowing z; 5. Finally, it can be shown that the en-
ergy of z under the posterior law is given by U(z|y) =
U(z)+ Ul(y|z) [2] and therefore, random field based tech-
niques can also be applied to the posterior distribution for
sampling or finding out the most likely configuration.

2.2. Maximum likelihood parameter estimation

For K bands, the proposed random field model (RFM)
is defined by the set of parameters ¢ which consists of the
(NxN) matrices A%) (k = 1,... , K) gathering the transi-
tion weights and of the (K x A) synchronization matrix .
Direct maximum likelihood estimation of these parameters
from examples is not tractable and we propose a general-
ized stochastic EM algorithm, where the maximization step
is replaced by a gradient probabilistic descent step.

In the case of a single example, the auxiliary function of
the EM algorithm is given by

—ZZ ”)Ee(n) %J ( )Ny] —

Z fklEg(n) [Wri(z)|y] —In Zo —

ki>k

Z%k

where Z, is the prior partition function associated to the
Gibbs energy (5), (") is the current estimate of the param-
eters 6 and ~; k(1) = Pym)[Xex = ily]. The derivation

Q0,6 =
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of (6) w.r.t. az(-;) leads to the following maximization equa-
tion

Eyoin [0 (@)] = By [o (@) ly) =0 . (7)

Similar expressions are obtained for the fx; parameters and
only the updating of the transition weights will be illustrated
in the paper. There is no analytic solution to Eq. (7) and
we propose to use a single step of a descent algorithm to
calculate the new estimation which is then given by
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Since none of the expectations involved in (8) can be cal-
culated, they are estimated from samples drawn under the
prior and posterior laws with the current set of parameters

0(»). Obviously, the a%—c) parameters are not independent
and Eg. (8) can not be applied as is for each parameter. To
overcome the problem, the transition weights correspond-
ing to the same starting state ¢ are grouped in a vector and
derivation is performed w.r.t. this vector. A similar updat-
ing equation as (8) is used with the Jacobi matrix to account

for the parameter dependencies. In this case, the Jacobi ma-
trix is the covariance matrix of the gogf) functions under the
prior law.

For the Gaussian pdf parameters, the re-estimation for-
mulae are the same as for the standard HMM approach but
the probabilities +;  (¢) are estimated from samples under
the posterior law rather than explicitly calculated.

Since the EM algorithm converges toward a local max-
imum of the likelihood, an initialization strategy based on
empirical estimators of the transition weights and of the pdf
parameters is proposed. For an observation, a maximum a
posteriori estimate z* of the hidden configuration can be de-
termined using the ICM algorithm [2] or simulated anneal-
ing. The transition weights are estimated by counting the
number of transitions in z* and taking the opposite of the
logarithm of the corresponding estimated transition proba-
bility, which formally gives

(8)
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The synchronization parameters are not initialized and the
pdf parameters are estimated with the feature vectors asso-
ciated to the considered state.

2.3. Decoding strategies

Finally, a decoding strategy is proposed for isolated word
recognition. Since explicit computation of the observation

likelihood is impossible because of the sums over all con-
figurations, some approximation must be done. The score
of an observation y for a word w, p,,(y), is approximated

by
Pw(y) = ply, (&7)pw (y]z7) )

where z* is the most likely posterior configuration and pl
denotes the pseudo-likelihood [1] of z*. As for the parame-
ter initialization, * can be obtained by the ICM algorithm
or by simulated annealing, the former being faster but sub-
optimal unless a good initial solution is available. As the
ICM and simulated algorithms are iterative algorithms, they
are initialized with a uniform segmentation.

3. Experimental results
3.1. Experimental setup

Experiments are carried out on single-speaker isolated
word recognition for telephone speech with a 10 word vo-
cabulary. Fifty occurrences of each words are used for
training while 50 other ones are used for the tests. Results
are therefore reported for 500 tests and must be taken with
care since the confidence intervals are quite large. How-
ever these experiments offer the opportunity to study the
proposed model.

When multiple bands are used, the speech signal is di-
vided into sub-bands regularly spread on a MEL scale. Cep-
stral coefficients are computed in each band. The cepstral
coefficients in a given band are computed as the inverse
Fourier transform of the log module of the spectral coef-
ficients corresponding to that band, after symmetrisation.

3.2. Results

The model was first tested using a conventional full-band
approach and different decoding strategies based on the
ICM and simulated annealing (SA) algorithms were stud-
ied. As expected, the ICM based decoder turned to be very
sensitive to the initialization and gave poor results when ini-
tialized with a uniform segmentation. Comparable results
were obtained with the classical Viterbi algorithm and with
a simulated annealing based decoder. However, the perfor-
mance of the simulated annealing decoder highly depends
on the choice of the initial temperature and of the speed of
the cooling scheme. Part of these results can be seen from
table 1 where column b1c12 corresponds to the mono-band
case.

Several sub-band divisions were then tested and results
for 1, 3,5 and 7 bands (b1 — b7), with respectively 12, 5, 3
and 2 cepstral coefficients in each band (c12 — ¢2), are given
in table 1. Different training and decoding algorithms were



sub-band architecture
decoding training blcl2 | b3c5 | b5¢3 | b7c2
ICM heuristic 99.8 | 99.4 | 97.6 | 95.0
ICM 87.2 | 846 | 788 | 78.2
ICM-GEM | 88.6 | 80.6 | 75.4 | 76.0
SA ICM 99.6 | 97.8 | 92.6 | 88.2
ICM-GEM - 97.8 | 95.0 | 94.2

Table 1. Recognition rate (in %) for different
sub-band architectures.

used. The heuristic training corresponds to independently
trained parallel HMMs and the estimation of z* in the de-
coding stage is obtained by applying the Viterbi algorithm
independently in each band as proposed in [4]. It therefore
correspond to a standard Viterbi approach (except for the
score computation given by (9)) and defines the baseline
system. In all other cases, ICM training corresponds to the
initialization procedure with 2* obtained using the ICM al-
gorithm while in the ICM-GEM case, re-estimation of the
model parameters is performed using the proposed EM pro-
cedure.

Those results show that the recognition rate decreases
when the number of bands increases. This could be ex-
plained by the fact that the representation of speech in each
band is poorer since less coefficients are used. However,
when the number of cepstral coefficients is increased in the
7 band case, the recognition rate only marginally improves.
For example, a recognition rate of 96.4% is achieved with 7
bands and 5 cepstral coefficients using the heuristic training,
compared to 95% with only 2 coefficients. This points out
the fact that the recombination is the crucial point of multi-
band models. Another explanation is that narrow bands are
more variable than wide bands and therefore the statistical
model degrades with narrow bands.

With the ICM based decoder, the EM re-estimation of
the parameters seems to degrade the results. Except for the
mono-band case, the recognition rates for ICM-GEM train-
ing along with an ICM based decoder are less than the re-
sults obtained solely with the ICM initialization procedure.
However, the opposite is observed when a SA based de-
coder is used. These results stress the weaknesses of the
ICM based decoder, in particular when a more complex
prior (or regularization) model is used. Indeed, the ICM-
GEM trained model is more complex since the synchro-
nization weights have been estimated while they are arbi-
trarily set to zero in the ICM training procedure. For the SA
based decoder, it is observed that re-estimation of the pa-
rameters with the EM algorithm (and estimation of the syn-
chronization weights) improves the results when the num-
ber of bands increases. Performances comparable (though
slightly lower) to the baseline system ones are obtained in

this case. This result shows that a good model of the prior
process X is needed when the observation becomes more
variable. Adding a synchrony model, even if the model is
unrealistic, allows for a better regularization of the segmen-
tation and, as a matter of fact, for a higher recognition rate.

In the experiments reported here, standard HMM tech-
niques give slightly better results than the best RFM tech-
nique with less computation. However, it must be recalled
that the multi-band approach was designed to deal with
noisy test data. Preliminary results with noisy test data show
that in a 3-band case, the RFM gives better results than a
linear combination of the HMM scores in each band.

4. Conclusion

A Markov random field model for speech recognition,
based on an extension of the multi-band HMMs, is pro-
posed and studied on an isolated word recognition exper-
iment. When the observation becomes too variable, which
is the case when the number of bands is increased, there is
a need for regularization of the segmentation and the exper-
iments showed that inter-band synchrony is an interesting
and valuable regularization model. To conclude, we should
stress the fact that the synchrony modeling used in the cur-
rent random field model assumes that the same synchroniza-
tion weight applies for all the duration of a word. This as-
sumption is certainly wrong and may partially explain that
independent HMMs perform better. A better modeling of
the inter-band synchrony should be therefore be envisaged.
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