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Abstract

This paper presents a very fast step acceleration based
training algorithm (SATA) for multilayer feedforward
neural network training. The most outstanding virtue of
this algorithm is that it does not need to calculate the
gradient of the target function. In each iteration step, the
computation only concentrates on the corresponding
varied part. The propesed algorithm has attributes in
simplicity. flexibility and feasibility, as well as high speed
of convergence. Compared with the other methods, in-
cluding the conventional BP, the conjugate gradient
(CG), and the BP based on weight exirapolation (BPWE),
many simulations have confirmed the superiority of this
algorithm in terms of converging speed and computation
time required.

1. Introduction

The most influential effort in all learning methods of
artificial neural metwork (ANN) is the development of
back-propagation {BP) algorithm, which is a gradient
descent with a fixed leamning rate [1] and has a drawback
with slow convergence and time consuming.

In order to accelerate the BP algorithm, a number of
improved algerithms have been described in the literature.
Several heuristic rules are proposed for adapting the
learning rates [2, 3]. Moreover, modified error functions,
which are different from popular mean-squared crrors,
show a faster convergence through decreasing the possi-
bility of a premature saturation [4, 5]. In spite of this
improved convergence, these methods are still based on
the gradient descent approach. This will inevitably in-
crease the computing time or lead to failure of conver-
gence [9].

For improving ANN’s performance, second-order
nonlincar optimizing methods are then used. Such several
learning algorithms have been developed, for example,
the convenient formulations for the computation of the
second-order derivatives of the eror function are intro-
duced in both the case of sigmoid functions [6] and a
more general case [7]. Ideally, this kind of method should
possess the fastest convergence. However, it may suffer
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from three problems: 1} ill conditioning of the Hessian
matrix; 2) time-consuming processing in calculating the
first-order derivation of the state vector to the perform-
ance index; and 3) estimating the inverse Hessian matrix
18,9).

A universal acceleration technique for the BP algo-
rithm based on weight extrapolation (BPWE) is proposed
in [10]. This extrapolation procedure is easy to be imple-
mented since it is activated only a few times between
iterations of the conventional BP algorithm. This leads to
significant savings in computation time of the standard
BP algorithm. However, BPWE lies much on the charac-
teristic of BP. When BP behaves surging, it is difficult to
process an extrapolation. In this paper, we present a fast
algorithm, SATA, which greatly accelerates the conver-
gence for feed-forward ANN. It is evolved from the step
acceleration algorithm in optimizing theory [14]. The
propounded algorithm reserves the good attributes, such
as the robust-ness of BP. Moreover, it uses the corre-
sponding coordinate rotation to avoid calculating the
derivative of the error function; hence its equivalent error
equation is much simplified. In this way, this algorithm
has the advantage of both fast convergence and simple
computation.

This paper is organized as follows: The new training
algorithm is defined in Section 2. Theory analysis of
computational complexity of BP and SATA is given.
Computer simulations and performance comparisons are
discussed in Section 3. At last, section 4 gives a brief
conclusion.

2. SATA Descriptions

For the sake of simplicity, let us assume that the neurai
network that we are going to discuss contains only one
hidden layer, and the number of nodes of the input layer,
output layer and hidden layer is 1, O, H, respectively. In
addition, the number of the training patterns is defined as
K. The mean-square-error function (MSE) of the network
182
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MSE_—-EZ(yp, -d,f, ()

. p =1i=1
where y,, is the actual output of the ith output node

with regard to the pth training pattern, while d; is the

corresponding desired output.

Step aceeleration is an easy-programming and effective
method for optimizing problems with fewer variables.
Generally, it is composed of two alternate steps: searching
arcund and moving ahead. The aim of the search part is to
find a more optimal point around the basis point, i.e., to
find a point to make the error decrease. The coordinate
rotation approach is used here to fulfill searching, which
is on¢ of the oldest multidimensional searching methods.
It processes the searching along every coordinate in tumn
while other coordinates remain fixed. '

With respect to the three-layered structure, there are
four classes of parameters should be adjusted: the thresh-
olds of the output layer units; the weights from the output
layer units to the hidden layer ones; the thresholds of the
hidden layer units; and the weights from the hidden layer
units to the input layer ones. Here, the sigmoid function is
adopted as the activation function, i.e.,

1
gl)= T —5 - )
where A is the parameter which decides the shape of
sigmoid function.

LetE=ZZ(yP,- -

output units as example and give the deduction of SATA.

d, ) . We take the thresholds of

2.1. Searching Around

A. Thresholds of output units
Fixing other parameters, the error function of output
unit’s threshold modification can be defined as

E, =ZZ[g[Zwybpj +0} d ]

b 2
:ZZ[g{ wubpj+6'] d 1
p iz
"+ Y (el 40, )-a,, F 3
P

where ; is the threshold of the ith output unit, 4,
is the desired output of the i, th output unit corresponding

with the pth training pattern, wy is the weight between

the i#th output unit and the jth hidden one, b ; is the
output of the jth hidden unit, and A, = Z w, by s the
1
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total input of the jg th output unit. Change of 8, only

causes the change of the second part in Eq. {3) which has
retation with &, . Since other variables, including 4,

and y_, can be acquired by transferring the storage of

N
the last iteration, we can use an equivalent error function
to compute the error function, i.e.,
Ey=Ylel4 +0,)-d, ). @
3

Other parameters can be deducted in the same way as
the first case. The equivalent error functions are listed as
follows respectively:
B. Weights from Output Units to Hidden Units

| EB=ZZ[ [Zwubpj+6} ]2

7 i*
+ Z(g(A2 +Byw,, )-d,. F. (5)
where Al2 = 3w by +0, ,and By =b,
S
EB' = Z(E(Az + Byw, )"dpl‘u . (8)

ri
C. Thresholds of Hidden Units

E. = ;;[g[zw,jg(?@z?p,, +§jJ+9,J—dP,J2

J

= ZZ(g(/h + Bag(ca +8,, ))_dpi . M
where Ay = 3w, by +6, . By=w, , C;=3 W, b, :
iy k

8, is the threshold of the jth hidden unit, W, is the
weight between the kth input unit and the jth hidden unit,
and b, isthe input of the & th input unit.

D. Weights from Hidden Units to Input Units

ED=ZZ( (zw,,g[zwﬂ,bp,ﬁe +9] d J

J
- ZZ(g(A4 + B4g(C4 + D4w Joko )) dpl ] (8)

where A4 = Dwib, +6,,

S#i

Cy= waukbpﬁ +9;,0 Dy=by,
kzky

B4 = Wiy »

It is clear that our problem has been much simplified
after the above steps because it can be solved by any
linear search approach.

2.2. Moving Ahead
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Now, a vector, V = [wy,WJ,,,a,,ﬁjr, can be obtained.
It is a natural thought that the target function would be
declined if we go along the direction of V — V' (where
V' is the point of last iteration). That is just the idea of
step acceleration that we are going to apply to further
optimization. The whole algorithm is summarized as:

Begin

Initialize the network parameters, 85,8 5, W0, W 0 »
with random value in (-1, 1)

Define computational accuracy, £

Vo« [Wymwjko»gio,gjo

Initialize the iteration counter, /C =0
lter _ Err « Error(V,)

Do

{
o« search(Vo) //using (4,6, 7, 8)

fter _ Errl « ErrorlV, )

lter _ Err « lter _Errl

If fter Err <& ThenExit EndIf
Vo=V +ar(V,-V,).
V, « search(V,)

frer _Err2 « Error(V 2 )
If frer _Err2 <lIter _Errl Then

Vo <= Vy+ BV, -¥,) //Generally, g=1
fter _Err « Error(V,)

IC++

Else

Vo <1

fter _ Err « lter _Errl

IC++

End If
} While ( Iter _ Err>¢)

End

/Generally, a=1

2.3. Analysis of Computational complexity

The algorithm described in this section has the most
remarkable virtue of fast convergence. In fact, the compu-
tational complexity of BP has been proved in [13], which
is exponential function of pattern numbers. Our computa-
tional complexity can be given as follows.

Theorem - The computational complexity of SATA is
exponential function of the scale of network parameters.

For example, assume that the number of nodes of the
input layer, output layer and hidden layer for the network
is I, O, H, respectively. The number of the training pat-
terns is K. It needs run (/*H+O*H +0)*K times

multiplication and the sigmoid function {H +0)*K
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times when an error function is called in BP algorithm.
While it only needs run multiplication (3+8*O)}*K
times and call sigmoid function (2+2*0)}* K times.

It is evident that much saving of computations in
SATA than in BP according to the theory above.

3. Experiments and comparisons

In this section, examples including XOR problem, ap-
proximation of function f' (x)=%sin(2mr)+-;-, and the

iris classification problem are taken to demonstrate the
performance of SATA. For a comparison, simulation
results of the conventional BP, the conjugate gradient
(CG) algorithm (12}, and the BPWE algorithm are also
carried out. All these experiments are programmed in
language C and run on PC III 600. Results are shown in
the Fig. 1- Fig. 4. In the BP learning, the learning rate 7is
fixed to 0.8 to gain the best result.
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Figure 1. Contrast learning curve for XOR
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Figure 2. Contrast learning curve for approxima-
tion problem
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class classification problem

4. Conclusions

A learning algorithm is judged on the basis of certain,
rather conflicting requirements, such as simpticity, flexi-
bility and efficiency [11]. In this paper, we have devel-
oped a new and fast algorithm, SATA, for multiplayer
feedforward ANN. It yields results in both accuracy and
convergence rates, which are orders of magnitude supe-
rior compared to the conventional BP, CG and BPWE
algorthm. Besides, It is a linear optimizing problem and
need not calculate the derivative of error function. Fur-
thermore, there are no learning parameters to be tuned by
the user once the network structure is constructed. The
fact that the computation complexity is exponential func-
tion of the network parameters scale suggests that this
algorithm is suitable for the problems with simple net-
work structure and large number of patterns, which are
more popular in practical applications.
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