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Abstract

The success of nonrigid motion analysis using physical
finite element model is dependent on the mesh that charac-
terizes the object’s geometric structure. We suggest a de-
formable mesh adapted to the natural features of images.
The adaptive mesh requires much fewer number of nodes
than the fixed mesh which was used in our previous work.
We demonstrate the higher efficiency of the adaptive mesh in
the context of estimating burn scar elasticity relative to nor-
mal skin elasticity using the observed 2D image sequence.
Our results show that the scar assessment method based on
the physical model using natural feature adaptive mesh can
be applied to images which do not have artificial markers.

1 Introduction

During the past two decades, the study on nonrigid
motion has evolved following the vein of adding more
constraints on various motion estimation methods [I] [3].
Methods without an object model impose minimum con-
straints on the tracking process, but require efficient search
and comparison throughout the entire image. By adding
kinematic continuity constraints on the object in terms of
shape functions, the lumped-parameter model can predict
the object’s motion in next frame, and thus greatly reduces
the tracking complexity. The physical model adds an ex-
tra material constraint on the motion computation through
the constitutive law [5] [8]. Therefore, the prediction is
more accurate and physically sound. The numerical physi-
cal model is built by discretizing governing equations over
a mesh that covers the object. Mesh serves not only as a
computational unit, but also as an implicit topological con-
straint on the motion, which is very valuable for tracking the
elastic body. The meshing schemes used in computer vision
research can be classified based on the following criteria:

(1) mesh structure (triangle vs. quadrilateral)
(2) mesh coordinate (image plane vs. scene coordinate)
(3) mesh ROI (whole image domain vs. specific object)
(4) mesh control (feature-first vs. mesh-first)
The quadrilateral mesh is superior to the triangle mesh

in terms of its stability performance in the nonlinear sys-
tem. But in nonrigid motion analysis, unstructured triangle
mesh is far more appealing due to its computational effi-
ciency and flexibility in handling complex geometry. Mesh
can be constructed either in the image plane or in the scene
coordinates. The primary usage of the image mesh is assist-
ing in the apparent motion estimation and video compen-
sation [ 11 ]. The scene mesh is commonly used to build a
numerical physical model, and usually covers only the iso-
lated object of interest. Either the feature-first scheme or
the mesh-first scheme can be used to generate a mesh that is
adaptive to the image content, which may or may not have
artificial markers.

This work is a further advancement of the previous in-
vestigations on finding an objective method for burn scar
assessment [9]. Our previous work was carried out on im-
ages attached with artificial markers and the fixed mesh. By
constructing a mesh adaptive to natural features, we extend
the applicability of the method to images without artificial
markers, and also increase the computational efficiency.

2 Model Based Object Reconstruction

In the framework of the model-based object reconstruc-
tion, three stages are involved: (1) model construction, (2)
model calibration and (3) model prediction (Figure 1). 
ious types of object’s attributes can be estimated in three
stages: structure, motion and material properties.

Two important steps in building a numerical model are
to generate an accurate mesh and to determine the appro-
priate boundary conditions, In this study, we emphasize on
generating an adaptive mesh using the feature-first scheme.
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Figure 1. Illustration of the physical model-based
object reconstruction.

Before a model can be used for making predictions, it
must be calibrated against the observations to adjust its pa-
rameters. In this way, model-based object reconstruction
problems will be eventually transformed into parameter es-
timation problems, which are often ill-posed in Hadamard
sense [2]. Therefore, a priori knowledge is needed to over-
come the ill-posedness.

Using a calibrated lumped-parameter model, Pi+I =
M~Pi + T, the object’s position Pi+I can be computed
from the past motion trajectory (Mi, Pi-1, ...). Therefore,
it reflects the object’s kinematic continuity. As an excitation
driven system, the calibrated physical model makes predic-
tions as a response to external forces. The prediction reflects
the continuity of the object’s dynamic status. We used tran-
sient elastic model, M~ + D± + Kx = F(t), to compute
displacement vector x as a result of repeated force inputs
F(t), or inertial motion driven by mass matrix M. The so-
lution was constrained by stiffness matrix K and damping
matrix D. We also utilized the kinematic data to specify the
Dirichlet condition of the physical model. Hence, the phys-
ical model and the lumped-parameter model were used to
track the nonrigid motion in a cooperative way.

3 Model Construction: Adaptive Mesh

Natural Feature Points Selection Feature points suitable
for object representation and motion tracking can be found
by computing eigenvalues (A1, A2) of the 2 × 2 gradient ma-
trix of a small feature window [6]. A window possessing
the relationship of min(A1, A2) > A will be considered as 
candidate, where A is a user specified threshold value.

As shown in Figure 2 (a) and Figure 3 (a), most of the 
lected points captured the significant features, such as natu-
ral birthmarks and artificial markers. An ideal set of feature
points for a deformable mesh should have a balanced dis-
tribution on the object’s surface. We used another threshold
d, the minimum distance between any two adjacent feature
points, to control the feature distribution. The locally adap-
tive assignment of A and d also helped to generate a set of
points with the desired quality.

Feature-First Meshing Scheme Two meshing schemes
are frequently used in the computer vision research: the
mesh-first and the feature-first. In the feature-first scheme,
after features being extracted, the mesh can be constructed
adaptively based on the feature distribution. The advantage
of the feature-first scheme is that it is applicable to a large
variety of images, particularly those with objects of com-
plex shapes. The disadvantages are the sophisticated algo-
rithms involved and the dependence of the mesh quality on
the feature quality.

Given a set of randomly distributed feature points, var-
ious triangle mesh can be produced by linking points fol-
lowing certain selection and rejection rules. We used the
Delaunay principle to generate the triangle mesh [7]. In a
Delaunay triangle mesh, no vertex will be allowed to sit in-
side the circumscribing circle of any element. An algorithm
obeying the Delaunay principle can yield a mesh adaptive
to the original set of vertex. However, it does not necessar-
ily guarantee a mesh with desired geometrical quality, and
thus the refinement must be performed to insert new nodes
into the mesh. In this study, we allowed new nodes to be
added in both 2D image mesh and 3D scene mesh. In the
former case, the addition of new nodes was achieved during
the feature extraction stage. The node addition in 3D scene
mesh was done in the postprocessing stage of mesh gener-
ation as a quality assurance procedure. Figure 2 shows two
mesh examples with and without the refinement.

In addition to the geometrical consideration of mesh
quality mentioned above, another strong motivation for the
adaptive refinement is to capture the dramatic change of
modeling parameters in a small region where the severe
deformation occurs. The refinement process can be driven
by minimizing the error function between two consecutive
simulations of the physical model. In our experiment, new
nodes were added at the boundary between the normal skin
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Figure 2. Triangle meshes generated using the
feature-first scheme. (a) Intensity image (feature
points cross-marked). (b) Range image. (c) 
angle mesh on the original point set. (d) Triangle
mesh with new nodes added.
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Figure 3. The comparison of meshes using the
feature-first and the mesh-first schemes. (a) In-
tensity image (selected features are marked). (b)
Range image. (c) Quadrilateral mesh. (d) Triangle
mesh. (e) Recovered motion using quadrilateral
mesh. (f) Recovered motion using triangle mesh.

and the burn scar, where elasticity showed significant vari-
ations and large simulation errors.

Mesh-First Meshing Scheme The mesh-first scheme has
the advantage of being easy to implement. After a regu-
lar mesh is defined (usually quadrilateral), a simple post-
processing can be performed to reshape the mesh to match
feature points. This scheme is useful for the image where
objects can be tagged by the invasive or noninvasive mark-
ers [4] [10]. The obvious drawback is that not all images
can be attached with artificial markers. In addition, the ini-
tial mesh can not be stretched to a degree that original mesh
structure is destroyed, and thus no longer suitable for the
nonrigid motion tracking.

Figure 3 (c) shows an adaptive quadrilateral mesh after
being adapted to the underlying feature points. The object
in the image is an elastic bandage (with artificial markers)
under stretching. Figure 3 (d) shows a triangle mesh gen-
erated using the feature-first scheme. Figure 3 (e) and (f)
show that physical models using the quadrilateral mesh and
the triangle mesh produced similar results. However, for a
large scale simulation, the computational burden caused by
the large number of nodes in the quadrilateral mesh is a ma-
jor concern (to catch a few scattered features, very dense
mesh is needed at the expense of many empty nodes).

4. Model Calibration: Parameter Estimation

We explicitly coupled a physical model and an optimiza-
tion package to take advantage of the fact that an efficient
finite element model was already available and could be
used with minor modification. After being given the ini-
tial guesses of the elasticity and the displacement at the
boundary, the forward finite element model run within the
optimization loops, during which the elasticity and the dis-
placements were adjusted until the error between the sim-
ulated displacements and the measured displacements (at
the chosen internal nodes) was less than a predefined tol-
erance. We also incorporated a priori knowledge into the
optimization process to alleviate the ill-posedness, particu-
larly the discontinuous dependence of the solution on the
measured data, which is stated as the the third condition of
ill-posedness [2]. For example, the use of average elastic-
ity of the human skin as an initial guess greatly reduced the
search time for an optimal solution.

Frequently, the computed strain is used to show the vari-
ation of the elastic property of the nonrigid object under
deformation. This method is valid when the stress exerted
on the object is approximately uniform. In Figure 4, the
pulling force on the skin was roughly equal, and thus the
computed strain map clearly revealed the difference of the
elasticity between the normal skin and the burn scar.
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Figure 4. Applications of the adaptive mesh in
strain computation and skin property estimation.
(a)-(b) The burned skin before/after pulling (fea-
ture points are cross marked). (c) Triangle mesh
by the feature-first scheme. (d) Computed strain.

5. Model Prediction: Motion Tracking

The calibrated physical model can be used in the non-
rigid motion tracking because of its unique prediction ca-
pability. Predicted displacements could be used in the fol-
lowing ways: (1) as an upper bound for the displacement
computed by other methods. (2) as a guideline of the search
range for the correspondence in the next frame.

In Figure 5, we demonstrated how the nonrigid motion
tracking can be improved by utilizing predictions from the
physical model as a correction factor. Figure 5 (a) repre-
sents the frame at time i, and Figure 5 (b) the frame at time
i + 1. We assumed that both the elasticity and boundary
conditions had been calibrated using the information from
previous frames. Dirichlet conditions were specified at the
boundary nodes to drive the model. The boundary nodes in-
herited the old displacement values to make predictions in
the next frame, dx(i,i+l ) : dx(i-l,i), where dx stands for
the displacement. An object experiencing smooth motion
will likely to continue to evolve kinematically, even with-
out further external force. Therefore, the above assignment
of the boundary condition actually maintained the object’s
kinematic continuity. But the motion at the internal nodes
was constrained by the elasticity, and therefore predictions
at those internal nodes reflected the dynamic continuity.
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Figure 5. Model based nonrigid motion tracking.
(a) The image at ti (before pulling). (b) The 
at ti+l (after pulling). (c) The adaptive triangle
mesh. (d) The measured displacements at internal
nodes. (e) The initial guesses of displacements 
the Hausdorff distance. (f) The final displacements
after correction by the physical model.

The initial guess of the object’s motion between frame i
and frame i + 1 was estimated based on the Hausdorff dis-
tance and was plotted in Figure 5 (e). It is clear that only the
rigid component exist. After being corrected by the predic-
tion from the physical model, the displacement was almost
completely recovered (see Table I for the comparison of the
recovered motion with the measured motion). It is worth
noting that the physical model must be provided with the
new displacements to keep the inertia updated (especially
for long sequence tracking). Otherwise, the accumulation
of small errors in the object’s dynamic status will make the
further predictions invalid.

6. Conclusions

We have presented a frame work for physical model-
based nonrigid motion analysis using the natural feature
adaptive mesh. The Delaunay triangle mesh adapted to



[I (a) ] (b) lerror relative error (%)
point- 1 6.185 6.09 0.095 1.5
point-2 3.612 3.98 0.369 10.2
point-3 4.837 5.09 0.252 5.2
point-4 5.135 5.02 0.116 2.3
point-5 3.612 3.29 0.319 8.8
point-6 3.946 3.70 0.245 6.2
point-7 5.977 5.71 0.271 4.5
point-8 4.211 4.02 0.190 4.5
point-9 5.474 5.34 0.132 2.4
average 4.479 4.69 0.221 5.1

Table 1. The comparison of the measured and
recovered displacements (mm): (a) The measured
data. (b) The recovered data

the natural features can be constructed using the feature-
first scheme. The use of the natural feature adaptive mesh

provides the following advantages: (1) increasing the com-
putation efficiency of the physical model in simulating the
object of complex geometry and, (2) enabling the model
to deal with images without artificial markers. We also
addressed the issue of the model-guided nonrigid motion
tracking in an image stream. Experiments using the human
skin as the deformed object indicate that the quality of the
nonrigid motion tracking can be improved by utilizing the
predictive capability of a physical model.
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