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Abstract

We address the problem of extending topographic maps
to color images. A topographic map gives a morphological
and a geometrical representation of the information con-
tained in natural images. Two approaches are presented
and discussed. The first one is new and consists in defining
a total order in R® in accordance with the human visual per-
ception of shapes. This allows to define color topographic
maps in the same way that what it has been done for gray-
level topographic maps. It has the advantage of leading all
properties known in the gray-level case to remain true in
the color case. But the map contains a so huge quantity
of data that it has to be drastically simplified. The second
approach, based on a so far unpublished result [4], allows
to build a simplified representation by using the geometry
given by the luminance component only. We present experi-
ments which illustrate the advantages and the drawbacks of
each method.

1. Introduction and Background

This paper discusses the extension of topographic maps
to color images. Topographic maps of gray-level images
have been recently introduced [5, 6] as a geometrical rep-
resentation of the information contained in natural images.
A lower (or upper) topographic map of a gray-level image
u : ©Q C R?* — R is the family of the connected compo-
nents of the lower (or upper) level sets of u, a lower level
set [u < )] being the set of pixels « such that u(x) is lower
than A.

This representation leads to morphological edges [5, 9],
which are selected pieces of level lines (level lines are bor-
der of level sets). Such structure better matches the percep-
tual edges properties than the classical Hildreth-Marr theory
of edge detection : morphological edges are like perceptual
edges invariant to local contrast changes, and they are con-
nected curves. In addition, the topographic map may yield
to a complete description (we just have to record the level A
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associated to each connected component) so that the origi-
nal image u may be reconstructed :

u(z) = irif[u < Al = supfu > A )]
X

A scale parameter may be introduced to keep the most im-
portant morphological edges only, and from those a sketch
image can be computed [8]. First applications of topo-
graphic maps and morphological edges include extraction
of shapes [13, 10], comparison of images [3, 13], structured
compression [9] and disocclusion [11] (recovery of hidden
parts of an object occluded by another one).

The main drawback of this level set approach, which is
probably accountable for the important delay between its in-
troduction by the Mathematical Morphology school in the
1960s [14] and the use as an atomic representation, stands in
the huge quantity of geometrical data associated to a topo-
graphic map : the amount of bytes needed to code a typical
8-bits 256 x 256 image by its topographic map is about 100
times greater than the amount obtained by the raw pixels
description. Quite obviously, the applications based on to-
pographic maps can’t afford to deal with all of these data,
and the representation must be widely simplified.

The right way to simplify a topographic map is to apply
a morphological filtering on the gray-level image u. A filter
F' is morphological if it is a contrast invariant operator [6],
that is if, for any increasing continuous real function g, we
have

F(g(u)) = g(F(u)). 2)

The use of a morphological filter is justified by the prop-
erty [F(g(u)) < A] = [F(u) < g=(\)], which ensures
that the family of level sets of the filtered image is invariant
under any change of contrast. Classical examples of such
contrast invariant operators are given by the Mathematical
Morphology [14] : erosion, dilation, opening and closing.
Another example is the anisotropic diffusion F} issued from
the AMSS multiscale analysis [1]. It is possible to perform
a morphological filtering by acting on the level sets : if T is
an increasing continuous operator on the closed sets family
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of R?, then the relation
[Fl(u) <A =T([u<A]) 3)

defines a unique morphological filter F' [12]. A simple but
powerful example of such operator is given by the grain fil-
ter [2] : it removes all “shapes” (levels sets with filled holes)
having an area below a threshold. The grain filter is there-
fore useful in simplifying the topographic map, and if the
threshold remains low it does not introduce visible degra-
dation (it has been introduced to remove impulse noise).

Since we have [g(u) < ] = [u < g~(\)], the family
of level sets of g(u) is equal to the family of level sets of u
: a contrast change preserves the topographic map. In [6]
it is proved a stronger property : the topographic map of an
image w is equal to the topographic map of another image v
if and only if there exists a function g(x, A) increasing in A
such that v(x) = g(z, u(z)) for all pixels z (there are other
technical properties on the function g, see [6] for details).
Its means that v is obtained from u by applying a local con-
trast change. Topographic maps are therefore equivalence
classes of images, modulo local contrast changes.

2. Topographic Maps of Multivalued Images

Let us now consider a color image, which is in the
standard RGB color model a multivalued function U =
(R,G,B) : Q ¢ R* — R®, where the three channels
R,G, B are the intensity of red, green and blue. What
follows may be extended to functions with any number of
channels. In this section, we address the problem of extend-
ing the topographic map definition and properties to such
multivalued function U. Obviously, it would be nonsense
to define the color topographic map as the family of the
three topographic maps associated to each channel R, G, B
: there would be a lot of geometrical redundancy between
each map, and a morphological filtering would be likely to
introduce color artifacts. A better point of view is to switch
to a color model which splits the channels between the in-
tensity (also called luminance) and the chromaticity compo-
nents. Indeed, natural gray-level images contain rich geo-
metrical structures, which are far enough to reconstruct the
shape of the objects. A color topographic map should there-
fore uses the luminance component first, with some refine-
ments given by the chrominance.

Let L(U), H(U) and S(U) be the values of U in the
HST color model (L stands for Luminance or Intensity, H
for Hue and S for Saturation). We define a total order < on
R? (an ordering relation is total if two elements are always
comparable) by

Ui = (L1, H1,81) 2 Uz = (Lo, Ho, S2)

¢ “4)
(L1 < LQ) or (L1 = Ly and H; < HQ)
or (Ly = Ly and H; = Hy and S; < S).

This is a lexicographic ordering relation, which has been ap-
plied alredy to process color images, see for instance [15].
We have chosen this order to fit the visual perception of ge-
ometrical structures : to detect shapes, human eyes are first
sensitive to luminance, then to hue and at last to saturation.

As in the gray-level case, we define the lower (or upper)
color topographic map of U to be the family of the con-
nected components of the lower (or upper) level sets of U,
the lower level set of level A = (A, A, Ag) being

U =Nl = {z/U(z) 2 A} ©)

A color filter F' is said to be morphological if it is a contrast
invariant operator, that is if for any increasing continuous
function G : R® — R?, we have F(G(U)) = G(F(U)).
Since =< is a total order, one can check that all properties
state in the case of gray-level images are still valid here.

The approach to extend the topographic maps to color
images by means of the lexicographic order (4) sounds
therefore to be the most natural. However, the drawback
of the huge quantity of data contained in the map is now so
critical that the scheme may be simply unusable. Indeed,
since the conversion from RGB to HSI enhances the chan-
nel dynamics, the quantity of data obtained for a 24 bits
color map is more than 2562 times the quantity associated
to 8 bits gray-level map ! The only solution is to drastically
simplify the topographic map during its computation, using
morphological filters.

3. Another Morphological Filtering Model for
Color Images

In a forthcoming paper, V. Caselles, J.M. Morel and one
of us [4] propose a different approach to define the topo-
graphic map of color images (see also [7]). Now, an opera-
tor F : R® — R? is said to be a morphological filter if for
any U and any

cwy = SLU) (©)

N~

we have F(G(U)) = G(F(U)). Notice that, since Q(TL
may be not increasing in R®, a morphological filter in the
sense given by Section 2 is not necessary a morphological
filter in this new sense.

The reason of this new definition is given by the fol-
lowing result [4] : we suppose L bounded and of bounded
variation on (2, and H, S Lebesgue-integrable on 2 (for a
particular choice of L, H, S explained in [4]). Let A, be
the o-algebra generated by the connected components of
the sections of U, i.e., the o-algebra generated by the con-
nected components of sets of the form [¢ < L < dJ, for
levels ¢ < d such that [c < L < d] is of finite perimeter.



Then, the equation
L(U)

E(H(U)|Ax) )
E(S(U)Ax)

F(U) =

defines a morphological filter. This result says that the map
constructed with the family of the connected components of
the lower (or upper) level sets of L(U), and with chromatic
components set to be the average of the values of H(U) and
S(U) in these regions, defines a new image F(U) where F is
a morphological filter. The image F(U) has piecewise con-
stant chromatic components H, .S on each connected com-
ponent of the topographic map of L. In this way, this ap-
proach does not require to define the topographic map of
color images. It maintains that we can simplify a color im-
age by keeping the geometry associated to the luminance
component only.

4. Experiments and discussion

The two representations of color images we have
introduced must remain accurate while the quantity of
information has to be reduced. The following color plate
presents some experiments made on the baboon image
(picture A, 256 x 256 pixels, 24-bits per pixel). Picture B
and C illustrate the use of the morphological filter described
in Section 3. In B, the luminance L(U) is quantized very
precisely with 256 different levels. But the topographic
map used to compute the chrominance is built with 7 levels
of L(U) only. On each region of this map, the chrominance
components are averaged but not quantized. As a result,
we get an image with rich geometrical information given
by the luminance only. However, since the geometry of the
hue channel may be slightly different, color artifacts may
appear and we can see some of them in the border of the
baboon’s muzzle. The topographic map of this luminance
channel (with 256 levels) contains 355000 level lines.
The associated representation takes 35 Mb (Megabytes).
Picture C is the same than B but the topographic map is
quantized with the number of levels (7) corresponding to
the computation of the chrominance. Now, only 9000 level
lines remain and the size of the representation is 1 Mb.
This representation may become really light if we apply
another morphological filter, as the grain filter. Picture D
gives the reconstruction obtained with a color topographic
map explained in Section 2. In order to get a computable
topographic map, the L,H,S channels are strongly quantized
(8 levels for L, 17 for H and 4 for S). In spite of the fact
that this image contains 544 different colors only, the
result is quite fair and there is no color artifacts. The color
topographic map has 276000 level lines and the parameters
are chosen to get the same quantity of data than for image
B (35 Mb), so that the visual quality of B and D may be

directly compared. The use of the color topographic map
seems to give better results, but if we want to reduce the
amount of data, it is hardly possible to decrease the number
of quantization levels. The picture at the bottom of the
color plate shows the geometry of the color topographic
map after a grain filter has been applied (20000 remaining
level lines). However, the resolution of the picture is altered
by such filtering, and a compact representation based on
a color topographic map may be hard to attain without a
process that removes the geometrical redundancy between
the three channels.

References

[1] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Ax-
ioms and fundamental equations of image processing. Arch.
Rational Mechanics and Anal., 16(9):200-257, 1993.

[2] L. Ambrosio, V. Caselles, S. Masnou, and J.-M. Morel. Con-
nected components of sets of finite perimeter and applica-
tions to image processing. Preprint, 1999.

[3] C. Ballester, E. Cubero-Castan, M. Gonzalez, and J.-M.
Morel. Contrast invariant image intersection. Preprint.

[4] V. Caselles, B. Coll, and J.-M. Morel. Geometry and color
in natural images. In preparation.

[5] V. Caselles, B. Coll, and J.-M. Morel. A kanizsa programme.
In Progress in Nonlinear Differential Equs. and their Appli-

cations, pages 35-55, 1996.

[6] V. Caselles, B. Coll, and J.-M. Morel. Topographic maps
and local contrast changes in natural images. Int. J. Comp.
Vision, 33(1):5-27, 1999.

[7] A.Chambolle. Partial differential equations and image pro-
cessing. In Proc. of ICIP’94, pages 16-20, 1994.

[8] J. Froment. A compact and multiscale image model based
on level sets. In Scale-Space Theories in Computer Vision,
pages 152-163. Lecture Notes in Computer Science 1682,
1999. Proc. of Sec. Int. Conf. Scale-Space’99.

[9] J. Froment. A functional analysis model for natural images
permitting structured compression. ESAIM:COCYV Control,
Optimisation and Calculus of Variations, 4:473—495, 1999.

[10] F. Guichard and J.-P. Tarel. Curve finder combining percep-
tual grouping and a kalman like fitting. In Proc. of ICCV’99,

pages 1003-1008, 1999.
[11] S. Masnou and J.-M. Morel. Level lines based disocclusion.

In Proc. of ICIP 98, 1998.

[12] L. Moisan. Traitement numérique d’images et de films :
équations aux dérivées partielles préservant forme et relief.
PhD thesis, University of Paris-Dauphine, 1997.

[13] P. Monasse and F. Guichard. Scale-space from a level lines
tree. In Scale-Space Theories in Computer Vision, pages
175-186. Lecture Notes in Computer Science 1682, 1999.
Proc. of Sec. Int. Conf. Scale-Space’99.

[14] J. Serra. Image analysis and mathematical morphology.
Academic Press, 1982.

[15] G. S. V. Caselles and D. Chung. Filters, vector morphol-
ogy and coupled median filters, vector morphology and cou-
pled pde’s: Theoretical connections. To appear in Journal of
Mathematical Imaging and Vision.



i PR




