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Abstract

In this paper, the problem of simultaneous motion estima-
tion of multiple independently moving objects is addressed.
A novel Bayesian approach is designed for solving this prob-
lem using the sequential importance sampling (SIS) method.
In the proposed algorithm, a balancing step is added into the
SIS procedure to preserve samples of low weights so that all
objects have enough samples to propagate empirical motion
distributions. By using the proposed algorithm, the relative
motions of all moving objects with respect to camera can be
simultaneously estimated . This algorithm has been tested
on both synthetic and real image sequences. Improved re-
sults have been achieved.

1. Introduction

Simultaneous estimation of 3D motion between each
moving object and camera has remained a big challenge to
researchers in computer vision. In this paper, we refer to this
problem as the Multiple Independently Moving Objects Mo-
tion Estimation (MIMOME) problem: given an image se-
quence containing two or more independently moving (with
respect to the camera) objects, one desires to simultaneously
estimate the motion between each moving object and the
camera.

Existing MIMOME algorithms can be roughly catego-
rized into two groups based on the type of tokens used in the
method: optical flow or feature correspondences. The pio-
neering work of MIMOME using optical flow was proposed
by Adiv [1]. In [1], with the assumption of piecewise planar
scene, the flow field is first partitioned into connected seg-
ments using the generalized Hough technique and then the
segments belonging to each moving object are grouped such

�
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that all segments in one group can be explained by a single
rigid motion. Due to the assumption made about the scene
structure, this algorithm has difficulties in dealing with im-
age sequences containing complex 3D scene structure with
rich higher-order 3D curved surfaces.

Another main stream approach to MIMOME is based
on feature correspondences. A multi-body Factorization
method [2] was designed for solving the MIMOME prob-
lem after the well-known Factorization method for structure
from motion (SfM) [3]. The shape interaction matrix is em-
ployed to segment out multiple moving objects. In spite of
the elegance of this algorithm, the assumption made about
the camera projection model is restrictive.

The extended Kalman filter (EKF) has also been used to
solve the MIMOME problem. In [4], an EKF-based MI-
MOME algorithm was proposed based on a recursive SfM
algorithm presented in [5]. The minimum description length
(MDL) criterion is employed to determine the minimum
number of models and their corresponding feature groups
such that the models can well interpret the trajectories of
the features in the associated groups. However, the recur-
sive SfM algorithm in [5] is not guaranteed to converge to
the true SfM solution, hence the MIMOME algorithm based
on this method is doubtful. Another MIMOME algorithm
using EKF is proposed in [6]. It is designed based on the
motion estimation algorithm called essential filter [7]. The
main problem with this approach is that the essential fil-
ter basically computes the relative motion of objects be-
tween adjacent image frames. This brings the feature based
method to the flow based method in the sense of low signal-
to-noise ratio (SNR). Due to inherent ambiguities present in
the SfM problem when the observations are noisy, the essen-
tial filter might converge to a false solution and yield over-
segmentation of moving objects.

Recently the MIMOME problem has been considered
under certain restrictions on trajectories of independently

1051-4651/02 $17.00 (c)  2002 IEEE



moving objects. A MIMOME algorithm was developed in
[8] assuming linear motion (constant velocity) of dynamic
points with orthographic projection camera model. In an-
other algorithm presented in [9], the dynamic points are also
assumed to move along straight-line paths with constant ve-
locity.

In this paper, we present a novel Bayesian approach for
solving the MIMOME problem. We use feature correspon-
dences and the perspective projection camera model. We do
not make any assumption about either the 3D scene struc-
ture or the motion of moving objects except that all objects
are required to be rigid.
Relation to previous work In [10], a Bayesian moving ob-
ject detection algorithm was presented. Given feature tra-
jectories obtained from an image sequence recored using a
moving camera, features on moving objects can be sepa-
rated from those on the background. Moving objects can
thus be detected. In this approach, a state space model was
used to describe the camera motion and feature segmenta-
tion parameters and their dynamics. The sequential impor-
tance sampling (SIS) method was used to take care of the
non-linear observation equation, which is a result of using
perspective projection camera model. During the SIS pro-
cedure, state samples and their related weights, which repre-
sent the posterior distributionof state parameters, are propa-
gated from one time instant to the next time instant. Ideally,
when sufficiently large number of samples are used in the
SIS procedure, the moving object detection algorithm pro-
posed in [10] is able to simultaneously estimate the motion
parameters for each independently moving object. How-
ever, due to the fact that only a finite number of samples can
be used in practice, if one SIS procedure is used for all mov-
ing objects, samples of different moving objects will com-
pete against each other for the number of offsprings in the re-
sampling step. It is very possible that the samples of one ob-
ject can not get enough offsprings so that they are eliminated
from this competition, i.e. they just disappear from the SIS
procedure! In this paper, an additional step called balancing
is inserted into the original SIS procedure so that each po-
tential moving object candidate can get approximately equal
number of offsprings for its samples.

2. MIMOME Using SIS

To solve the MIMOME problem, we need to find opti-
mal estimates for object motions and feature segmentation
which can provide the best interpretation of the observations
using criteria such as the maximum a posteriori probability
(MAP). In this paper, ���������	��
���
�
������������ ������������
���������� , the
posterior distributionof the parameters, is approximated us-
ing random sampling methods. In this section, we first for-
mulate the MIMOME problem using a state space model.
Then we introduce two essential steps: clustering and bal-
ancing. Finally, a complete SIS algorithm for finding ap-
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Figure 1. Imaging model of a moving camera

proximations to the posterior distributionof motion and fea-
ture segmentation parameters is developed.

2.1 State Space Model for Object Motion and Fea-
ture Segmentation

Parameterization of relative motion between objects and
camera The relative motion between each object and
camera needs to be estimated. During the problem formu-
lation, either the object or the camera can be assumed to
be static. In our approach, we assume that the objects are
static and the camera motion relative to individual object is
estimated. Once the camera motion is obtained, it is very
straightforward to compute the object motion relative to the
camera if it is desired.

The parameterization of the camera motion is as follows.
Two 3D Euclidean coordinate systems are used in the for-
mulation. One coordinate system is attached to the camera
and uses the center of projection of the camera as its origin.
It is denoted by ! . The " axis of ! is along the optical axis
of the camera, with the positive half-axis in the camera look-
ing direction. The # - $ plane of ! is perpendicular to the "
axis with the # and $ axes parallel to the borders of the im-
age plane. Also, the # - $ - " axes of ! satisfy the right-hand
rule. The other coordinate system is a world inertial frame,
denoted by % . % is fixed on the ground. The coordinate axes
of % are configured in such a way that initially, % and ! co-
incide. When the camera moves, ! travels with the camera
and % stays at the initial position. At time instant � , five pa-
rameters are used to describe camera motion:

m &(')�+*-,/.�*-0�.�*-1�.�23.546�
�+*-,/.�*-0�.�*-17� are the rotation angles of the camera about
the coordinate axes of the inertial frame % and �+23.546� are
the elevation and azimuth angles of the camera transla-
tion direction, measured in the world system % . The unit
vector in the translation direction is given by T �+23.846�9'
��:8;	<=�+2>�@?�AB:C�D46��.8:5;E<��F2(�G:5;E<���46�H.�?IA�:��+2>�5�+J .
Remark The motion parameters of the camera at time in-
stant � are all relative to the world inertial coordinate sys-
tem, which is the camera coordinate system at the first time
instant in the current coordinate system configuration.

Parameterization of feature point segmentation In our
approach to solving the MIMOME problem, the input to the
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algorithms are trajectories of a set of feature points tracked
throughout the given image sequence. These feature points
belong to different moving objects. The task of feature point
segmentation is to separate this feature set into multiple sub-
sets and ideally, the features on the same object should be on
the same subset.

To represent the ownership of the feature points by dif-
ferent moving objects, we use the validity vector � , intro-
duced in [10]. If there are

�
feature points used, � is an�

-dimensionalvector. Each feature point has a correspond-
ing entry in � , which indicates the belonging of the related
feature point. The parameters for camera motion and fea-
ture segmentation contains both motion parameters and the
validity vector:

x &(' � m &�.���&F� (1)

In the SIS procedure, the posterior distribution of the state
parameters is described by samples representing state and
related weights. Given a state sample, the motion param-
eters represent the camera motion relative to a particular
moving object. Associations of feature points to this moving
object are described by the validity vector in the same state
sample. If the value of the entry in the validity vector of a
feature point is positive and high, it is very probable that this
feature point belongs to this particular moving object; oth-
erwise, it is on some other objects.

State space model Given the above state parameters, a
state space model can describe the behavior of a moving
camera observing multiple independently moving objects:

x &���� ' x&�� n , (2)

y & ' � ���
	�� x&�.���&+� � n 0 (3)

where x & is the state vector and y & is the observation at time
� . � ���
	���
 � denotes the perspective projection, a function of
camera motion x & and the scene structure � & . n , denotes
the dynamic noise in the system, describing the time-varying
property of the state vector and it contains both the dynamic
noise of the camera motion and the validity vector. Even
though the associations of the feature points are fixed, if we
assume that their is no object splitting/mergingoccurred, va-
lidity vectors are still time varying during the SIS proce-
dure in this formulation. By allowing the validity vector
to be time-varying, the resulting temporal integration of the
feature segmentation makes the feature segmentation results
more robust to measurement errors.

In order to deal with the non-linear system, the SIS is
used to approximate the posterior distributionsof the motion
parameters and validity vectors. Due to space limitations,
we will not introduce SIS in this paper and refer the readers
to [11] for a full treatment. In the SIS procedure, given sam-
ples at previous time instant, the new state samples at current
time instant are drawn using the so-called trial function. Al-
though any trial function can be used, to design effective SIS

algorithms, trial functions that can describe the dynamics of
the system are desired. For motion parameters, as the prior
knowledge about motion parameters is not available, a ran-
dom walk is a suitable alternative for modeling the camera
position and orientation. Hence, the motion samples at � ���
are drawn using

m&���� ' m & � n � (4)
where n � represents the dynamic noise of the motion pa-
rameters. The samples of the validity vector at � ��� are
drawn using ��&���� '�����& ��� � m &�. y & � � n � (5)
where n � is the dynamic noise in the validity vector and �
is an exponential forgetting factor. Both of them represent
the possible time-varying nature of the validity vector. � ��
 �
is a function used to update the current validity vector. Each
element of � is given by��� � m &�. y& � ' � ��&��

� � ��� ����� �C�! ��-�#" � �%$ �H&��'&�� � �����
� &�� (6)

where � � ' ��� m &�. y ( �*)& � is the distance from the � th feature
point to its associated epipolar line given the motion param-
eters m & . �H&�� is a prechosen threshold for this distance ac-
cording to the feature tracking error level. In our experi-
ments, the values � &�� are usually twice as large as the stan-
dard deviation of the feature tracking errors.

The likelihood function of the observation given the state
parameter is obtained as+ � y & � x& �-, %/.%0 1/24365 78 1 2 365 7 8:9�;%< �:� & �>=�:?A@ � �& �F���CBEDGFIH �KJL �M � L �N-O

(7)
where P '�H7�IQSR�&5�F��� is among the 7 highest value of �6&/T O
and� �& �+�D� 'VU ��&��F���H.W��&8�+�D�YX[ZZ . A]\�^�B/_�` ;E:�B , J ' 0 �:?#@ �H&��+�D� � � �& �F���0 �:?#@ � �& �F���

(8)%%a ( � ) �:�(� is an indicator function. It returns one if
+ ���>� is

true and zero otherwise.

2.2. Sample Clustering

In the SIS procedure, the motion and validity vector sam-
ples and their corresponding weights are propagated such
that they are properly weighted with respect to the poste-
rior distribution of the motion parameters associated with
the moving objects. However, the samples of motion and
validity vectors of moving objects are mixed together. Sam-
ples of state parameters (including motion parameters and
validity vector) are clustered into multiple groups and each
group is related to one potential candidate of the moving ob-
ject. The clustering method is described as follows.
Sign-based Sample Clustering Algorithm

1. Sample sorting. Let b 'cH x ( �*) O 'cH m ( �*) . v ( �*) O be
the samples of motion and validity vector before the re-
sampling step in the SIS procedure and d 'eH w ( �f) O
be the corresponding weights of the above state sam-
ples. Sort the samples according to their weights such
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that the first sample has the highest weight. Denote the
sorted sample set and weight set as �b and �d , respec-
tively.

2. Sample cluster center generation. Starting from the
first sample in �b , candidate cluster centers are gen-
erated by looking at the signs of samples in the new
sample set. Assume that up to the current time instant,
there are

�
clusters H���� O � ����� ' HAb��B.%d�� O � �	��� and

each cluster has a cluster center. Given a sample of the
state, first we ignore the entries in the validity vector
that have been occupied by any positive entry of the va-
lidity vectors belonging to existing candidate centers.
Then, we count the number of remaining positive en-
tries. If this number is larger than or equal to � � , the
required number of feature points for motion estima-
tion (e.g. eight points are sufficient when the camera is
fully calibrated) the

� ��� st candidate cluster is gener-
ated with the current sample.

3. Sample clustering. The samples that contain at least
� � common positive entries in the validity vector as
the new cluster center will be segmented into that clus-
ter. Thus a new sample weight cluster is formed as� � ��� ' HAb � ���C.%d � ��� O . Go to step 2 and look for
new candidate cluster centers. Stop when all the sam-
ples in �b have been visited by the center generation
step.

4. Redistribution. It is possible that a sample is not as-
signed to any cluster. To preserve these samples, the
samples not included in any cluster are grouped into a
new cluster. Hence, all the samples in �b are segmented
into different clusters. Each cluster corresponds to one
candidate moving object.

By using the above clustering algorithm, the samples in
�b are segmented into different clusters related to potential

moving objects.

2.3. Balancing

The balancing step is used in the SIS procedure so that the
numbers of samples belonging to all of the potential moving
objects are comparable. Balancing can prevent samples as-
sociated with different moving objects from competing for
offsprings so that samples with lower weights due to smaller
size of the object or higher levels of noise in feature cor-
respondences will not be extinct when a limited number of
samples are used. Hence, during SIS, each moving object
has its state samples in the whole sample population and the
motion/structure parameters of all objects can be obtained
simultaneously from their associated samples. To handle the
problem due to samples belonging to different objects com-
peting for offsprings during the resampling step, the follow-
ing balancing step is added in the SIS procedure.
Definition For a sample weight cluster � � ' H#b � .�d � O ,
 � , the cumulative weight of � � , is the summation of the

weights in d � ' H�� ( 
 )� O �
 ��� , i.e.

 � ' 0 �
 ��� � ( 
 )�

Balancing step

1. Cluster weight evaluation. Assume that after the above
sample clustering procedure, totally

�
sample clus-

ters are formed including the one produced in the fi-
nalization step. Since each cluster should be treated
equally in the resampling step in the SIS, the cumula-
tive weights of all clusters should be equal to


��
and
�� ' �� .

2. Weights modification. The sample weights in all clus-
ters need to be modified such that the cumulative
weight of each individual cluster equals to


��
. The

weight modification is done as below. For a cluster��� ' HAb���.%d�� O , multiply the weights in d�� by a
scalar ��� and ��� ' � ���� where


 � is the cumula-
tive weight of this cluster before the weight modifica-
tion step. This step is called weight-balancing. De-
note the weight-balanced cluster as

���� ' H#b���. �d�� O 'HAb���.����#d�� O .
2.4. SIS Procedure for MIMOME

By adding clustering and balancing steps, we have the
following complete SIS procedure for solving the MI-
MOME problem.

1. Initialization. Draw samples of motion parametersH m ( 
 )� O �
 ��� from the initial distribution � � . � � de-
scribes the distributionof motion parameters m � before
camera moves. Although the rotation angles * and the
translational vector are all zero, the translational angles
can be uniformly distributed. Hence, in H m ( 
 )� O , the
components of the rotation angles are all set to zero and
the samples of 2 and 4 are drawn from the uniform dis-
tributions in � Z .��! and � Z@.�"#�! , respectively. The com-
ponents in the samples corresponding to the validity
vector are set to one. Assign equal weights to above
samples.

For � ' � .'
�
'
�.�$ :
2. Samples generation. Draw samples of the motion pa-

rameters at time instant � , H m ( 
 )& O �
 ��� , from the distri-

butions of H m ( 
 )&&%�� O �
 ��� � � � . Since video sequences
are used, a random walk dynamic model is assumed
and the followingdistributioncan be used as a good ap-
proximation to that of � � .

U ��')(+* , � Z . L�- �H.�.�/ H106.�2@.�3 O�54 * 6 ���8794�.�794���.�:;/ H�23.54 O (9)

where L - , 7=< and 7?> can be chosen as some posi-
tive numbers. Draw samples of the validity vectorH�� ( 
 )& O �
 ��� via (5).

3. Weight computation. Compute the weights of the
samples, H�� ( 
 )& O , using the observed feature correspon-
dence according to the likelihood equation (7). The
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resulting samples and their corresponding weights
� x ( 
 )& .�� ( 
 )& � are properly weighted with respect to
� & � x & � .

4. Sample clustering. Segment the whole samples and
weights set into multiple clusters using the above sign-
based sample clustering algorithm.

5. Balancing. Modify the weights of each cluster so that
the cumulative weights of the clusters are equal.

6. Resampling. Resample the samples in the clusters
according to the balanced weights. Thus, the mo-
tion/structure and validity vector related to the two
moving objects can be simultaneously estimated. Go
to step 2 if the feature correspondences from the next
frame are available.

3. Experimental Results

The proposed MIMOME algorithm has been tested using
both synthetic and real image sequences. Two examples us-
ing real image sequences are included. In the first example,
an image sequence captured by a moving camera is used.
In this image sequence, two persons are walking in a room.
One is walking to the right of the scene and the other is mov-
ing forward along the optical axis of the camera. Since the
camera is also moving, the background scene serves as the
third moving object with respect to the camera. 44 feature
points are detected and tracked through the sequence. Fig-
ure 2 (a) shows feature points (marked by squares) in the
last image of the sequence and their trajectories. By using
the proposed algorithm, features on different moving objects
can be clustered and at the same time, the motion of each
moving object can be estimated. Figure 2 (b) (c) and (d)
show the segmentation results of the feature points belong-
ing to the first, the second persons and background, respec-
tively. The points segmented out for the object are marked
by circles. Posterior distributions of the motion parameters
and the empirical means of the validity vector of these three
objects are shown in Figure 5. The first five figures at the
top of the first column of Figure 5 are the marginal poste-
rior distributions of the motion parameters. The last one in
this column shows the empirical means of the validityvector
associated with the first person (walking to the right) where
the horizontal axis indicates the feature indices. The results
related to the second person and the background are shown
in the figures in the second and third columns, respectively.
Figure 3 shows the empirical means (thick curves) and the
standard deviation (thin bars) of the validity vectors using
the clustered samples related to the background in the first
example. Figures 3 (a), (b) and (c) show these values at the
initial, the middle and the last time instants. It can be seen
from these figures that as time goes by, the mean of the va-
lidity vector gradually evolves to a desired structure that the
entries of the features on the background have large positive
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Figure 2. (a) shows feature points (marked by squares) in the
last image of the sequence and their trajectories. Feature points be-
longing to different objects are marked by circles in (b), (c) and (d).
(b) shows the features on the first person (walking to the right) and
(c) shows the features on the second person (walking along the op-
tical axis) and (d) shows the features on the background scene.

values while the others negative. The standard deviations of
the validity vector are also decreasing.

In the second example, we used an image sequence with
three walking persons. This sequence was recorded using
a static camera with known background. After background
subtraction, image regions belonging to moving objects can
be found. Feature points on moving object can hence be de-
tected in these regions and tracked throughout the whole se-
quence. In our experiment, we used 50 features and their
positions in the last frame of the sequence are indicated by
squares in Figure 4 (a), where the curves are the trajectories
of features. From left to right, the three persons are referred
by the first, second and third persons. Feature segmentation
results for the three walking persons are shown by Figure
4 (b) (c) and (d), respectively. Several features on the sec-
ond person’s legs were not correctly marked. The reason is
that these features were not correctly tracked during feature
tracking. It can be seen in Figure 4 (a) that these features
drifted to the right foot of the person. Despite this and a
small number of errors, the majority of the feature points are
successfully clustered on the correct persons. The empirical
posterior distributions of motion and validity vector param-
eters related to these three persons have been estimated by
samples and their weights. Due to space limitation, details
on estimation of empirical posterior distribution have been
omitted from this paper.

4. Conclusions

In this paper, a Bayesian approach is designed to solve
the MIMOME problem using SIS. In the proposed method,

1051-4651/02 $17.00 (c)  2002 IEEE



a balancing step is added into the SIS procedure to pre-
serve samples of low weights so that all objects have enough
samples to propagate empirical motion and validity vector
distributions. The proposed approach has been tested on
both synthetic and real image sequences. Satisfactory re-
sults have been obtained. Moreover, similar SIS algorithms
with balancing can be applied to other applications when
one needs to simultaneously estimate parameters of multi-
ple sources using mixed data from all these sources.
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Figure 3. Temporal evolution of validity vector samples. These
figures show the empirical means (thick curves) and the standard
deviation (thin bars) of the validity vectors using the clustered sam-
ples related to the background in the first example. (a), (b) and (c)
show these values at the initial, middle and last time instants.
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Figure 4. (a) shows feature points (marked by squares) in the
last image of the sequence and their trajectories. Feature points be-
longing to the first, second and third persons are marked by circles
in (b), (c) and (d), respectively.
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Figure 5. The first five figures at the top of the first column are
the marginal posterior distributions of the motion parameters and
the last one shows the empirical means of the validity vector asso-
ciated with the first person (walking to the right) and the results re-
lated to the second person and the backgroundare shown in the fig-
ures in the second and third columns, respectively.
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