Epipolar Geometry from the Defor mation of an Active Contour
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Abstract

An active contour is used to track a target in a sequence
recorded by a walking robot in an unstructured scene . The
deformations of the contour are analysed in order to extract
the robot’s egomotion, from which we compute the epipolar
geometry that guides the matching between different views
of the scene. The results prove that the proposed solution
isa promising alternative to the preval ent techniques based
on the costly computation of displacement or velocity fields
[12, 14].

1. Introduction

This paper is part of a project aimed at guiding a walk-
ing robot towards a visual target in an unstructured outdoor
scene. Therobot has six legsand it is equipped with acom-
pass and a single camera rigidly mounted on its body. We
assume that the internal parameters of the camera can be
calibrated off-line. Once an operator marks a static target
on an image recorded by the camera, the robot has to reach
the target as autonomously as possible.

An active contour is used to track the target in the se-
guencerecorded by thewalking robot. Active contourshave
proved to be an excellent solution for real time tracking [1].
They have also been used to estimate surface orientation
and time to contact with atarget when the viewer can make
deliberate movements or has stereoscopic vision [4]. Here
we propose to analyse the deformations of the active con-
tour in order to extract the viewer egomotion (3D rotation
and scaled trand ation), from which we compute the epipo-
lar geometry that relates different frames of the sequence.
The latter allows to guide the search for matches between

frames, and the structure of the scene can be computed from
point matches as usual in stereo systems [5]. The structure
helps the robot to avoid obstacles and keep a feature map of
the environment.

Thedeductionis heretailored to the particular features of
our application. A general analysis of the relation between
the deformations of an active contour fitted to a target and
the egomotion of a freely moving camera that observes it
was presented in a previous work [9], along with a discus-
sion of the limitations and ambiguities of the method. Inthe
present work, due to the balances of the legged robot [3],
the optical axisis assumed to be normal to the gravity vec-
tor. Which, together with the information provided by the
compass, allowsto avoid the rotation—trand ation ambiguity
common in weak—perspective cameramodelswhen the axis
of rotation is located in the image plane. Avoiding this am-
biguity, the epipolar geometry can be recoveredin real time
under the same framework used to track the target.

The analysis of image sequencesto estimate cameramo-
tion and epipolar geometry became akey themein computer
vision research during the past decade [10, 12, 14, 2]. The
usual approach is based on optic flow, either by obtaining
the velocity vectors at al image positions, or by extract-
ing some salient points and computing their displacement
vectors from frame to frame. Both procedures are com-
putationally costly. Moreover, the epipolar lines relating
two different views of a scene are usually computed from
the essential matrix, which is extracted from a set of point
matches. Thus, the extraction of the epipolar lines needed
to guide the matches between frames is generally based on
initial matches. The proposed solution breaks this loop and
offersa computationally effective aternative.



2 Projection of 3D motion onto the image
plane

A static object in 3D space is used as reference to esti-
mate the camera motion. We fit a closed curve to its oc-
cluding contour in theinitial position, which can be written
in parametric form as Do(s) = (Xo(s),Yo(s), Zo(s))7,
where s is a parameter that increases as the curve is tra-
versed. The projection of Dg(s) on the image plane is
caled the template, do(s). When there is a relative mo-
tion between the cameraand the object, the reference object
presents a new occluding contour which we denote D(s).

Under aweak perspective situation, i.e. when the object
fitsin asmall field of view and has a small range of depths
compared to its distance to the camera, then the occluding
contour of the object can be assumed to be a 3D curve that
movesrigidly in 3D space. Aswe are interested in tracking
adistant target, both assumptions hold. Therefore,

D(s) = RDo(s) + T, 1)

where R isthe rotation matrix and T is the translation vec-
tor corresponding to the 3D rigid motion. We calculate the
projected curve using a weak—perspective cameramodel.
Due to the balances of the legged robot [3], the optical
axisis kept normal to the gravity vector and the rotation of
the camerais reduced to arotation around the Y axis. Then,
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Taking the camera coordinate frame asreference, Z(s) can
be approximated by the average depth Z, of the contour,
hence the projected curve on the image plane has the fol-
lowing expression,

Xo(s)
Yo(s)

where f isthefocal length, R; isthei—th row of therotation
matrix R, and T = (T, Ty, T2)%.

Without loss of generality, we can assume that the cen-
troid of the templated o (s) equalsthe principal point. Thus,
under weak perspective, R31 Xo(s)+ R32Yo(s) < R33Zo+
T, and equation (2) can be rewritten as
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In particular, the template is

do(s) f {XO(S)] ] (4)
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Combining equations (3) and (4), the difference between
the curve at a particular instant and the templateis

d(s) —do(s) = (M —I)do(s) + t, (5)
wherel istheidentity matrix,
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This result shows that the rigid motion of the 3D curve
(equation (1)) projects as an affine deformation of the tem-
plate onto the image plane (equation (5)), when the curveis
viewed under weak perspective.

3 Template deformation from the analysis of
active contours

In this section we review how the deformation of the
template in the image plane can be recovered from the anal-
ysis of an active contour fitted to it. The contour is repre-
sented asaparametric splinecurved(s) = (d,(s),d,(s))7,
where both d, (s) and d,(s) are B-spline curves. We can
write them as a function of their control points,
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where Q! is a column vector with the i—th components of
the control points, B(s) is a row vector of B-spline basis
functions[7, 1], U(s) = I®B(s)!, Q isthevector of control
points and 0 is a column vector of zeros. In particular, the
template can be written as

do(s) = U(s)Qo, 9)
where Qg is the vector of control points for the template.
Substituting equations (8) and (9) in equation (5), and using

the convex hull property of B—spline curves (B(s)1 = 1),
we obtain that the difference between the control pointsis,
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1® isthe kronecker product.




where W is the shape matrix,

o= (B9 (&)

and X isthe shape vector
X = (tmaty,Mll - ]-,M22 - ]-)T,

t; are the components of t and M ;; are the elements of M.
We use the active contour tracker of Blake et al. [1],
based on the Kalman filter, to compute the shape vector X
along the sequence. The active contour isforcedtolieinthe
space of affine deformations of the template for each frame.

4 Egomotion computation

Our purpose now is to compute the 3D motion parame-
ters from the deformation of the curve in the image plane.
From the shape vector, using equations (6) and (7) we ob-
tain,
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These results keep the ambiguities usua in monocular
images. Equations (11), (12), (13) show the effect of the
scal e-depth ambiguity in the computation of thetranslation.
There is no way to recover the absolute translation. Equa-
tion (10) keeps the Necker reversal ambiguity. From cost
only the magnitude of i) can be computed. The sign of the
angle cannot be recovered. However, this ambiguity can be
solved assuming continuity in the motion.

Another ambiguity appears, namely the rotation—
trandation ambiguity, which is common when the axis of
rotation is located in the image plane. The ambiguity arises
because rotation about the Y axis and trandlation along the
X axis produce similar effects as reflected in equation (11)
[6, 12]. Thisambiguity is responsible for the invariance of
%—;; to small changesin ). However, thisis not a problem
in our application, since the robot is equipped with a com-
pass that provides the ¢ angle. The bas-relief ambiguity is
also cancelled when the rotation is known.

5 Computation of epipolar geometry

In the preceding sections, we have been working with a
simplified camera model as we were focusing the process-
ing on the target. Now, we switch to amore general camera
model to compute the epipolar geometry of the whole im-
age. Thewesk—perspective camerais adequate to model the
imaging process of thetarget, but it does not generaly fit the
rest of the image, particularly when the scene has objects at
different depths.

A point u® in thefirst image correspondsto a 3D point
that lies on the ray that backprojects through u V. Its cor-
responding point in the second image, u (), lies on the pro-
jection of this ray, namely, the epipolar line of u(®). The
epipolar lines are usually computed from the essential ma-
trix E [8, 13]. It relates the projections u(*), u(? of a 3D
point, in homogeneous notation, as follows,

uPTEu® = 0. (14)
E canbe split up [8, 13, 11] as
E =[T|.R

where R istherotation matrix and [T . isamatrix obtained
from the elements of T,
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E is generally computed from point matches; here we pro-
pose an aternative. E is defined only up to a scale factor,
as observed in equation (14), therefore it can be computed
from the scaled trandation vector Zlo obtained in the pre-
ceding section.

Using homogeneousnotation, aline1(?) passing through
apoint u(® fulfils the following equation [5],

u®712 = .

Therefore, from equation (14), the epipolar line can be com-
puted as

12 — Eu®

The epipolar lines have been computed to be used as a
guide for matching features between frames. Some results
are shown in Figs. 1 and 2. Fig. 1 shows an image of the
sequence, in which an active contour has been fitted to the
target, namely the door. A simple target was chosen, al-
though the capability of active contours to track complex
shapes and their robustness to occlusions have been proved
elsewhere [1]. Some salient features have been numbered,
and their epipolar lines have been computed to guide their



Figure 2. Epipolar lines.

matching with salient featuresin Fig. 2. The epipolar lines
aredrawnin Fig. 2. Theloca processing makes the results
invariant to independent motions in the scene. Moreover,
the robustness of active contoursto partial occlusions of the
target is transfered to the proposed method.

6 Concluding remarks

This paper has presented a novel approach for the com-
putation of the epipolar geometry from the deformations of
an active contour fitted to atarget, which is observed by a
walking robot. The prevailing trend relies on point matches
between frames, which is limited to non homogeneous re-
gions where some salient points can be detected. Exper-
imental results confirm that the analysis of the contour is
a good solution on its own to estimate egomotion; and it
can be taken, in general, as an interesting complement to
the analysis of point matches in the scene, since contours
can be easily fitted to homogeneous regions and provide
the epipolar constraints needed to guide point matching be-
tween frames. The recovery of 3D structure is accelerated
as the epipolar constraints are provided in real time by the
active contour (25 frames per second with a Silicon Graph-

ics Indy at 150 MHZz). Note that the computation time is
independent of the image size because of the local process-
ing.

The proposed solutionislimited to those scenesin which
atarget is visible under weak perspective; however, it is a
common situation when trying to guide a robot towards a
distant target. The method can be directly extended to a
stereo vision system, which will avoid the ambiguities com-
mon in monocular sequences. Future work is planed to test
the performance of the method using a stereo rig.
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