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Abstract

Inthispaper, the problem of simultaneous motion estima-
tion of multipleindependently moving objects is addressed.
Anovel Bayesian approachisdesigned for solvingthisprob-
lemusing the sequential importancesampling (S S) method.
Intheproposed algorithm, a balancing stepisadded intothe
S Sprocedure to preserve samples of low weights so that all
objectshave enough samplesto propagate empirical motion
distributions. By using the proposed algorithm, the relative
motionsof all moving objectswith respect to camera can be
simultaneously estimated . This algorithm has been tested
on both synthetic and real image sequences. Improved re-
sults have been achieved.

1. Introduction

Simultaneous estimation of 3D motion between each
moving object and camera has remained a big challenge to
researchersin computer vision. Inthispaper, werefer tothis
problem as the Multi ple Independently Moving Obj ects Mo-
tion Estimation (MIMOME) problem: given an image se-
guence containing two or more independently moving (with
respect to the camera) objects, onedesiresto simultaneously
estimate the motion between each moving object and the
camera.

Existing MIMOME algorithms can be roughly catego-
rized into two groupsbased on thetype of tokensused inthe
method: optical flow or feature correspondences. The pio-
neering work of MIMOM E using optical flow was proposed
by Adiv [1]. In[1], with the assumption of piecewise planar
scene, the flow field isfirst partitioned into connected seg-
ments using the generalized Hough technique and then the
segments bel onging to each moving object are grouped such
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that all segments in one group can be explained by asingle
rigid motion. Due to the assumption made about the scene
structure, this algorithm has difficultiesin dealing with im-
age sequences containing complex 3D scene structure with
rich higher-order 3D curved surfaces.

Another main stream approach to MIMOME is based
on feature correspondences. A multi-body Factorization
method [2] was designed for solving the MIMOME prob-
lem after the well-known Factorization method for structure
from motion (SfM) [3]. The shape interaction matrix isem-
ployed to segment out multiple moving objects. In spite of
the elegance of this algorithm, the assumption made about
the camera projection model isrestrictive.

The extended Kalman filter (EKF) has a so been used to
solve the MIMOME problem. In [4], an EKF-based MI-
MOME agorithm was proposed based on a recursive SfM
algorithm presented in[5]. The minimum description length
(MDL) criterion is employed to determine the minimum
number of models and their corresponding feature groups
such that the models can well interpret the trgjectories of
the features in the associated groups. However, the recur-
sive SfM agorithmin [5] is not guaranteed to converge to
thetrue SfM solution, hence the MIMOME algorithm based
on this method is doubtful. Another MIMOME agorithm
using EKF is proposed in [6]. It is designed based on the
motion estimation algorithm called essential filter [7]. The
main problem with this approach is that the essentia fil-
ter basically computes the relative motion of objects be-
tween adjacent image frames. This bringsthe feature based
method to the flow based method in the sense of low signal-
to-noiseratio (SNR). Dueto inherent ambiguitiespresent in
the SfM problem when the observationsare noi sy, the essen-
tial filter might converge to afalse solution and yield over-
segmentation of moving objects.

Recently the MIMOME problem has been considered
under certain restrictions on trajectories of independently
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moving objects. A MIMOME algorithm was developed in
[8] assuming linear motion (constant velocity) of dynamic
points with orthographic projection camera moddl. In an-
other algorithm presented in[9], the dynamic pointsare a so
assumed to move aong straight-line pathswith constant ve-
locity.

In this paper, we present a novel Bayesian approach for

solving the MIMOME problem. We use feature correspon-
dences and the perspective projection cameramode. We do
not make any assumption about either the 3D scene struc-
ture or the motion of moving objects except that al objects
arerequired to berigid.
Relation to previouswork In[10], a Bayesian moving ob-
ject detection agorithm was presented. Given feature tra-
jectories obtained from an image sequence recored using a
moving camera, features on moving objects can be sepa-
rated from those on the background. Moving objects can
thus be detected. In this approach, a state space model was
used to describe the camera motion and feature segmenta-
tion parameters and their dynamics. The sequentia impor-
tance sampling (SIS) method was used to take care of the
non-linear observation equation, which is a result of using
perspective projection camera model. During the SIS pro-
cedure, state samples and their rel ated wei ghts, which repre-
sent the posterior distribution of state parameters, are propa-
gated from onetimeinstant to the next timeinstant. Idedlly,
when sufficiently large number of samples are used in the
SIS procedure, the moving object detection algorithm pro-
posed in [10] is able to simultaneoudly estimate the motion
parameters for each independently moving object. How-
ever, dueto thefact that only afinite number of samples can
beused in practice, if one SIS procedureisused for al mov-
ing objects, samples of different moving objects will com-
pete against each other for the number of offspringsinthere-
sampling step. Itisvery possiblethat the samples of oneob-
ject can not get enough offspringsso that they are eliminated
from this competition, i.e. they just disappear from the SIS
procedure! 1nthispaper, an additional step called balancing
isinserted into the original SIS procedure so that each po-
tential moving object candidate can get approximately equal
number of offspringsfor its samples.

2. MIMOME Using SIS

To solve the MIMOME problem, we need to find opti-
mal estimates for object motions and feature segmentation
which can providethe best interpretation of the observations
using criteriasuch as the maximum a posteriori probability
(MAP). Inthispaper, Prob(parameters|observation), the
posterior distribution of the parameters, is approximated us-
ing random sampling methods. In this section, we first for-
mulate the MIMOME problem using a state space model.
Then we introduce two essentia steps. clustering and bal -
ancing. Findly, a complete SIS algorithm for finding ap-

Figure 1. Imaging mode! of amoving camera

proximationsto the posterior distribution of motionand fea-
ture segmentation parametersis devel oped.

2.1 StateSpaceMode for Object Motionand Fea-
ture Segmentation

Parameterization of relative motion between aobjectsand
camera The relative motion between each object and
camera needs to be estimated. During the problem formu-
lation, either the object or the camera can be assumed to
be static. In our approach, we assume that the objects are
static and the camera motion relative to individual object is
estimated. Once the camera motion is obtained, it is very
straightforward to compute the object motion relativeto the
cameraif itisdesired.

The parameterization of the camera motionisasfollows.
Two 3D Euclidean coordinate systems are used in the for-
mulation. One coordinate system is attached to the camera
and uses the center of projection of the camera asitsorigin.
Itisdenoted by C'. The Z axisof C' isaong theoptical axis
of the camera, withthe positivehalf-axisin the cameralook-
ingdirection. The X-Y planeof C' isperpendicular to the 7
axiswiththe X and Y axes parallel to the bordersof theim-
ageplane. Also, the X-Y -7 axesof C' satisfy theright-hand
rule. The other coordinate system isaworld inertial frame,
denoted by 7. I isfixed on the ground. The coordinate axes
of [ are configured in such away that initially, 7 and C' co-
incide. When the camera moves, C' travels with the camera
and 7 staysat theinitia position. At timeinstant ¢, five pa
rameters are used to describe camera motion:

m; = (d’m 1/}1/7 1/&7 Oz,ﬁ)
(¥, ¥y, 1) are the rotation angles of the camera about
the coordinate axes of the inertial frame I and («, 7) are
the elevation and azimuth angles of the camera tranda-
tion direction, measured in the world system 7. The unit
vector in the trandation direction is given by T(«, 8) =
(sin(a) cos(B), sin(a) sin(3), cos(a))T .
Remark The motion parameters of the camera at timein-
stant ¢ are all relative to the world inertial coordinate sys-
tem, which isthe camera coordinate system at the first time
instant in the current coordinate system configuration.

Parameterization of feature point segmentation Inour
approach to solving the MIMOME problem, theinput to the
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algorithms are trgjectories of a set of feature pointstracked
throughout the given image sequence. These feature points
belongto different moving objects. Thetask of feature point
segmentationisto separate thisfeature set into multiple sub-
setsand ideally, thefeatures on the same object shouldbe on
the same subset.

To represent the ownership of the feature points by dif-
ferent moving objects, we use the validity vector v, intro-
duced in [10]. If there are M feature points used, v is an
M -dimensional vector. Each feature point hasacorrespond-
ing entry in v, which indicates the belonging of the related
feature point. The parameters for camera motion and fea
ture segmentation contains both motion parameters and the

validity vector:
X; = (Mg, V) 1)

In the SIS procedure, the posterior distribution of the state
parameters is described by samples representing state and
related weights. Given a state sample, the motion param-
eters represent the camera motion relative to a particular
moving object. Associationsof feature pointstothismoving
object are described by the validity vector in the same state
sample. If the value of the entry in the validity vector of a
feature pointispositiveand high, itisvery probablethat this
feature point bel ongs to this particular moving object; oth-
erwise, it ison some other objects.

State space model  Given the above state parameters, a
state space model can describe the behavior of a moving
camera observing multipleindependently moving objects:

Xt41 = X+ Ng %)
Y; = Pro(x,8&) +n, (©)

wherex; isthe state vector and y, isthe observation at time
t. Proj( ) denotes the perspective projection, a function of
camera motion x; and the scene structure S;. n, denotes
thedynamic noiseinthe system, describing thetime-varying
property of the state vector and it contains both the dynamic
noise of the camera motion and the validity vector. Even
though the associations of the feature pointsare fixed, if we
assumethat their isno object splitting/mergingoccurred, va-
lidity vectors are till time varying during the SIS proce-
dure in this formulation. By alowing the validity vector
to be time-varying, the resulting temporal integration of the
feature segmentation makesthe feature segmentation results
more robust to measurement errors.

In order to deal with the non-linear system, the SIS is
used to approximatethe posterior distributionsof the motion
parameters and validity vectors. Due to space limitations,
wewill not introduce SIS in this paper and refer the readers
to[11] for afull treatment. Inthe SIS procedure, given sam-
plesat previoustimeinstant, the new state samplesat current
timeinstant aredrawn using the so-called trial function. Al-
thoughany tria function can be used, todesign effective SIS

algorithms, trial functionsthat can describe the dynamics of
the system are desired. For motion parameters, as the prior
knowledge about motion parameters is not available, aran-
dom walk is a suitable aternative for modeling the camera
positionand orientation. Hence, themotion samplesat ¢ + 1
are drawn using
M;41 =My + Ny, (4)

where n,,, represents the dynamic noise of the motion pa-
rameters. The samples of the validity vector at ¢t + 1 are
drawn using

vgr =yv +E(Mg,Y,) + Ny 5
where n,, isthe dynamic noise in the validity vector and v
is an exponential forgetting factor. Both of them represent
the possibletime-varying nature of the validity vector. £(-)
isafunction used to updatethe current validity vector. Each
element of ¢ isgiven by

i+ 1
Eimeyy,) = (20 = signl ei/en) == (9)

wheree; = e(m;, yg“) is the distance from the ith feature
point to its associ ated epipolar line given the motion param-
etersm;. ey, iSaprechosen threshold for this distance ac-
cording to the feature tracking error level. In our experi-
ments, the values e, are usually twice as large as the stan-
dard deviation of the feature tracking errors.

Thelikelihood function of the observation giventhe state
parameter is obtained as

+(; —¢
F(yulxe) oc s ﬁi—&ﬂ}(vt);vt (1) exp {m}

7
isamong the 7 highest value of v§ ?

_ Yieacvi (i)

Yica vi (i) .
It(vy(v) isan indicator function. It returns one if f(v) i%
true and zero otherwise.

2.2. Sample Clustering

Inthe SIS procedure, the motion and validity vector sam-
ples and their corresponding weights are propagated such
that they are properly weighted with respect to the poste-
rior distribution of the motion parameters associated with
the moving objects. However, the samples of motion and
validity vectors of moving objects are mixed together. Sam-
ples of state parameters (including motion parameters and
validity vector) are clustered into multiple groups and each
groupisrelated to one potential candidate of the moving ob-
ject. The clustering method is described as follows.
Sign-based Sample Clustering Algorithm

1. Sample sorting. Let X = {x®} = {m® v()} pe
the samples of motionand validity vector beforethere-
sampling step in the SIS procedure and W = {w(9}
be the corresponding weights of the above state sam-
ples. Sort the samples according to their weights such

where A =i{ 4i)
and NP
vi(i) = { ve (1), 1¥i)>

0, otherwise
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that the first sample has the highest weight. Denote the
sorted sample set and weight set as X' and W, respec-
tively.

2. Sample cluster center generation. Starting from the
first sample in X', candidate cluster centers are gen-
erated by looking at the signs of samples in the new
sample set. Assume that up to the current time instant,
there are K clusters {S; }<, = {40, £, and
each cluster has acluster center. Given asample of the
state, first we ignore the entries in the validity vector
that have been occupied by any positiveentry of theva
lidity vectors belonging to existing candidate centers.
Then, we count the number of remaining positive en-
tries. If thisnumber is larger than or equal to P,,, the
required number of feature points for motion estima-
tion (e.g. eight pointsare sufficient when the camerais
fully calibrated) the K + 1st candidate cluster is gener-
ated with the current sample.

3. Sample clustering. The samples that contain at |east
P,, common positive entries in the validity vector as
the new cluster center will be segmented into that clus-
ter. Thus a new sample weight cluster is formed as
Sk+1 = {Xk43W k41}. Goto step 2 and look for
new candidate cluster centers. Stop when al the sam-
plesin X' have been visited by the center generation
step.

4. Redistribution. It is possible that a sample is not as-
signed to any cluster. To preserve these samples, the
samples not included in any cluster are grouped into a
new cluster. Hence, all thesamplesin X are segmented
into different clusters. Each cluster correspondsto one
candidate moving object.

_ By using the above clustering algorithm, the samples in
X are segmented into different clusters related to potential
moving objects.

2.3. Balancing

Thebalancing stepisusedinthe SIS procedure so that the
numbers of samplesbelonging to all of the potential moving
objects are comparable. Balancing can prevent samples as-
sociated with different moving objects from competing for
offspringsso that sampleswith lower weightsdueto smaller
size of the object or higher levels of noise in feature cor-
respondences will not be extinct when a limited number of
samples are used. Hence, during SIS, each moving object
hasits state samplesin the whol e sampl e popul ation and the
motion/structure parameters of all objects can be obtained
simultaneously fromtheir associated samples. To handlethe
problem due to samples bel onging to different objects com-
peting for offspringsduring the resampling step, the follow-
ing balancing step is added in the SIS procedure.
Definition For a sample weight cluster Sy = {5, Wi},
Wy, the cumulative weight of Sy, isthe summation of the

weightsin W, = {ng)}gn:l, e Wi =31, wi)
Balancing step

1. Cluster weight evaluation. Assumethat after the above
sample clustering procedure, totally K sample clus-
ters are formed including the one produced in the fi-
nalization step. Since each cluster should be treated
equally in the resampling step in the SIS, the cumula-
tiveweights of all clusters should be equal to I7* and
W* =41,

2. Weighté{ modification. The sample weightsin al clus-
ters need to be modified such that the cumulative
weight of each individua cluster equalsto W*. The
weight modification is done as below. For a cluster
Sy = {A4W, }, multiply the weights in Wy, by a
scdar A\, and A, = zVV—k where W;, is the cumula
tive weight of this cluster before the weight modifica
tion step. This step is called weight-balancing. De-
notetheweight-balanced cluster as S, = {4, Wi} =
(XA ).

2.4. SIS Procedure for MIMOME

By adding clustering and balancing steps, we have the
following complete SIS procedure for solving the MI-
MOME problem.

1. Initidlization. Draw samples of motion parameters
{m{i’}7 from the initia distribution mo. o de
scribesthedistributionof motion parametersmg before
cameramoves. Althoughtherotation angles and the
trand ational vector areall zero, thetrandlational angles
can be uniformly distributed. Hence, in {m{'’}, the
componentsof therotationanglesare all set to zero and
the samplesof « and 5 are drawn from theuniformdis-
tributionsin [0, ] and [0,27] , respectively. The com-
ponents in the samples corresponding to the validity
vector are set to one. Assign equal weights to above
samples.

Fort=1,--;F :

2. Samples generation. Draw samples of the motion pa
rameters at time instant ¢, {mi”}}"zl, from the distri-
butions of {m{?), }721 + nm. Since video sequences
are used, a random walk dynamic model is assumed
and thefollowingdistributioncan be used as agood ap-
proximation to that of n,,.

{ ny, ~ N(0,0,),c€ {zyz } ©)
U(=bpx)r € {a,B}
where o,,0, and 65 can be chosen as some posi-
tive numbers. Draw samples of the validity vector
{v@ym, via(s).

3. Weight computation. Compute the weights of the
sampl 5,{w§] ) }, using the observed feature correspon-
dence according to the likelihood equation (7). The

N, ~

1051-4651/02 $17.00 (c) 2002 IEEE



resulting samples and their corresponding weights
(X9 )} are properly weighted with respect to
Tt (Xf ) .

4. Sample clustering. Segment the whole samples and
weights set into multiple clusters using the above sign-
based sample clustering agorithm.

5. Balancing. Modify the weights of each cluster so that
the cumulative weights of the clusters are equal.

6. Resampling. Resample the samples in the clusters
according to the balanced weights. Thus, the mo-
tion/structure and validity vector related to the two
moving objects can be simultaneoudly estimated. Go
to step 2 if the feature correspondences from the next
frame are available.

3. Experimental Results

The proposed MIMOM E a gorithm has been tested using
both synthetic and real image sequences. Two examples us-
ing real image sequences are included. In thefirst example,
an image sequence captured by a moving camera is used.
In thisimage sequence, two persons are walking in aroom.
Oneiswalkingto theright of the scene and the other ismov-
ing forward along the optical axis of the camera. Sincethe
camerais aso moving, the background scene serves as the
third moving object with respect to the camera. 44 feature
points are detected and tracked through the sequence. Fig-
ure 2 (8) shows feature points (marked by squares) in the
last image of the sequence and their trgjectories. By using
the proposed a gorithm, features on different moving objects
can be clustered and at the same time, the motion of each
moving object can be estimated. Figure 2 (b) (c) and (d)
show the segmentation results of the feature points belong-
ing to thefirst, the second persons and background, respec-
tively. The points segmented out for the object are marked
by circles. Posterior distributionsof the motion parameters
and the empirica means of the validity vector of thesethree
objects are shown in Figure 5. The first five figures at the
top of the first column of Figure 5 are the margina poste-
rior distributions of the motion parameters. The last onein
thiscolumn showsthe empirical meansof thevalidity vector
associated with the first person (walking to the right) where
the horizontal axis indicatesthe feature indices. The results
related to the second person and the background are shown
in the figuresin the second and third columns, respectively.
Figure 3 shows the empirical means (thick curves) and the
standard deviation (thin bars) of the validity vectors using
the clustered samples related to the background in the first
example. Figures 3 (a), (b) and (c) show these values at the
initial, the middle and the last time instants. It can be seen
from these figures that as time goes by, the mean of theva-
lidity vector gradually evolvesto adesired structurethat the
entries of thefeatures on the background have large positive

Figure 2. (a) shows feature points (marked by squares) in the
last image of the sequenceand their trajectories. Feature pointsbe-
longing to different objectsare marked by circlesin (b), (c) and (d).
(b) showsthefeatures on the first person (walking to the right) and
(c) shows the features on the second person (walking along the op-
tical axis) and (d) shows the features on the background scene.

valueswhilethe othersnegative. The standard deviationsof
the vaidity vector are also decreasing.

In the second example, we used an image sequence with
three walking persons. This sequence was recorded using
a static camera with known background. After background
subtraction, image regions bel onging to moving objects can
befound. Feature pointson moving object can hence be de-
tected in these regions and tracked throughout the whol e se-
guence. In our experiment, we used 50 features and their
positionsin the last frame of the sequence are indicated by
squaresin Figure4 (a), where the curves are the trgjectories
of features. From left toright, thethree persons are referred
by thefirst, second and third persons. Feature segmentation
results for the three walking persons are shown by Figure
4 (b) (c) and (d), respectively. Several features on the sec-
ond person’s legs were not correctly marked. The reason is
that these features were not correctly tracked during feature
tracking. It can be seen in Figure 4 () that these features
drifted to the right foot of the person. Despite this and a
small number of errors, the mgjority of thefeature pointsare
successfully clustered on the correct persons. The empirical
posterior distributionsof motion and validity vector param-
eters related to these three persons have been estimated by
samples and their weights. Due to space limitation, details
on estimation of empirical posterior distribution have been
omitted from this paper.

4. Conclusions

In this paper, a Bayesian approach is designed to solve
the MIMOME problem using SIS. In the proposed method,
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a balancing step is added into the SIS procedure to pre-
serve samples of low weightsso that all objects have enough
samples to propagate empirical motion and validity vector
distributions. The proposed approach has been tested on
both synthetic and real image sequences. Satisfactory re-
sults have been obtained. Moreover, similar SIS algorithms
with balancing can be applied to other applications when
one needs to simultaneoudly estimate parameters of multi-
ple sources using mixed data from all these sources.

VALIDITY VECTOR
Lo o

VALIDITY VECTOR

VALIDITY VECTOR

=

1020 30 40
FEATURE >(=§|NT INDEX

FEATURE@S\NT INDE; :;Amwg(: INTINDEX™
C)

Figure 3. Temporal evolution of validity vector samples. These
figures show the empirical means (thick curves) and the standard
deviation (thin bars) of thevalidity vectorsusing the clustered sam-
plesrelated to the backgroundin the first example. (@), (b) and (c)
show these values at the initial, middle and last time instants.

Figure 4. (a) shows feature points (marked by squares) in the
last image of the sequenceand their trajectories. Feature pointsbe-
longing to the first, second and third persons are marked by circles
in (b), (c) and (d), respectively.
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Figure 5. Thefirgt five figuresat the top of thefirst column are
the marginal posterior distributions of the motion parameters and
the last one shows the empirical means of the validity vector asso-
ciated with thefirst person (walking to the right) and the results re-
lated to the second person and the background are shown in the fig-

uresin the second and third columns, respectively.
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