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Abstract

The paper compares previously published length es-

timators having digitized curves as input. The evalua-

tion uses multigrid convergence (theoretical results and

measured speed of convergence) and further measures

as criteria. The paper also suggests a new gradient-

based method for length estimation.

1 Introduction

The digitization of curves or boundaries has been

studied in image analysis for about 40 years [1]. Since

these �rst studies, many algorithms have been pro-

posed to estimate the length of a digitized curve. Some

approaches are based on local metrics such as the cham-

fers metrics, other approaches are based on polygonal-

izations of digital curves, e.g. directed on subsequent

calculations of maximum-length digital straight seg-

ments (DSSs) or of minimum length polygons (MLPs),

and we also propose a new length estimator based on

calculated gradients.

The computational problem is as follows: The input

is a sequence of chain codes i(0); i(1); : : : with i(k) 2
A = f0; : : : ; 7g, k � 0. An o�-line DSS recognition

algorithm decides for �nite words u 2 A? whether u is

a DSS or not. An on-line DSS recognition algorithm

reads successive chain codes i(0); i(1); : : : and speci�es

the maximumlength k � 0 such that i(0); i(1); : : : ; i(k)

is a DSS, and i(0); i(1); : : : ; i(k); i(k+1) is not. An o�-

line algorithm is linear i� it runs in O(n) time, i.e. it

performs at most O(juj) basic computation steps for

any input word u 2 A?. An on-line algorithm is linear

i� it uses on the average a constant number of opera-

tions for any incoming chain code symbol.

An obvious bene�t of local metrics based approaches

is that they support linear on-line implementations.

Linear o�-line algorithms for DSS recognition were

published in 1981 in [2] and in 1982 in [5]. A linear o�-

line algorithm for cellular straight segment recognition,

based on convex hull construction, is brie
y sketched in

[4]. Two linear on-line algorithms for DSS recognition

were published in 1982 in [3]; one of them is an on-line

version of the o�-line algorithm published in [2].

The general problem of decomposing a digital curve

into a sequence of DSSs, which includes DSS recogni-

tion as a subproblem, is discussed in, e.g. [9, 10, 13, 20].

Obviously, linear on-line DSS recognition algorithms

will support linear decomposition algorithms, but lin-

ear o�-line algorithms will only allow quadratic run-

time behavior.

An MLP-approximation [15, 21] calculates a

minimum-length polygon circumscribing a given

(closed) inner boundary (given by a sequence of chain

codes), and being in the interior of an outer boundary

(typically in Hausdor�-Chebyshev distance 1 to the in-

ner boundary). Gradient-based length estimation uses

input data as in case of DSS approaches. The no-

tions on-line, o�-line, or linear time apply for MLP

or gradient-based approaches as de�ned for the case of

DSS algorithms.

In this article, we present a comparative evaluation

of length estimators. We are especially interested in

evaluating these algorithms (and underlying method-

ologies) with respect to the accuracy of length estima-

tion. Multigrid convergence is one option of character-

izing this accuracy, and experimental studies provide

another way for performance testing. Our experiments

are directed on illustrating accuracy and stability of

the chosen algorithms on convex and non-convex curves

(see Fig. 1 for the used test data). These Jordan curves

are digitized for increases in grid resolution, allowing

to study and illustrate experimental multigrid conver-

gence. In our experiments we use a grid size ranging

from 30 to 1000.



Figure 1. Test data set as proposed in [20].

Our studies on multigrid convergence require digi-

tizations of planar Jordan curves up to a given grid

resolution: we assume an orthogonal grid with grid

constant 0 < � � 1 in the Euclidean plane R2, i.e. � is

the uniform spacing between grid points parallel to one

of the coordinate axes. Let r = 1=� be the grid reso-

lution, and the r-grid Z2r has resolution r, de�ned by

r-points whose coordinates are (� � i; � �j), with i; j 2Z.
Now, we consider a Jordan curve 
 : [0; 1] ! R

2,

bounding a set S. Let Dr(
) be a r-digitization of 
 in

Z
2

r, de�ned by r-grid-intersection digitization, or by a

digital border inZ2r. Commonmodels are Gauss digiti-

zation (i.e. union of all r-grid squares with centroid in

S), and inner or outer Jordan digitization (i.e. union

of all r-grid squares contained in the interior of S, or

having a non-empty intersection with S). See, e.g., [23]

for details.

We denote by F(
) 2 Ra property of curve 
, which

is the length l(
) of 
 in this article. We denote by

E an estimated feature. Assume that E is de�ned for

digitizationsDr(
), for r > 0. The estimated feature E
is said to bemultigrid convergent i� E(Dr(
)) converges

to F(
), for r !1. More formally:

jE(Dr(
)) � F(
)j � �(r)

with limr!1 �(r) = 0. The order O(1=�(r)) denotes

the speed of this convergence. Multigrid convergency of

estimated features is a standard constraint in numer-

ical mathematics for discrete versions of `continuous'

features.

2 Local metrics

Local metrics were historically the �rst attempts

towards a solution of the length estimation problem.

These algorithms can be viewed as shortest path cal-

culations in weighted adjacency graphs of pixel loca-

tions. Weights have been designed with the intention

of approximating the Euclidean distance. For example,

horizontal and vertical moves in the orthogonal r-grid

may be weighted by 1=r, and diagonal moves may be

weighted by
p
2=r. More generally, a chamfer metrics

de�nition �rst lists elementary moves and then asso-

ciates weights to each move, see [6, 7, 11].

In order to make length estimation as accurate as

possible, the use of statistical analysis has been sug-

gested to �nd those weights which minimize the mean

square error between estimated and true length of a

straight segment. For example, [7] presents a best lin-

ear unbiased estimator (BLUE for short) for straight

lines, and de�nes the following length estimator:

EBLUE(Dr(
)) =
1

r
� (1:059 � ni + 1:183 � nd) ; (1)

where ni is the number of isothetic steps and nd of diag-

onal steps in the r-grid. We include this estimator into

our comparative study. It ensures a superlinear conver-

gence O(r�1:5) of asymptotic length estimation [10] in

case of digitized straight lines, but fails to be multigrid

convergent for more general situations of digitized arcs

or curves.

3 Polygonal approaches

Many algorithms have been published for the DSS

recognition problem. These approaches are based on

characterizations of digital lines, such as syntactic

chain code properties [2, 5], arithmetical properties

de�ning tangential lines [13], properties of feasible re-

gions in the (dual) parameter space [8, 10], or use linear

programming tools such as the Fourier-Motzkin algo-

rithm [14]. All these algorithms present a solution for

deciding whether a given sequence of r-grid points is a

DSS, or even for segmenting a digital curve into a se-

quence of maximum-length DSSs. The length estima-

tor EDSS is then de�ned by the length of the obtained

poly-line.

In our comparative study we include two represen-

tative implementations of DSS-based length estima-

tors: if the digital curve is de�ned as an 8-curve, we

use the Debled-Reveill�es algorithm [13] and call it the

EDR�DSS estimator. If the digital curve is de�ned as

a 4-curve, we consider a length estimator based on Ko-

valevsky's algorithm [9] and call it the EVK�DSS esti-

mator. We use the algorithm as detailed in [20].

These two DSS-based length estimators are known

to be multigrid-convergent for convex Jordan curves 


[12, 23, 25].

MLP-based length estimators consider a situation

where a given simple digital curve C is described by

two discrete curves 
1 and 
2, bounding sets S1 and S2
respectively, such that S2 is contained in the interior S

Æ

1

of set S1, and C is contained in B = S1 nSÆ2 . The task
consists in calculating that MLP which is contained in

B and circumscribes 
2. The length estimator EMLP

is then de�ned by the length of this (uniquely de�ned

[15, 18]) MLP.



In our comparative study we include two representa-

tive implementations of MLP-based length estimators:

the grid-continua MLP approach of [15, 18] has been

derived for the model of using inner and outer Jor-

dan digitization, and de�ning B to be the di�erence

set between outer and inner Jordan digitization. We

use the MLP algorithm as reported in [20]. We call it

this ESZ�MLP estimator. As another MLP-method we

include the approximation-sausage MLP approach of

[21, 24] de�ning the EAS�MLP estimator. We use the

algorithm provided by the authors of this approach.

These two MLP-based length estimators are known

to be multigrid-convergent for convex Jordan curves 


[15, 21, 24].

4 New gradient-based approach

We use a gradient integration process to estimate

the length of a curve. Let ~n : [0; 1] ! R
2 denote the

gradient or normal vector �eld associated with curve


. The length of 
 can be expressed as

l(
) =

Z



~n(s)ds (2)

The main idea of our gradient-based approach consists

in using discrete estimates of products ~n(s)ds.

The discrete tangent on a digital curve was proposed

in [16], and it is based on a chosen DSS de�nition (see

Fig. 2): the discrete tangent at point p of a digital curve

is the longest DSS centered at point p. Note that this

de�nition is applicable whatever DSS de�nition (and

related recognition algorithm) is chosen. A straight-

forward application of a linear on-line DSS recognition

algorithms (at any point p) leads to an O(n2) solution.

However, the optimization proposed in [19] allows to

compute all tangents in linear time, assuming a cellu-

lar approach (i.e. a grid square has four 0�cells as its
vertices etc.) for de�ning pixel locations. The Vialard

algorithm computes the discrete tangent and thus the

discrete normal vector at each 0�cell of the curve.
We de�ne the normal vector ~n associated to a 1�cell

as the mean vector of both vectors calculated at its two

bounding 0�cells. We also de�ne an elementary nor-

mal vector nel to a 1�cell as the unit vector orthogonal
to this 1�cell (see Fig. 2). Hence, the discrete version

of eq. (2) is:

ETAN (Dr(
)) =
X
s2S

~n(s) � nel(s) (3)

where '�' denotes the scalar product and S is the set of

all 1�cells of Dr(
), which is assumed to be an alter-

nating sequence of 0�cells and 1�cells. The main idea

                        

Figure 2. Illustration of the Discrete tangent
calculus and examples of discrete normal
vector computations for a square and a cir-
cle: black (bold) vectors are estimated nor-
mals and blue (thin) vectors are elementary
normals.

of this approach is to compute the contribution of each

1�cell to the global length estimation by projecting

the 1�cell according to the direction of the normal. In

[26] it is shown that length estimator ETAN is multigrid

convergent for convex Jordan curves.

5 Evaluation

We compare the chosen length estimator algorithms

based on practical experiments and available theoreti-

cal results. Note that all are linear on-line algorithms.

Theoretical studies should answer the following ques-

tions:

multigrid : Is the estimator multigrid convergent for

convex curves (if `yes', we are also interested in an

analysis of convergence speed)?

discrete : Does the core of the algorithm only deal

with integers?

unique : Does the result depend on initialization?

3D extension : May the approach be extended to

length estimation of digital curves in 3D space?

Table 1 informs on the situation.

We consider two measures: the relative error in per-

cent between estimated and true curve length, and for

DSS- and MLP-approaches, also a trade-o� measure

de�ned as the product of relative error times the num-

ber of generated segments. In [18, 20] it has been called

the eÆciency of convergence.

In Fig. 3 and Fig. 4, experimental convergence is

evident for all methods. Errors are calculated for all

curves, transformed into a mean value for a given grid

size, and curves are generated by sliding means (of 30

values) along di�erent grid sizes. The trade-o� measure

is presented for polygonal approaches. In Fig. 5, run-

times of polygonalization-based estimators compared

to a local-metric estimator are presented.



Method multigrid discrete unique 3D extension References

DR-DSS yes yes no [25] [13]

VK-DSS yes yes no - [9]

SZ-MLP yes yes yes [22] [15, 21]

AS-MLP yes no no - [24]

TAN yes yes yes - this article

Local metrics no depends yes [17] [6, 7]

Table 1. Length estimators used in this comparison.
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Figure 3. Evident multigrid convergence of
length estimators: sliding means of rela-
tive errors and same results on a logarithmic
scale.

Figure 4 shows the behavior of theses estimators

when a square curve of �xed shape is rotated in a grid

of resolution 128.

6 Conclusions

The experiments show that the local-metrics ap-

proach is not multigrid convergent for the test data

set, but all �ve global approximation methods con�rm

known theoretical convergence results by experimental
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Figure 4. Up: the trade-off measure for polyg-
onal approaches, down: relative errors for a
rotating square.

evidence. Furthermore, the increase in run-times of the

studied polygonal methods is only minor compared to

that of local-metric algorithms. Hence, the use of an

(incorrect) local-metric algorithm is also not justi�ed

by a run-time argument. The choice of a global method

may depend on preferences de�ned by the context of

an image processing software package, and the authors

may recommend any of the �ve studied methods. Stud-

ies on test data might be useful for selecting the most

eÆcient implementation for a given application con-

text.
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