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Abstract 

We present a geometrically morivared algorithm forfind- 
ing rhe Suppon Vecrors of a given ser of poinrs. This al- 
gorirhm is reminiscenr of rhe DirecrSVM algorirlim, in rhe 
way ir picks dara poinrs for inclusion in the Supporr Vec- 
ror ser, bur ir uses an oprimizorion based approach ro add 
rhem 10 rhe Supporr Vecror set. This ensures rhar rhe algo- 
rirhm scales ro O ( d )  in rhe worsr case and O(nl5l') in 
rhe average case where n is rhe roral number of poinrs in 
the data set and IS1 is the number of Support Vecrurs. Fur- 
rlrer the memory requiremenrs also scale as O(n2) in rhe 
worst case and O( lS1') in rlie overage case. The advanrage 
of rhis olgorirhm is rhat ir is more inruirive and performs er- 
rremely well when the number of Supporr Vectors is only a 
small fraction of rhe enrire dara ser. Ir can also be used ro 
calculate leave one our error based on rhe order in which 
dara poinrs were added ro the Support Vecror set. We also 
present resrrlrs on real lrfe data sets ro validare our claims. 

1. Introduction 

Support Vector Machines (SVM) have recently gained 
prominence in the field o f  machine learning and pattern 
classification [8]. Classification i s  achieved by realizing a 
linear or non linear separation surface in the input space. 

In Support Vector classification. the separating function 
can be expressed as a linear combination o f  the kernels as- 
sociated with the Support Vectors as 

f(z) = c a&K(xJ,z) + b 

where zi denotes the training patterns, y, E [+ l ,  -1) de- 
notes the corresponding class labels and S denotes the set 
of Support Vectors 181. 
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The Lagrengian ( iV )  o f  the primal problem can be ex- 
pressed as 

where ni are the corresponding coefficients. b i s  the offset. 
Qti = y,y,h'(xi,xJ) isasymmetricpositivedefinite kernel 
matrix and Cis the parameter used to penalize error points 
in the inseparable case [21. The KKT conditions for the dual 
can be expressed as 

(3) 

This partitions the training set into S the Support Vector sel 
( 0 < a, < C, g, = 0). the error set ( a, = C. g, < 0) and 
the well classified set ( a, = 0, g; > 0) [21. 

I f  the points in error are penalized quadratically with a 
penalty factor C'. then. i t  has been shown that the problem 
reduces to that o f  a separable case with C = cc 131. The 
kernel function i s  modified as 

1 
K'(z , . z3)  = K(XL,XJj + -SIJ C' 

where 6;j  = 1 i f  i = j and S i j  = 0 otherwise. 
I t  can be seen that training the SVM involves solving a 

quadratic optimization problem which requires the use of 
optimization routines from numerical libraries. T h i s  step is  
computationally intensive. can be subject to stability prob- 
lems and i s  non-trivial to implement [61. Attractive iterative 
algorithms have been proposed to overcome this problem 
(6.51. 

The DirectSVM i s  an intuitively appealing, iterative al- 
gorithm, which builds the Support Vector set incrementally 
[7]. I t  starts off with the closest points of opposite classes 



in the Support Vector set. During each iteration it finds the 
maximum violator and makes it a Support Vector. In case 
the dimension of the space is exceeded or all the data points 
are used up, without convergence. it reinitializes with the 
next closest pair of points from opposite classes [7]. 

The advantage of the DirectSVM algorithm is that it is 
geometrically motivated and intuitively appealing. But. the 
major problem with the algorithm is that it remembers each 
one of ihe previous updates of the support plane in order 10 
calculate the next update. As a result the algorithm scales 
badly as the number of Suppolr Vectors increases. 

Recently some work has also been done on incremental 
SVM algorithms which can converge to exact solutions and 
also efficiently calculate leave one out emors [2]. The in- 
cremental algorithm is not easy to implement and requires 
some amount of book keeping. 

In this paper we present a geometrically motivated algo- 
rithm which combines the intuitive nature of the DirectSVM 
algorithm with the efficiency of the Incremental algorithm. 
Section 2 talks about our algorithm and presents proofs. We 
talk about the results obtained on real life data sets in Sec- 
tion 3. Finally we conclude in Section 4 with comments. 
We also point out areas where applying our algorithm could 
be advantageous 

2. Geometric SVM 

We present a new algorithm that essentially uses the 
same idea as the DirectSVM for incrementally building the 
Support Vector set. But OUT algorithm uses a different tech- 
nique to add new points to the Suppon Vector set. We use 
the quadratic penalty formulation to ensure that the data 
points are always linearly separable in the kernel space. 

The outline of our algorithm is presented in Algorithm 
1. 

Algorithm 1 Geometric SVM 
Initialize with the next closest pair of points from oppo- 
site class 
if all points are well classified then 

stop 
end if 
Find max violator and make it a Suppon Vector 
if number of Support Vectors > dimension of space then 

end if 
reinitialize 

We now pose the subproblem of adding data points to the 
Support Vector set S as follows: 

Given a sef S which contains only Suppon Vec. 
fors. odd another Support Vector c fo S. 

From Equations 2 and 3 we get the change in gi as 

where Aa, is the change in the value of a, and 4 b  is the 
change in the value of b. We Stan off with a, = 0 and so 
we can conclude that after the update 40, = a,. 

Because all the vectors in S are Support Vectors we 
know from Equation 2 that g, = 0 Vi .  Since all the vec- 
tors in S continue to remain Support Vectors in S U ( c }  we 
require that Ag, = 0 for all vectors in S. 

If we define [2] 

1 yrn &.I . . .  Q.. J 
then from Equations 4 and 5 

Thus we have 
Ab = pAa, (6) 

4aj = &4a, (7) 
and 

If R = P-' then we can write 

It is also clear that we want gc = 0 so that c can become a 
Support Vector Therefore 

g c = Q c & % + E Q , ( a ,  +Aa , )+y , (b+Ab)- l  = O  

From Equation 6 and 7 we get 

(Qcc + 1 QC1& + ycP)Aa, + 

and hence 

I E S  

&,a, + y,b - 1 = 0 
I E S  I t s  
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If we define 

From 121 we know that we can expand R as 

P* 1 1  

(9) 
Thus our new a is 

and our new b is b + Ab. Thus using this technique we can 
update the Support Vector set per iteration in an efficient 
way. 

To calculate the maximum violator per iteration we need 
to do O(nlS1) work. To calculate Aa, we require to do 
O(lS1) work per iteration. It is clear from Equation 9 that 
we require to do (IS1 + 1) x (IS1 + 1)  work to update R. 
Thus to add a Suppon Vector to S we need to do O(nlS1) 
work. In the average case we need not reinitialize. So the 
algorithm requires just 1s) iterations to converge and hence 
the total work done is O(njS12). In the worst case the al- 
gorithm may need to reinitialize and that means that it has 
to consider every point as a Support Vector. So the worst 
case behavior is O(n3). We would like to point out that the 
algorithm did not require re-initialization for any of the real 
life data sets that we used in our experiments. 

During an iteration the algorithm requires a kernel matrix 
corresponding to the current set of Support Vectors. That 
means that the memory requirements of the algorithm scale 
as O(lS12) in the average case and O(nZ)  in the worst case. 
Typically the number of Support Vectors is a small fraction 
of the entire data set. As a result the memory requirements 
of the algorithm are also bounded. On the average, the algo- 
rithm never computes more than IS1 x IS1 distinct kernels. 
The algorithm can be speeded up considerably by caching 
these kernel calculations. 

3. Results 

First of all we compare the performance of the Di- 
rectSVM and the Geometric SVM algorithm on the UCI 
Sonar data set [4]. This data set consists of 208 data points 
each of 60 dimensions. The training set contains 104 data 
points and the test set contains 104 data points. We use the 
polynomial kernel 

and vary the degree of d [71. We found that the accuracy of 
the Geometric SVM and DirectSVM on the sonar data set 
are exactly identical and are reproduced in table I .  It can 
also be seen that the Support Vectors produced by both the 
algorithms are identical. 

d 1 1  2 3 4 5 6 7 8 
Errors I 3 3  15 12 17 17 I2 13 13 

Supportvectors I 59 65 61 71 75 72 71 68 

Table 1. Performance of the Geometric SVM 
and DlrectSVM on Sonar dataset 

Next we used the Spiral dataset proposed by Alexis 
Wieland of the MITRE Corporation and available from the 
CMU Artificial Intelligence repository. We use the Gaus- 
sian Kernel 

K(z,y) = ezp(-0.51(z - ~11~/2) 
with uz = 0.5 [5]. We vary the value of C’ and reproduce 
our results in table 2. 

C’ 
i n  I i w  I 18915 I I ’ ) I f &  

I SV 1 KernelEval. [ CacheHits(lOb) 
... .- . 

1.20639 
100.0 18824 1.19984 

1.18878 

Table 2. Performance of the Geometric SVM 
on Spirals dataset 

We used the WPBC data set from the UCI Machine 
Learning repository [I]. This data set consists of 683 data 
points. each having a dimension of 9. Again we used the 
Gaussian kernel with u2 = 4.0 [5] .  We vary the value of C‘ 
and reproduce our results in table 3. 

To compare the performance of the DirectSVM algo- 
rithm on this data set we selected a value of C’ = 500 
and ran both Geometric SVM and DirectSVM on a un- 
loaded single processor PIll 800 MHz machine with 128 
MB RAM running Mandrake Linux 8.0. The DirectSVM 
algorithm accessed the cache 9.011 x lo’ times as op- 
posed to 2.191 x lo7 by the Geometric SVM algorithm. 
Besides, the running time of DirectSVM was around 158 
Seconds while that of the Geometric SVM was around 15 
Seconds. The memory requirements of the DirectSVM al- 
gorithm were also higher than that of the Geometric SVM. 
This is because the DirectSVM has to store all the previous 
updates to compute the next update. 

We used the Adult-l data set again from the UCI Ma- 
ChineLearningrepository [ I ] .  Thisdataset consists of 1605 
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Table 3. Performance of the Geometric SVM 
on WPBC dataset 

data points. each having a dimension of 123. We used the 
Gaussian kernel with uz = 10.0 [6 ] .  We vary the value of 
C' and reproduce our results in table 4. 

Table 4. Performance of the Geometric SVM 
on Adult-1 dataset 

4. Conclusion 

We have presented a new algorithm that is efficient. in- 
tuitive and fast. While Keenhi et. al. 151 state that the total 
number of kernel evaluations is a measure of the efficiency 
of an algorithm we argue that the number of unique kernel 
calculations that the algorithm performs is an effective mea- 
sure of its efficiency. If  this number is small then we can 
utilize a caching scheme to achieve better performance. For 
example on a machine with 64MB of main memory, if we 
assume that storing a double requires 4 bytes, we can cache 
the kernel matrix corresponding to as many as 5600 Support 
Vectors. In this sense our algorithm is very efficient. An- 
other advantage is that our algorithm does not suffer from 
numerical instabilities and round off errors that plague other 
numerical algorithms for the SVM problem. 

It can be observed that the addition of a vector to the 
Support Vector set is entirely reversible. Using this property 
Poggio el. al. [Z] have calculated the leave one out error. We 
propose to use similar techniques to calculate the leave one 
out error based on the order in which the data points were 
added to Support Vector set. We also propose to look at 
approximating a set of Support Vectors by a single vector to 
decrease the storage requirements. 
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