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Abstract

In this paper we present a mixture density based ap-
proach to invariant image object recognition. We start
our experiments using Gaussian mixture densities within
a Bayesian classifier. Invariance to affine transforma-
tions is achieved by replacing the Euclidean distance with
SIMARD ’s tangent distance. We propose an approach to
estimating covariance matrices with respect to image in-
variances as well as a new classifier combination scheme,
called the virtual test sample method. On the US Postal
Service handwritten digits recognition task (USPS), we ob-
tain an excellent classification error rate of2:7%, using the
original USPS training and test sets.

1 Introduction
In this paper we present a mixture density (MD) based

approach to invariant image object recognition. We propose
a Gaussian mixture density (GMD) based Bayesian classi-
fier and extend this non-invariant standard approach using
SIMARD ’s tangent distance (TD) [1] instead of Euclidean
distance. We also use TD for the reliable estimation of co-
variance matrices, which is especially important if only few
training samples are available. Furthermore, we propose
a new classifier combination scheme called the virtual test
sample method (VTS). The effectiveness of our approach is
shown by applying it to the widely used USPS recognition
task. In the experiments, we make use of appearence based
pattern recognition, that is we interpret each pixel of an im-
age as a feature, optionally performing feature reduction by
using a linear discriminant analysis (LDA) [2, pp.114-123].
Using VTS and LDA, the GMD standard approach yields a
test error of3:4%. The error rate can be improved to2:7%
by using TD in recognition and by estimating the proposed
tangent covariance matrix(without LDA).

1.1 Related work

While appearance based image object recognition is
common, the use of (invariant) statistical classifiers suchas

the one we propose is not. MOGHADDAM & PENTLAND

used GMDs for view-based image recognition, accounting
for invariances by assuming appropriate training samples
and suitable image normalization [3]. SCHIELE employed
histogram based image features within a Bayesian classifier,
but did not use mixture densities to model the required prob-
ability densities [4]. HINTON et al. applied TD to define a
modified version of a principal components analysis within
a linear autoencoder based classifier [5]. This approach is
similar to computing a maximum approximation within a
MD based classifier. HASTIE et al. computed suitable pro-
totype vectors from a given training set with respect to TD,
which can be used to speed up nearest neighbour classifica-
tion (by using a few prototype vectors instead of the possi-
bly large training set) [6]. Many authors such as SCHWENK

use TD within artificial neural nets [7]. Finally, the virtual
test sample method proposed in Section 3 was motivated by
K ITTLER’s research on classifier combination [8].

2 The GMD based standard approach

In the statistical GMD based ‘standard’ approach, we
classify an observationx 2 IRD using the Bayesian deci-
sion rule [2, pp.10-39]x 7�! r(x) = argmaxk fp(k)p(xjk)g (1)

wherep(k) is thea priori probability of classk, p(xjk) is
theclass conditionalprobability for the observationx given
classk andr(x) is the classifier’s decision. As neitherp(k)
nor p(xjk) are known, we have to choose models for them
and estimate their parameters with the training data. As we
are performing digit recognition in our experiments, we setp(k) = 1K for each classk (givenK classes) and modelp(xjk) by using GMDs, being a linear combination of Gaus-
sian component densitiesN (xj�ki ;�ki)p(xjk) = IkXi=1 
ki � N (xj�ki ;�ki) (2)



where Ik is the number of component densities used to
model classk, 
ki are weight coefficients (with
ki > 0
and

Pi 
ki = 1), �ki is the mean vector and�ki is the
covariance matrix of component densityi of classk. To
avoid the problems of estimating a covariance matrix in a
high dimensional feature space (cp. Sections 3 and 5), i.e.
to keep the number of parameters to be estimated small,
we make use of global covariance pooling in the experi-
ments, that is we only estimate a single�, i.e.�ki = �8 k 2 f1; :::;Kg and8 i 2 f1; :::; Ikg. This model consis-
tently outperformed class specific variance pooling as well
as doing no pooling at all in our experiments. Furthermore,
we only use a diagonal covariance matrix, i.e. a variance
vector. This does not necessarily imply a loss of informa-
tion, as a MD of that form can still approximate any den-
sity function with arbitrary precision. Optionally, we usean
LDA for feature reduction. As performing an LDA on the
original ten-class USPS data would only yield a maximum
of nine features, we perform a cluster analysis on the train-
ing data first. Creating40 clusters (using39 LDA features),
we obtained the best results in the experiments. Maximum-
likelihood parameter estimation is then performed using the
Expectation-Maximization (EM) algorithm. More informa-
tion on this topic can be found in [9, 10].

3 Creating virtual data
A typical drawback of statistical classifiers is their need

for a large amount of training data, which is not always
available. To overcome this difficulty, we create virtual
training data. The basic idea is to choose a transformation
which respects class membership and to apply it to each
training sample. In the experiments, we used�1 pixel shifts
to create9 �7291 = 65:619 training samples of size18�18
pixels from the original7291 USPS training samples (of
size16 � 16 pixels). By doing so, parameter estimation is
not only more reliable, but we also incorporate local invari-
ances with respect to the chosen transformation(s) in our
MD model.

3.1 The virtual test sample method

Similar to creating virtual training data, we propose the
following virtual test sample method (VTS). Using our
a-priori knowledge again, we createA virtual test samplesx1; :::; xA by applying a number of shifts to each test image
(we use�1 pixel shifts, i.e.A = 9, other transformations
might be considered in other domains). As an image cannot
be shifted into different directions at the same time, we can
create a final decision by computingp(xjk) = AX�=1 p(�) � p(xj�; k) = 1A AX�=1 p(x�jk) (3)

(assuming that the a-priori probabilitiesp(�) are equal for
all transformations considered). As the term1=A does

not depend onk, we may neglect it for classification pur-
poses. Note that this motivation for the sum rule differs
from that proposed by KITTLER in [8]. Using multiple clas-
sifiers to classify a single test pattern, he assumed that the
a-posteriori probabilities computed by the respective clas-
sifiers do not differ much from the a-priori probabilities to
justify the sum rule. In contrast to this, using multiple test
patterns and a single classifier, Eq.(3) simply follows from
the fact that the transformations considered are mutually ex-
clusive. The key idea behind VTS is that we are able to
use classifier combination schemes and their benefits with-
out having to create multiple classifiers. Instead, we simply
create virtual test samples. Thus, classifying a pattern using
VTS has the same computational complexity as using any
other combination scheme, but the training phase remains
unaffected. Despite its simplicity, VTS proved to be very
effective in our experiments.

4 Overview of tangent distance
In 1993, SIMARD et al. proposed an invariant distance

measure calledtangent distance, which proved to be espe-
cially effective for optical character recognition [1]. The
authors observed that reasonably small transformations of
certain objects (like digits) do not affect class membership.
Simple distance measures like the Euclidean distance do not
account for this, instead they are very sensitive to transfor-
mations like scaling, translation, rotation or axis deforma-
tions. When an imagex of sizeI � J is transformed (e.g.
scaled and rotated) with a transformationt(x; �) which de-
pends onL parameters� 2 IRL (e.g. the scaling factor and
the rotation angle), the set of all transformed imagesMx = ft(x; �) : � 2 IRLg � IRI�J (4)

is a manifold of at mostL dimensions. The distance be-
tween two images can now be defined as the minimum dis-
tance between their according manifolds, being truly invari-
ant with respect to theL transformations regarded. Unfor-
tunately, computation of this distance is a hard optimization
problem and the manifolds needed have no analytic expres-
sion in general. Therefore, small transformations of an im-
agex are approximated by a tangent subspaceM̂x to the
manifoldMx at the pointx. Those transformations can be
obtained by adding tox a linear combination of the vectorsTl(x); l = 1; :::; L that span the tangent subspace. Thus, we
obtain as a first-order approximation ofMx:M̂x = fx+ LXl=1 �l � Tl(x) : � 2 IRLg � IRI�J (5)

Now, the single sided tangent distanceDT (x; �) between
an imagex and a reference image� is defined asDT (x; �) = min� fkx+ LXl=1 �l � Tl(x) � �k2g (6)
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Figure 1. Empirical variance vs. tangent vari-
ance: error rates with respect to total number
of mixture components (9-1, no LDA)

The tangent vectorsTl(x) can be computed using sim-
ple finite differences between the original imagex and a
small transformation ofx [1]. A double sided TD can
also be defined by approximatingMx andM� and mini-
mizing the distance over all possible combinations of the
respective parameters. In the experiments, we computed
the seven tangent vectors for translations (2), rotation, scal-
ing, axis deformations (2) and line thickness, as proposed
by Simard [1]. Assuming that the tangent vectors are or-
thogonal (which can be achieved using a singular value de-
compostion), Eq. (6) can be solved efficiently by computingDT (x; �) = kx� �k2 � LXl=1 [(x� �)t � Tl(x)℄2kTl(x)k2 (7)

5 Parameter estimation with TD
Instead of computing the empirical covariance matrix�

of the given training samples, we can use Eq. (5) to impli-
citly create an infinite amount of training samples and com-
pute the respective tangent covariance matrix�T , which
should be a better estimate for the covariance:�T = 1N Z p(�) � NXn=1(xn;� � �)(xn;� � �)t d� (8)

wherexn;� = xn +PLl=1 �l � Tl(xn) is a local transforma-
tion of then-th training pattern,N is the number of training
samples with mean� andp(�) is the distribution of the pa-
rameters�. With

R p(�) d� = 1, E(�) = 0 and some
elementary calculations, Eq. (8) can be written as�T = �+ 1N NXn=1Txn��T txn (9)

with Txn 2 IRD�L being the matrix representation of
the tangent vectors of training samplexn and �� 2IRL�L the covariance matrix of parameters� (we use�� = I in our experiments). Note that�T = 1N Z p(�) � NXn=1xn;� d� = � (10)

Table 1. USPS results with varying variance
estimation and distance measures, with and
without LDA

Method: Error rate [%]
1-1 1-9 9-1 9-9

GMD 8.0 6.6 6.4 6.0
GMD, LDA 6.7 5.9 4.5 3.4
MD, �T , Euclidean 6.4 4.8 4.5 4.3
MD, �T , tangent 3.9 3.6 3.4 2.9

that is, the empirical sample mean� does not change in
the presence of tangent vectors. In the experiments we will
show that combining the explicit creation of virtual training
data with this implicit approach is advisable.

6 Results

We started our experiments by applying the GMD based
standard approach to USPS. Table 1 shows the achieved re-
sults with and without LDA feature reduction. The nota-
tion ‘a-b’ indicates, that we increased the number of train-
ing samples by a factor ofa and that of the test samples
by a factor ofb. Thus, b=9 indicates that we performed
VTS as proposed in Section 3. Note that by using the LDA,
the error rate drops from6:0% to 3:4%. This is mainly
due to the problem of estimating variances in a high di-
mensional feature space, as the next experiment shows. In
this experiment, we used Eq. (9) to estimate variances in
the EM training phase without doing a feature reduction.
Surprisingly, by simply computing the tangent variances,
the error rate drops from6:0% to 4:3%. A comparison of
both approaches with respect to the total number of den-
sities used in the probabilistic model can be found in Fig-
ure 1. Apparently, computing tangent variances in combina-
tion with explicitly creating virtual training data is a good
means to overcome the difficulties in estimating a covari-
ance matrix in a high dimensional feature space.

In another experiment, we replaced the Euclidean dis-
tance used in the Gaussian component densities by the sin-
gle sided TD in the recognition step, whereas the training
step was still performed using Euclidean distance, further
reducing the error rate from4:3% to 2:9%. The results of
these experiments are shown in Table 1. The best result
of 2:9% could be further reduced to2:7% by calculating
the double sided TD in recognition (using a total of about10:000 mixture components, i.e. on average about1000 per
class). We were not able to obtain a result better than3:0%
error without using tangent variances, but using a bagged
kernel density based classifier reduced the error rate to2:2%
[14]. A comparison of our USPS results with that reported
by other groups can be found in Table 2, proving them to
be excellent. Other groups report results of2:6% error,
but these were achieved by by adding about2:500 machine



Table 2. Experimental results on USPS

Method Error Rate [%]

Human Performance [1] 2.5

Decision Tree C4.5 [11] 16.2
Two-Layer Neural Net [11] 5.9
5-Layer Neural Net (LeNet1) [12] 4.2
Invariant Support Vectors [13] 3.0

This work: GMD 4.5
GMD, VTS 3.4
MD, VTS, TD 2.7

printed digits to the training set [1, 15]. We also performed
experiments with Fourier-transformation based invariants,
invariant moments and discriminative training of Gaussian
mixtures [10], yet so far none of these approaches could
improve our best result. Furthermore, using TD in the train-
ing phase yielded no improvement. We also used AdaBoost
[16] to boost our GMD classifier, using LDA reduced fea-
tures. We were able to reduce the9-1 error rate from4:5%
to 4:2%, yet VTS (reducing the error rate from 4.5% to
3.4%) outperformed boosting on this particular task. As for
computational complexity, the standard GMD approach is
cheap, requiring less than 0.1 CPU seconds to classify a sin-
gle pattern (39 LDA features) on a Digital Alpha 500 MHz
CPU. Using single sided TD (no LDA) takes about 1 CPU
second and the computationally expensive double sided TD
requires about 50 CPU seconds. Considering error rate vs.
computational complexity, single sided TD might be con-
sidered the best choice for use in practice.

7 Conclusion
In this paper we presented an invariant mixture density

based approach to object recognition, obtaining an excel-
lent error rate of2:7% on the USPS test set, using the orig-
inal training set. Incorporating tangent vectors into the EM
training (to compute the proposed tangent variances) and
tangent distance itself into the recognition phase (replacing
Euclidean distance) proved to be very effective, especially
when combined with the creation of virtual training data
and the proposed virtual test sample method. Besides ap-
plying the proposed methods to LDA reduced features, we
are currently working on using the training data to improve
the estimate of the covariance matrix�� of the transforma-
tion parameters� (see Section 5).
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