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Abstract

Morphological pattern spectra computed from granu-
lometries are frequently used to classify the size classes of
details in textures and images. An extension of this tech-
nique, which retains information on the spatial distribution
of the details in each size class is developed. Algorithms
for computation of these spatial pattern spectra for a large
number of granulometries on binary images are presented.

1 Introduction

Granulometries are powerful multi-scale tools in image
analysis. They were developed to study the distribution of
pore sizes in porous media [6] (for a recent review see [14]).
Granulometries are ordered sets of morphological openings
or closings, each of which removes image details below a
certain size. By studying how the image content changes
as a function of the filter’s size parameter, it is possible to
gain insight into the distribution of details over different size
classes, often without prior segmentation of the image. The
simplest way to do this is through the use ofpattern spectra
which show how the number of foreground pixels in the
image changes as a function of the size parameter [5]. Here,
size is usually defined in terms of the width of objects [7,
10], though area may be used as well [12]. This information
can be used in e.g. soil analysis [11].

A drawback of the classical definition of pattern spectra
is that spatial information, i.e., information about the posi-
tion of components removed by each filter, is not included
in a pattern spectrum. This effect is demonstrated in figure
1. All three binary images in this figure contain the same
number of squares in each size category. If we apply use a
granulometry consisting of openings by reconstruction with
square structuring elements of widthλ, the resulting pattern
spectra are the same for all three images. In fact, no gran-
ulometry is capable of separating the patterns, because the
only differences between the images lie in the distributions
of the connected components, not in their shapes or sizes.
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Figure 1. The insensitivity of pattern spec-
tra to the spatial information: (a) through (c)
three images consisting of squares of differ-
ent sizes; (d) The pattern spectra, showing
the number of foreground pixels removed by
openings by reconstruction by λ×λ squares,
are identical for all images.

This absence of spatial information in pattern spectra is
not always a problem. When studying microscopic images
of, e.g., cross-sections of metal alloy or mineral samples in
which different grains or pores are embedded randomly in
the material, spatial information is largely irrelevant. How-
ever, this information is essential in, e.g., the study of mi-
crobial biofilms or mats [4], where the distribution of differ-
ent species of bacteria throughout the ecosystem is sought.
More generally, if the distribution of details is non-random
retaining spatial information may be essential for pattern
analysis.

In this paper, a variant of pattern spectra is developed,



which I will call spatial pattern spectra. These store not
only the number of pixels in each size category, but also in-
formation on the distribution of these details. A subset of
these methods ensure rotation, translation and scale invari-
ance of the spatial pattern spectrum.

Besides defining spatial pattern spectra, it is shown that
an algorithm based on Nacken’s approach to chamfer based
granulometries [10] can be adapted to spatial pattern spectra
in the case of binary images.

2 Theory

2.1 Granulometries

Let binary imagesX andY be defined as a subset of the
image domainM ⊂ Zn orRn (usuallyn = 2). Grey scale
images are a mapping fromM toZ orR.

Definition 1 A binary granulometry is a set of operators
{αr} with r from some ordered setΛ (usuallyΛ ⊂ R or Z),
with the following three properties

αr(X) ⊂ X (1)

X ⊂ Y ⇒ αr(X) ⊂ αr(Y ) (2)

αr(αs(X)) = αmax(r,s)(X), (3)

for all r, s ∈ Λ.

Since (1) and (2) defineαr as anti-extensive and increasing,
respectively, and (3) implies idempotence, it can be seen
that all αr are openings. Apart from the classical open-
ings used by Matheron [7], other openings which qualify
as granulometries include openings by reconstruction [13],
area openings [12], and attribute openings [1].

2.2 Pattern spectra and Opening Transforms

The pattern spectrum [5]sα(X) obtained by applying
granulometry{αr} to a binary imageX is defined as

(sα(X))(u) = −∂A(αr(X))
∂r

∣∣∣∣
r=u

(4)

in whichA(X) is a function denoting the Lebesgue measure
in Rn. In the case of discrete images, and withr ∈ Λ ⊂ Z,
this differentiation reduces to

(sα(X))(r) = #(αr(X)/αr+(X)) (5)

= #(αr(X))−#(αr+(X)), (6)

with r+ = min{r′ ∈ Λ|r′ > r}, and#(X) the number of
elements ofX.

The opening transform [10]ΩX of a binary imageX for
a granulometryαr is

ΩX(x) = max{r ∈ Λ|x ∈ αr(X)} (7)

Figure 2. Opening transform with {αr} as in
Fig. 1: (left) original image; (right) opening
transform (contrast stretched for clarity).

Figure 2 shows an example of an opening transform us-
ing the same attribute granulometry as in figure 1. The
pattern spectrum of a binary imageX using granulometry
{αr} is the histogram ofΩX obtained with the same size
distribution [10].

2.3 Spatial pattern spectra

None of the pattern spectra defined above contain any
information on the spatial distribution of the details at scale
r. They only retain the amount of detail present at that scale.
This can be amended by computing some parameterization
of the spatial distribution in an imageαr(X)/αr+(X) as a
function ofr. LetM(X) be some parameterization of the
spatial distribution of detail in the imageX. The spatial
pattern spectrumSM,α is then defined as

(SM,α(X))(r) = M(αr(X)/αr+(X)). (8)

An obvious parameterization of the spatial distribution is
through the use of moments. Focusing on the case of 2-D
binary images, the momentmij of orderij of an imageX
is given by

mij(X) =
∑

(x,y)∈X

xiyj . (9)

The spatial moment spectrumSmij ,α of orderij is

(Smij ,α(X))(r) = mi,j(αr(X)/αr+(X)). (10)

For i = 0 and j = 0 we obtain the standard pattern
spectrum. This suggests that computation ofpattern mo-
ment spectra, can be performed by modification of any
existing algorithm for standard pattern spectra. For each
r, (Smij ,α(X))(r) is just the moment of an image, there-
fore, derived parameters such as coordinates of the centre
of mass, (co-)variances, skewness and kurtosis of the distri-
bution of details at each scale can be computed easily. We
can then define pattern mean spectra, pattern (co-)variance
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Figure 3. The opening transform using city-
block metric: (a) opening transform of
Fig. 1(c), (b) pattern spectrum, (c) pattern
variance- x and (d) variance- y spectra.

spectra, pattern kurtosis spectra, etc. The pattern mean-x
and variance-x spectra (Sx̄,α andSσ(x),α) are defined as:

Sx̄,α =
Sm10,α

Sm00,α
(11)

Sσ(x),α =

√
Sm20,α

Sm00,α
− Sx̄,α (12)

and likewise fory and pattern skew and pattern kurto-
sis spectra. Note that these definitions hold only where
(Sm00,α(f))(r) 6= 0. For all other values ofr they will
be defined as zero. Computing these derived spectra has
the advantage of reducing the covariance between the dif-
ferent pattern moment spectra. Further post-processing can
be done to compute central moments and moment invariant
from pattern moment spectra [3, 2].

3 An Algorithm

In the discussion of the algorithms we will assume that
the spectra are stored in an arraySwith integersr ∈ Λ ⊂ Z.

Nacken [10] derived an algorithm for computation of
pattern spectra for granulometries based on openings by
discs of increasing radius for various metrics, using the
opening transform.

He first notes that the pattern spectrum is equal to the

histogram of the opening transform of the image. He pro-
ceeds by deriving an efficient algorithm for these opening
transforms in the case of chamfer metrics, details of which
can be found in [10]. After the opening transform has been
computed, it is straightforward to compute the pattern spec-
trum:

• Set all elements of arrayS to zero

• For allx ∈ X incrementS[ΩX(x)] by one.

To compute the patternmomentspectrum, the only thing
that needs to be changed is the wayS[ΩX(x)] is incre-
mented. For a pattern moment spectrum of orderij we have

• Set all elements of arrayS to zero

• For all (x, y) ∈ X incrementS[ΩX(x, y)] by xiyj .

Figure 3 shows the opening transform and various pat-
tern spectra of the image of figure 1(c), for openings with
spheresBr defined by the city-block metric. The spec-
tra were computed according to the algorithm above. This
algorithm can readily be adapted to other granulometries,
simply by computing the appropriate opening transform.
Two examples are attribute openings and openings by re-
construction. A binary attribute openingΓT removes all
connected foreground components from a binary image
which do not meat a criteriumT , leaving all others unaf-
fected [1]. If we wish to use the set of attribute openings
{ΓTλ}, with Tλ = A(C) ≤ λ, with C a connected set, and
with A(C) some increasing attribute ofC, we can define
the attribute opening transformΩTλX as

ΩTλX (x) =

{
A(Γx(X)) if x ∈ X
0 otherwise,

(13)

in which Γx(X) is theconnected openingof X at position
x. This is just the connected component ofX to whichx
belongs, ifx ∈ X, otherwise it is∅. This transform can be
computed by flood-filling each connected component by its
attribute value. OnceΩTλX has been computed, the pattern
moment spectra of orderij can be computed in the same
way as before.

A similar approach can be used for openings by recon-
struction, using disc-shaped structuring elementsBr. Af-
ter computing the distance mapDX of imageX (for any
given metric), we can compute the opening by reconstruc-
tion transformΩBrX as

ΩBrX (x) =

{
max{DX(x′)|x′ ∈ Γx(X)} if x ∈ X
0 otherwise.

(14)
This can be computed by first finding the maximum value
of DX within each connected componentC ⊂ X and then
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Figure 4. Pattern mean- x (left) and variance-
x (right) spectra: top to bottom rows show
spectra for Fig. 1(a), (b) and (c) respectively

flood filling the component with that value. Computing the
pattern moment spectra is then performed in the same way
as above.

Figure 4 shows the pattern mean-x and variance-x spec-
tra derived from the three images in figure 1, using the same
granulometry. Unlike the standard pattern spectra, these
spatial pattern spectra can distinguish the three images.

4 Discussion

Spatial pattern spectra may form a useful supplement to
ordinary pattern spectra, because of their ability to retain
spatial information. This feature allows separation of im-
ages indistinguishable by standard pattern spectra. Pattern
moment spectra, in particular, are easily computed concur-
rently with computation of the standard pattern spectrum.
Post-processing of these pattern moment spectra can be
done to yield a number of easily interpreted spectra, such
as pattern mean, variance, skew, and kurtosis spectra, which
have reduced covariance compared to the “raw” pattern mo-
ment spectra. Invariance to rotation, translation or scale

change can also be achieved by post-processing [3, 2].
In the binary case, Nacken’s approach to computation of

pattern spectra is readily extended to pattern moment spec-
tra. The method is flexible since computing pattern moment
spectra based on different granulometries reduces to com-
puting different opening transforms.

In the future grey scale versions of these spatial pattern
spectra will be developed. I expect that the efficient grey
level algorithms for area and attribute pattern spectra [8, 9]
can be adapted to spatial pattern spectra as well.
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