
Geometric SVM : A Fast and Intuitive SVM Algorithm

S.V.N. Vishwanathan, M. Narasimha Murty'
Dept. of Comp. Sci. and Automation,

Indian Institute of Science,
Bangalore 560 01 2,

INDIA

Abstract

We present a geometrically morivared algorithm forfind-
ing rhe Suppon Vecrors of a given ser of poinrs. This al-
gorirhm is reminiscenr of rhe DirecrSVM algorirlim, in rhe
way ir picks dara poinrs for inclusion in the Supporr Vec-
ror ser, bur ir uses an oprimizorion based approach ro add
rhem 10 rhe Supporr Vecror set. This ensures rhar rhe algo-
rirhm scales ro O (d) in rhe worsr case and O(nl5l') in
rhe average case where n is rhe roral number of poinrs in
the data set and IS1 is the number of Support Vecrurs. Fur-
rlrer the memory requiremenrs also scale as O(n2) in rhe
worst case and O(lS1') in rlie overage case. The advanrage
of rhis olgorirhm is rhat ir is more inruirive and performs er-
rremely well when the number of Supporr Vectors is only a
small fraction of rhe enrire dara ser. Ir can also be used ro
calculate leave one our error based on rhe order in which
dara poinrs were added ro the Support Vecror set. We also
present resrrlrs on real lrfe data sets ro validare our claims.

1. Introduction

Support Vector Machines (SVM) have recently gained
prominence in the field o f machine learning and pattern
classification [8]. Classification i s achieved by realizing a
linear or non linear separation surface in the input space.

In Support Vector classification. the separating function
can be expressed as a linear combination o f the kernels as-
sociated with the Support Vectors as

f(z) = c a&K(xJ,z) + b

where zi denotes the training patterns, y, E [+ l , -1) de-
notes the corresponding class labels and S denotes the set
of Support Vectors 181.

*,ES

'Corresponding Anthot

1051-4651/02 $17.00 Q 2002 IEEE 56

The Lagrengian (iV) o f the primal problem can be ex-
pressed as

where ni are the corresponding coefficients. b i s the offset.
Qti = y,y,h'(xi,xJ) isasymmetricpositivedefinite kernel
matrix and Cis the parameter used to penalize error points
in the inseparable case [21. The KKT conditions for the dual
can be expressed as

(3)

This partitions the training set into S the Support Vector sel
(0 < a, < C, g, = 0). the error set (a, = C. g, < 0) and
the well classified set (a, = 0, g; > 0) [21.

I f the points in error are penalized quadratically with a
penalty factor C'. then. i t has been shown that the problem
reduces to that o f a separable case with C = cc 131. The
kernel function i s modified as

1
K'(z , . z3) = K(XL,XJj + -SIJ C'

where 6;j = 1 i f i = j and S i j = 0 otherwise.
I t can be seen that training the SVM involves solving a

quadratic optimization problem which requires the use of
optimization routines from numerical libraries. T h i s step is
computationally intensive. can be subject to stability prob-
lems and i s non-trivial to implement [61. Attractive iterative
algorithms have been proposed to overcome this problem
(6.51.

The DirectSVM i s an intuitively appealing, iterative al-
gorithm, which builds the Support Vector set incrementally
[7]. I t starts off with the closest points of opposite classes

in the Support Vector set. During each iteration it finds the
maximum violator and makes it a Support Vector. In case
the dimension of the space is exceeded or all the data points
are used up, without convergence. it reinitializes with the
next closest pair of points from opposite classes [7].

The advantage of the DirectSVM algorithm is that it is
geometrically motivated and intuitively appealing. But. the
major problem with the algorithm is that it remembers each
one of ihe previous updates of the support plane in order 10
calculate the next update. As a result the algorithm scales
badly as the number of Suppolr Vectors increases.

Recently some work has also been done on incremental
SVM algorithms which can converge to exact solutions and
also efficiently calculate leave one out emors [2]. The in-
cremental algorithm is not easy to implement and requires
some amount of book keeping.

In this paper we present a geometrically motivated algo-
rithm which combines the intuitive nature of the DirectSVM
algorithm with the efficiency of the Incremental algorithm.
Section 2 talks about our algorithm and presents proofs. We
talk about the results obtained on real life data sets in Sec-
tion 3. Finally we conclude in Section 4 with comments.
We also point out areas where applying our algorithm could
be advantageous

2. Geometric SVM

We present a new algorithm that essentially uses the
same idea as the DirectSVM for incrementally building the
Support Vector set. But OUT algorithm uses a different tech-
nique to add new points to the Suppon Vector set. We use
the quadratic penalty formulation to ensure that the data
points are always linearly separable in the kernel space.

The outline of our algorithm is presented in Algorithm
1.

Algorithm 1 Geometric SVM
Initialize with the next closest pair of points from oppo-
site class
if all points are well classified then

stop
end if
Find max violator and make it a Suppon Vector
if number of Support Vectors > dimension of space then

end if
reinitialize

We now pose the subproblem of adding data points to the
Support Vector set S as follows:

Given a sef S which contains only Suppon Vec.
fors. odd another Support Vector c fo S.

From Equations 2 and 3 we get the change in gi as

where Aa, is the change in the value of a, and 4 b is the
change in the value of b. We Stan off with a, = 0 and so
we can conclude that after the update 40, = a,.

Because all the vectors in S are Support Vectors we
know from Equation 2 that g, = 0 Vi . Since all the vec-
tors in S continue to remain Support Vectors in S U (c } we
require that Ag, = 0 for all vectors in S.

If we define [2]

1 yrn &.I . . . Q.. J
then from Equations 4 and 5

Thus we have
Ab = pAa, (6)

4aj = &4a, (7)
and

If R = P-' then we can write

It is also clear that we want gc = 0 so that c can become a
Support Vector Therefore

g c = Q c & % + E Q , (a , +Aa ,)+y , (b+Ab)- l = O

From Equation 6 and 7 we get

(Qcc + 1 QC1& + ycP)Aa, +

and hence

I E S

&,a, + y,b - 1 = 0
I E S I t s

57

If we define

From 121 we know that we can expand R as

P* 1 1

(9)
Thus our new a is

and our new b is b + Ab. Thus using this technique we can
update the Support Vector set per iteration in an efficient
way.

To calculate the maximum violator per iteration we need
to do O(nlS1) work. To calculate Aa, we require to do
O(lS1) work per iteration. It is clear from Equation 9 that
we require to do (IS1 + 1) x (IS1 + 1) work to update R.
Thus to add a Suppon Vector to S we need to do O(nlS1)
work. In the average case we need not reinitialize. So the
algorithm requires just 1s) iterations to converge and hence
the total work done is O(njS12). In the worst case the al-
gorithm may need to reinitialize and that means that it has
to consider every point as a Support Vector. So the worst
case behavior is O(n3). We would like to point out that the
algorithm did not require re-initialization for any of the real
life data sets that we used in our experiments.

During an iteration the algorithm requires a kernel matrix
corresponding to the current set of Support Vectors. That
means that the memory requirements of the algorithm scale
as O(lS12) in the average case and O(nZ) in the worst case.
Typically the number of Support Vectors is a small fraction
of the entire data set. As a result the memory requirements
of the algorithm are also bounded. On the average, the algo-
rithm never computes more than IS1 x IS1 distinct kernels.
The algorithm can be speeded up considerably by caching
these kernel calculations.

3. Results

First of all we compare the performance of the Di-
rectSVM and the Geometric SVM algorithm on the UCI
Sonar data set [4]. This data set consists of 208 data points
each of 60 dimensions. The training set contains 104 data
points and the test set contains 104 data points. We use the
polynomial kernel

and vary the degree of d [71. We found that the accuracy of
the Geometric SVM and DirectSVM on the sonar data set
are exactly identical and are reproduced in table I . It can
also be seen that the Support Vectors produced by both the
algorithms are identical.

d 1 1 2 3 4 5 6 7 8
Errors I 3 3 15 12 17 17 I2 13 13

Supportvectors I 59 65 61 71 75 72 71 68

Table 1. Performance of the Geometric SVM
and DlrectSVM on Sonar dataset

Next we used the Spiral dataset proposed by Alexis
Wieland of the MITRE Corporation and available from the
CMU Artificial Intelligence repository. We use the Gaus-
sian Kernel

K(z,y) = ezp(-0.51(z - ~11~/2)
with uz = 0.5 [5]. We vary the value of C’ and reproduce
our results in table 2.

C’
i n I i w I 18915 I I ’) I f &

I SV 1 KernelEval. [CacheHits(lOb)
... .- .

1.20639
100.0 18824 1.19984

1.18878

Table 2. Performance of the Geometric SVM
on Spirals dataset

We used the WPBC data set from the UCI Machine
Learning repository [I]. This data set consists of 683 data
points. each having a dimension of 9. Again we used the
Gaussian kernel with u2 = 4.0 [5] . We vary the value of C‘
and reproduce our results in table 3.

To compare the performance of the DirectSVM algo-
rithm on this data set we selected a value of C’ = 500
and ran both Geometric SVM and DirectSVM on a un-
loaded single processor PIll 800 MHz machine with 128
MB RAM running Mandrake Linux 8.0. The DirectSVM
algorithm accessed the cache 9.011 x lo’ times as op-
posed to 2.191 x lo7 by the Geometric SVM algorithm.
Besides, the running time of DirectSVM was around 158
Seconds while that of the Geometric SVM was around 15
Seconds. The memory requirements of the DirectSVM al-
gorithm were also higher than that of the Geometric SVM.
This is because the DirectSVM has to store all the previous
updates to compute the next update.

We used the Adult-l data set again from the UCI Ma-
ChineLearningrepository [I] . Thisdataset consists of 1605

58

Table 3. Performance of the Geometric SVM
on WPBC dataset

data points. each having a dimension of 123. We used the
Gaussian kernel with uz = 10.0 [6] . We vary the value of
C' and reproduce our results in table 4.

Table 4. Performance of the Geometric SVM
on Adult-1 dataset

4. Conclusion

We have presented a new algorithm that is efficient. in-
tuitive and fast. While Keenhi et. al. 151 state that the total
number of kernel evaluations is a measure of the efficiency
of an algorithm we argue that the number of unique kernel
calculations that the algorithm performs is an effective mea-
sure of its efficiency. If this number is small then we can
utilize a caching scheme to achieve better performance. For
example on a machine with 64MB of main memory, if we
assume that storing a double requires 4 bytes, we can cache
the kernel matrix corresponding to as many as 5600 Support
Vectors. In this sense our algorithm is very efficient. An-
other advantage is that our algorithm does not suffer from
numerical instabilities and round off errors that plague other
numerical algorithms for the SVM problem.

It can be observed that the addition of a vector to the
Support Vector set is entirely reversible. Using this property
Poggio el. al. [Z] have calculated the leave one out error. We
propose to use similar techniques to calculate the leave one
out error based on the order in which the data points were
added to Support Vector set. We also propose to look at
approximating a set of Support Vectors by a single vector to
decrease the storage requirements.

References

[I] C. Blake and C. MeR. UCI repositoty of machine learning
databases, 1998.

[Z] G. Cauwenberghs and T. Poggio. Incremental and decremen-
tal ruppon vector machine learning. In NIPS Proceedings.
NIPS, MIT Press. November ZOM).

[3] T. Friess. N. Cristianini. and C. Campbell. The kernel adauon
algorithm: a fast and simple learning procedure for ruppurt
vector machine. In Pmceedings of l51h lnrernoriunol Confer-
ence on Machine L a m i n g . Morgan Kaufman, 1998.

[4] R. P. Goman and T. J . Sejnowski. Analysis of hidden units
in a layered network trained to classify sonar targets. Neurul
Networks. 17-89. 1988.

[5] S . S . Keenhi, S . K. Shevade. C. Bhattacharyya, and K. R. K.
Munhy. A fast iterative nearest point algorithm for suppon
vector machine classifier design. IEEE Trrrnsacrions on Neu-
ral Nerwurb, I l(1): 124-136,ZMx).

[6] 1. C. Plait. Fast training of support vector machines using
sequential minimal optimization. In B. Schblkopf. C. Burger.
and A. Smola, editors, Advancer in Kernel Merhodr: Suppon
Vector Machinex. MIT Press, Cambridge, December 1998.

171 D. Roobaen. DirectSVM: A fast and simple ruppon vector
machine perceptron. In Pmceedings .f IEEE lnrernnrionol
Workshop un Neural Nerwurbfiw Signol Processing, Sydney.
Australia. December 2000.

[Sl V. N. Vapnik. The Nurure of Smrisriclrl Learning Theory
Springer. New York. 2"d edition. 2ooO.

59

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

