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Abstract

A three stage recognition architecture that can be trained
to different recognition or segmentation tasks is presented.
It consists of an adaptive feature extraction based on vector
quantization and local PCA. The features are classified by
neural expert networks. It will be shown that the system can
be applied to object classification, segmentation of partially
occluded objects and classification of object parts without
modifications in the architecture.

1. Introduction

Artificial neural networks (ANN) are well-suited for
classification tasks in computer vision. Their adaptivity
has two major advantages: (a), ANN acquire the necessary
knowledge from examples and therefore can be adapted to
different object domains, (b), because of the implicit rep-
resentation ANN can store even knowledge that can hardly
be modelled explicitly by a human designer. Since for the
most tasks ANN cannot be applied directly to the raw pixel
data, suitable features have to be extracted before the classi-
fication itself. However, the benefit of adaptivity gained by
the application of ANN may vanish if the required feature
extraction has to be designed from scratch for a new vision
problem. Hence, feature extraction should have the same
adaptivity as the neural classifier.

The recognition system presented here has three process-
ing stages which can all be adapted to the recognition task
by examples [2]. In the first level, the input data are pre-
structured by a vector quantization. Then, features are ex-
tracted by a local principal component analysis which are
classified by expert ANN in the last processing level. We
will first describe the system, then the ability of the system
to be adapted to different recognition tasks will be demon-
strated.

2. The adaptive recognition architecture

The proposed system is designed for the classification of
whole images or smaller image patches as well. Both types
of input will be called “window” in the following. A win-
dow may show an object totally visible (in this case some
kind of pre-segmentation is assumed) or smaller parts of an
object which are either sampled randomly or gained by an
attentional mechanism apart from the system outlined here.
We refer to section 3 for examples.

The basic idea is to provide an adaptive feature extrac-
tion for the neural classification level. It should be possi-
ble to train the feature extraction by the same examples as
the classifier. An established technique in computer vision
is projecting the windows to their principal components.
However, principal component analysis (PCA) leads to spe-
cific filters only if the training set itself is highly specific.
An example are so called “eigenfaces” for face recognition
[11]. In contrast, if the training windows are taken ran-
domly from natural images, the principal components tend
to be the same for all images and even throughout differ-
ent scales [8, 1] which is due to the linearity of the method.
Local PCA, however, can be viewed as a nonlinear exten-
sion of simple, global PCA [10] and leads to a much greater
variety of highly specific filters. In the system proposed
here, the input data are pre-structured by vector quantiza-
tion (VQ). For each reference vector of the VQ, a locally
valid PCA is performed (Fig. 1). So far, the system can be
trained unsupervised. To classify the features extracted by
the local PCA, to each reference vector an expert net of the
local linear map (LLM) – type is attached, which is trained
supervised. We will outline the system in more detail.

2.1. Vector quantization

The input data are roughly approximated byNvq refer-
ence vectors~W vqi , i 2 [1; Nvq℄, which are positioned by the
vector quantization learning rule� ~W vqnR = �(~x� ~W vqnR); � 2℄0; 1[; (1)
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Figure 1. The neural classification system.

wherenR is the index of the best match reference vector.
Since application of eq. (1) alone tends to be caught in local
minima of the mean square error function for the approx-
imation error, we enhanced the algorithm by a so called
“Activity Equalization”. In short, this method re-initializes
the nodes if they seldom or never become the “winner”, so
the average node activities will be equalized during training.
For details see [3, 2].

An input vector~x 2 IRw2
represents an image window

of sizew � w, or, alternativly,~x 2 IR3�w2
if three colour

channels are evaluated.~x is mapped by the VQ to an integer
numbernR = 1 : : :Nvq (nR denotes the best match).

2.2. Local PCA

Sanger [8] proposed a single layer feed forward network
for the successive calculation of the principal components
(PCs) of training vectors. The nodes have a linear activation
function Vi = dXj=1W paij xj ; i = 1 : : :Npa;

where~W pai are the input weight vectors of the nodes and~x
the input (see last section). After training by Sanger’s rule�W paij = �Vi " xj� i�1Xk=1VkW pakj !�ViW paij #
the weight vectors approximate the PCs in the order of their
eigenvalues, beginning with the largest. The output~V 2
IRNpa of the network is the projection of the input~x to the
firstNpa PCs with the largest eigenvalues.

2.3. LLM-nets

The Local Linear Map is related to the self-organizing
map [4] and the GRBF approach (e.g. [6]). It can be trained
to approximate a nonlinear function by a set of locally valid
linear mappings, for details see e.g. [2]. For the classi-
fication task, a mapping from theNpa-dimensional input
vector~V to anNl-dimensional output vector~y is required
(Nl = number of classes). The target training vector for
class has the formy(�)j = Æj; j = 1 : : :Nl, where�
denotes the number of the training example.

Figure 2. The LLM-net approximates a non-
linear mapping by several locally valid linear
mappings.

An LLM-node i has aninput weight vector~W llm;ini 2
IRNpa and a linear function to compute the output, which
consists of theoutput weight vector~W llm;outi 2 IRNl and a
matrixAi 2 IRNl�Npa . The network output is calculated
from the input vector~V 2 IRNpa by a search for the best
match nodek, which is determined byk = arg mini=1:::Nllm(k~V � ~W llm;ini k);



whereNllm is the number of LLM-nodes. The output vec-
tor ~y 2 IRNl is then~y = ~W llm;outk +Ak(~V � ~W llm;ink ): (2)

Given correct input-output pairs of the form(~V (�); ~y(�)),
the best match nodek of the network is adapted supervised
with the adaptation step sizes�in; �out; �A 2℄0; 1[ :� ~W llm;ink = �in (~V (�) � ~W llm;ink );� ~W llm;outk = �out (~y(�) � ~y(~V (�))) + Ak� ~W llm;ink ;�Ak = �A (~y(�) � ~y(~V (�))) � (~V (�)� ~W llm;ink )Tk~V (�)� ~W llm;ink k2 :
2.4. Training procedure

Given a training setT , the neural architecture shown in
Fig. 1 is adapted in three stages:

1. VQ of the input space, then divideT into subsetsT1 : : : TNvq which contain the best match examples for

the obtained reference vectors~W vq .
2. Train one PCA-net for each subsetTi. Compute the

setsT 0i of the (input-) projections of all examples inTi
to the firstNpa PCs of the corresponding PCA-nets.

3. Train one LLM-net for each training setT 0i .
The combination of the VQ with subsequent PCA-nets
leads to a local PCA within the Voronoi tesselation cells
in input space.

3. Results

The system was tested on three different types of prob-
lems. The recognition of complete, centered objects was
tested using the Columbia Object Image Library (COIL).
From the same library, images with partial object occlusion
were generated artificially. Here, object segmentation was
carried out by use of much smaller windows. Last, the sys-
tem was tested in combination with a data driven attentional
mechanism for the recognition of facial features.

3.1. Recognition of complete objects

To test the system at first independently of the “where
problem”, we used images of 40 different objects of
the COIL-100. This image collection shows single ob-
jects in a normalised position, so the images can di-
rectly be fed to the networks. COIL-100 is available
at http://www.cs.columbia.edu/CAVE and de-
scribed in [5]. As shown in Fig. 3, the subset of 40 objects

Figure 3. Ten of the 40 objects of COIL used
for testing the recognition of complete ob-
jects in a normalized position.

was chosen in the way to maximize classification difficulty
by selecting groups of high similarity (e.g. all toy cars).
Each object is rotated on a turntable at pose intervals of 5
degrees, so there are 72 images of each object. The res-
olution was subsampled to64 � 64. Moreover, only the
grey value information was used, so the input to the clas-
sification system was~x 2 IR642 . For training, 18 images
of each object were used (at 20 degrees pose intervals), the
remaining 54 for testing. A recognition rate (percentage
of correct classifications) of 96.5% could be reached forNvq = 6; Npa = 12 andNllm = 40. The dependence of
the recognition rate on the choice of parameters proved to
be “well behaved” in earlier studies [2], i.e., performance
increases for largerNvq ; Npa and Nllm until saturation
(about 97.1%) is reached. Using more training examples
(36 images of each object at 10 degrees pose intervals) leads
to a better recognition rate of 98.2%, however, for applica-
tions the first result is more relevant since it demonstrates
the good generalization properties.

3.2. Object segmentation by small windows

As in real applications objects are often partially oc-
cluded, classification of smaller object parts is a key ability.
This can be done either for special, pre-defined object parts
only (section 3.3), or continuously for the whole object area.
Here, the system is applied to segment partially occluded
objects by continuously scanning the scene with a window
that is small compared to the objects but large enough to
evaluate colour texture features [9]. 20 objects of COIL-100
were used in their RGB-version for the test. The system was
trained with 18 images of each of the un-occluded objects,
from which training windows of size17� 17 were sampled
from the object area. For comparison, the images them-
selves have resolution128 � 128. Since the RGB-values
are used, the input is~x 2 IR3�172 . The system was tested
on images which were artificially generated from the re-
maining 54 images of each object in the way that in each
new image two different objects are partly overlapping, see



Figure 4. Object segmentation of partially oc-
cluding objects (on artificially generated im-
ages of COIL) by classification of windows
with size 17 �17.

Fig. 4, left. The output of the system is the object class or
an additional class for the background (in total 21 classes).
Fig. 4, right, shows an example of the segmentation result
when the whole image was scanned by the classifier. The
correctly classified pixels rate about 82%.

3.3. Classification of focused windows

The last test was carried out on the Yale Face Library
(http://giskard.eng.yale.edu/yalefaces/yalefaces.html),
which contains 150 grey value images of 15 subjects, each
with differing face expression, changing illumination and
with glasses in one image. The task was to identify eyes,
nose and mouth in each image. In contrast to section
3.2, the images were not scanned continuously. Instead,

Figure 5. Classification results of windows
around the focus points (markers). E,N,M
indicate eye, nose and mouth, focus points
without labels belong to the rejection class.

an attentional mechanism similar to the symmetry based
saliency map proposed in [7] was used to generate so

called focus points, for details see [2]. The focus points
are shown by markers in Fig. 5. Only17 � 17-windows
centered at the focus points were fed to the classification
system (the images were subsampled to160 � 121). The
task is to classify eyes, nose and mouth against the other
focus points. For training and testing in each case half of
the database was used. 92% correct classifications could be
achieved forNvq = 3, Npa = 15 andNllm = 30.

4. Conclusion

The proposed neural system could be applied to three
different types of visual classification tasks due to its adap-
tive feature extraction and -classification. A limitation of
the current realization is that for the recognition of com-
plete objects or part of objects the “where problem” must
be solved by other mechanisms. In future work, we will
try to use the segmentation application (section 3.2) as at-
tentional guidance for the recognition system for complete
objects.
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